
A Complete Design-for-Test Scheme for
Reconfigurable Scan Networks

Lylina, Natalia; Wang, Chih-Hao; Wunderlich, Hans-Joachim

Journal of Electronic Testing: Theory and Applications (JETTA), 2023

doi: https://doi.org/10.1007/s10836-022-06038-3

Abstract: Reconfigurable Scan Networks (RSNs) are widely used for accessing instruments offline during
debug, test and validation, as well as for performing sys-tem-level-test and online system health moni-
toring. The correct operation of RSNs is essential, and RSNs have to be thoroughly tested. However,
due to their inherently sequential structure and complex control dependencies, large parts of RSNs have
limited observability and controllability. As a result, certain faults at the interfaces to the instruments,
control primitives and scan segments remain undetected by existing test methods. In the paper at hand,
Design-for-test (DfT) schemes are developed to overcome the testability problems e.g. by resynthesizing
the initial design. A DfT scheme for RSNs is presented, which allows detecting all single stuck-at-faults
in RSNs by using existing test generation techniques. The developed scheme analyzes and ensures the
testability of all parts of RSNs, which include scan segments, control primitives, and interfaces to the
instruments. Therefore, the developed scheme is referred to as a complete DfT scheme. It allows for a
test integration to cover multiple fault locations can with a single efficient test sequence and to reduce
overall test cost.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by Springer
Science+Business Media.1

1 c©2023 Springer Science+Business Media, LLC, part of Springer Nature

https://doi.org/10.1007/s10836-022-06038-3

JETTA manuscript No.
(will be inserted by the editor)

A Complete Design-for-Test Scheme for
Reconfigurable Scan Networks

Natalia Lylina · Chih-Hao Wang · Hans-Joachim Wunderlich

Received: date / Accepted: date

Abstract Reconfigurable Scan Networks (RSNs) are
widely used for accessing instruments o✏ine during de-
bug, test and validation, as well as for performing sys-
tem-level-test and online system health monitoring. The
correct operation of RSNs is essential, and RSNs have
to be thoroughly tested. However, due to their inher-
ently sequential structure and complex control depen-
dencies, large parts of RSNs have limited observability
and controllability. As a result, certain faults at the in-
terfaces to the instruments, control primitives and scan
segments remain undetected by existing test methods.

In the paper at hand, Design-for-test (DfT) schemes
are developed to overcome the testability problems e.g.
by resynthesizing the initial design. A DfT scheme for
RSNs is presented, which allows detecting all single
stuck-at-faults in RSNs by using existing test gener-
ation techniques. The developed scheme analyzes and
ensures the testability of all parts of RSNs, which in-
clude scan segments, control primitives, and interfaces
to the instruments. Therefore, the developed scheme is
referred to as a complete DfT scheme. It allows for a test
integration to cover multiple fault locations can with a
single e�cient test sequence and to reduce overall test
cost.

Keywords Reconfigurable Scan Networks · Design-
for-Test · Test · Debug · Diagnosis

N. Lylina · C.-H. Wang · H.-J. Wunderlich
Institute of Computer Architecture and Computer Engineer-
ing, University of Stuttgart, Germany
Tel.: +49-711-685-88-278
E-mail: natalia.lylina@informatik.uni-stuttgart.de
This paper combines and extends preliminary work published
in ATS17, IOLTS21 and ITC21.

1 Introduction

Reconfigurable Scan Networks (RSNs) o↵er flexible ac-
cess to embedded instruments via scan segments thro-
ughout the system lifecycle. They are standardized by
IEEE Std. 1149.1-2013 [1] and IEEE Std. 1687-2014 [2].
To ensure the correct operation of RSNs and their in-
teraction with the instruments, RSNs themselves must
be thoroughly tested. Due to the low observability and
controllability of certain parts of RSNs, some faults may
be undetectable by the existing methods. In this paper,
we present a scheme to enhance the design of RSNs
in a way that all single stuck-at-faults in RSNs are
detectable by using existing Automated Test Pattern
Generation (ATPG) tools.

Initially, more focus has been put on using RSNs
o✏ine, e.g. for post-silicon validation (PSV) and man-
ufacturing test and diagnosis. Recent standardization
e↵orts (IEEE P2654 standard proposal [3], also dis-
cussed in [4]) suggest using RSNs to access registers
needed for the system-level test. Research papers [5–7]
use RSNs to perform health monitoring and depend-
ability management. All these applications rely on the
correct operation of RSNs, which may become a system
dependability bottleneck. Already a single fault in an
RSN may corrupt scan paths, erroneous data may be
fetched by RSNs, and instruments may become inac-
cessible. During post-silicon validation, it may prevent
extracting the complete validation data from a device.
Runtime-critical instruments such as Adaptive Voltage
and Frequency Scaling, temperature control, etc., may
become inaccessible due to a fault in an RSN. Erroneous
fault-handling mechanisms may be triggered by faulty
RSNs. As a result, even a system failure may occur.

Faults in conventional scan chains can be tested by
using flush test sequences shifted through a scan chain

2 Natalia Lylina et al.

[8]. These sequences ensure the integrity of the scan
cells and their interconnection. Typically used flush se-
quences include all ones, all zeros as well as the ”0011”
(”1100”) sequence repeated to cover the whole length
of the scan chain under test. The test sequence shifted
into the scan chain is compared with the sequence at
the scan out of the chain. If the output sequence is dif-
ferent from the expected one, the scan chain is faulty.

For conventional scan chains, flush sequences test
faults for certain fault models, such as stuck-at faults,
delay faults, or consider broken scan chains. To detect
the location of a fault within a scan chain, the responses
from the applied Automated Test Pattern Generator
(ATPG) test vectors need to be analyzed. The paper at
hand focuses on test and testability questions. There-
fore, fault localization is out of the scope of this paper.

Compared to conventional scan chains, testing RSNs
is even more challenging. It is due to their high sequen-
tial depth, the distributed control structure, as well as
the complex sequential and combinational dependencies
[9]. Faults in RSNs not only a↵ect the shift logic of the
scan chain segments but also reside at the interfaces to
the instruments and the control primitives. Addition-
ally, specific fault e↵ects in RSNs are observable only
for certain configurations, and sequential test pattern
generation for such faults is unfeasible for large net-
works. The known test solutions, presented in [10–13],
e.g., may not detect all the faults due to low observ-
ability and controllability of some RSN components.

Design-for-test (DfT) methods can be applied to en-
hance the testability of specific parts of RSNs. The
term ”DfT for RSNs” describes changes of the RSN
design which support a more e�cient test generation
with higher fault coverage, a more e�cient test appli-
cation and more e�cient test patterns for the RSN. The
preliminary papers [14–16] developed DfT approaches
to ensure the testability of the three components of a
Reconfigurable Scan Network:

– Scan interfaces in [14]: The testability of the up-
date registers and the scan interfaces to the instru-
ments is enhanced, and the faults in the capture-
and update-circuity of the scan segments become
detectable.

– Control primitives in [15]: The testability of con-
trol primitives is enhanced. Existing methods test
the control primitives by observing the length of an
activated path [9,14,11,12,17–19], and fail if an er-
roneously activated path has the same length as the
correct one. An exact testability analysis method is
presented to identify all single control faults, which
do not have an impact on the length of the activated
path. If such a fault is identified, automated resyn-

thesis changes the length of a minor number of scan
paths to ensure fault detection.

– Scan segments in [16]: The test of the scan shift
logic is enabled by integrating a compact Built-In
Self-Test (BIST) structure. This BIST structure gen-
erates of a short presequence that tests the shift
logic of the currently activated scan path.

The paper at hand combines and extends the pre-
liminary results in [14–16] by presenting a Design-for-
Test (DfT) scheme which addresses all parts of an RSN.
After applying the proposed DfT techniques, state-of-
the-art test generation algorithms for RSNs like [9–12]
are able to generate test sequences which detect all
stuck-at faults and obtain complete stuck-at-fault cov-
erage. Therefore, the developed scheme is referred to as
a complete DfT scheme. The presented scheme requires
negligible hardware overhead and supports test genera-
tion with respect to more complex fault models as well.
An e�cient test integration scheme is developed in a
way that a single test sequence covers multiple fault
locations in an enhanced RSN, and the overall test ap-
plication time in terms of the overall test application
time is significantly reduced.

The extensions and improvements are in detail:

1. A complete DfT scheme is presented for the first
time. It considers all fault locations at the scan in-
terfaces to the instruments, the scan segments and
the control primitives. First, it identifies precisely
untestable faults, and then it re-synthesizes the cor-
responding components with negligible hardware costs.
In the resulting RSN structure, existing ATPG tech-
niques can detect all stuck-at faults.

2. For the resulting RSNs, an e�cient test integration
scheme is developed which allows to reduce the over-
all test access time compared to applying the previ-
ously developed methods [14–16] individually. The
generated test sequences are capable to cover mul-
tiple fault locations at a time. Each sequence con-
tains a workload sequence and a short presequence.
The workload sequence tests faults at the scan in-
terfaces and control primitives. The self-generated
presequence tests the shift logic of the segments on
the activated path.

3. The complete scheme is evaluated on a comprehen-
sive set of benchmarks. The experimental results
show the e↵ectiveness and scalability of the devel-
oped approach.

The remainder of this paper is organized as follows.
The background information about RSNs and their mod-
eling, as well as the considered fault models, are pre-
sented in Section 2. Section 3 summarizes the existing
methods to test RSNs and highlights their limitations.

A Complete Design-for-Test Scheme for Reconfigurable Scan Networks 3

Section 4 provides an overview of the developed DfT
scheme. In Section 5, a DfT scheme is presented for up-
date registers and interfaces to instruments. Section 6
presents a testability enhancement technique for con-
trol primitives. Section 7 provides the details about the
scan segment test. Section 8 discusses the overall test in-
tegration procedure. In Section 9, experimental results
are discussed, and Section 10 concludes the paper.

2 Background

This section presents background information about
RSNs, the graph-based RSN model and the considered
fault models.

2.1 Reconfigurable Scan Networks (RSNs)

In Fig. 1, the internal instruments (shown in orange),
such as sensors and BIST registers, are accessed through
RSNs for observation and control. The test data regis-
ters (s1 . . . s8) access the instruments through a parallel
interface and are also referred to as the scan segments.
The configuration segments (cs0 . . . cs3), shown in yel-
low, determine the values of control signals. Those sig-
nals control the state of control primitives such as scan
multiplexers (shown with the circles with the match-
ing indices in Fig. 1). Control primitives determine the
currently configured non-circular scan path from a pri-
mary scan input to a primary scan output port of an
RSN. Such a path is commonly referred to as an Ac-
tive Scan Path (ASP) and is shown with a blue dashed
line in Fig. 1. In the considered example, an initial ASP
traverses the control registers cs0, cs2, and cs3, as well
as the segments of the BIST register and the segment
of the monitor.

cs2

s1

s8

Sensor Sensor

BIST Monitor

s5

Trace Buffer

2 s4

s2

3

0

cs11

s6

Sensor

s7

Sensor

cs0

cs3s3

Sensor

Fig. 1 A Reconfigurable Scan Network accesses instruments

Control signals in RSNs can be external or inter-
nal. If a control signal comes from outside of an RSN,
it is referred to as an external control signal. If a sig-
nal comes from an update register of a configuration

segment, it is called an internal control signal. The fol-
lowing control primitives are commonly used to build
RSNs:

– Scan multiplexers (Scan Muxes) select between ap-
propriate parts of the RSN depending on the value
of the address control signal and include them into
an activated path.

– Segment Insertion Bits (SIBs) include or exclude
specific parts of the RSN from an activated path
depending on the control signal assignments.

Each SIB (as shown in Fig. 2.a) can be represented
as a combination of a scan segment and a scan multi-
plexer, as shown in Fig. 2.b. The underlying segment
is only selected if the SIB is asserted. If the SIB is de-
asserted, the segment is bypassed.

SIB
SI SO

0

1

SI
SO

FF
UFF

Segment Segment

a) b)

Fig. 2 SIB transformation for a post-SIB (congifuration seg-
ment is located after the multiplexer)

A small part of an RSN is shown in Fig. 3 with more
details. A post-SIB (shown as SIB in Fig. 3) includes or
excludes the remainder of the RSN from an activated
path depending on the control assignments. This RSN
is used as a running example for the remainder of the
article.

0

1
s2

cs1
0

1

s3

cs2

Scan-In Scan-Out
SIB

m1 m2

System
i2 i3

RSN
s1

i1

Fig. 3 Implementation of a small RSN part. i1 � i3 are the
instruments; cs1, cs2 are the configuration segments; s1 � s3
are the scan segments; m1,m2 are the scan multiplexers. The
SIB is asserted and the multiplexers m1 and m2 are driven
with the value ”0”. The ASP is shown in red.

In an RSN, scan segments are the scan primitives,
which shift the data through the RSN, as well as cap-
ture and update the data through a parallel interface.

4 Natalia Lylina et al.

Each scan segment contains a shift register and an op-
tional update register, as shown in Fig. 4. The following
types of scan segments exist:

– Data segments are scan segments, which access the
instruments through a parallel interface. In data
segments, the update registers serve as intermedi-
ate storage for the information, which is provided
to the instruments.

– Configuration segments are scan segments, where
the information from the update registers is used
to drive the internal control signals. The state of
configuration segments defines the scan configura-
tion.

Scan Segment s1
Shift register

Instrument i1 Internal control
signals

Scan
in

Scan
out

Global control
signals (CSU)

Internal select
signal

Update register

FF1

UFF1

FFn

UFFn

Fig. 4 Scan segment internals

Each access to an RSN can be represented as a
transaction. This transaction is commonly referred to
as a Capture-Shift-Update (CSU) operation [9]. The
data is captured from the instruments into the shift
registers during the capture-phase. During the shift-
phase, the new data is shifted-in from a primary scan
input through an active scan path, while the old data is
shifted-out towards the scan output. Finally, during the
update-phase, the newly shifted-in data is clocked into
the update registers of the scan segments. The external
global control signals control the CSU operations and
bring an RSN into a known deterministic reset state if
required. The data at the scan input port comes from an
access interface, which can be either a Test Access Port
(TAP) Controller, or an alternate functional or non-
functional interface, as specified in the IEEE P1687.1
standard proposal [20]. The collected data might be
processed and evaluated o✏ine or online using on-chip
computing, edge computing, or even in the cloud.

Each scan segment consists of one or multiple scan
cells. A single scan cell Cellj consists of a shift flip-flop
FFj (a part of a shift register in Fig. 4), an optional
update flip-flop UFFj (a part of an update register), as
well as of a few multiplexers to control CSU-operations.
A gate-level structure of a single scan cell is shown in
Fig. 5.

UFF1
0

1

Reset

SI SO

0

1

Capture M2

Update M3

0

1
D Q

Shift M1

Instrument

FF1

Fig. 5 Scan cell accesses an instrument through the data
input D and the data output Q

In a scan cell, the following paths are activated within
a CSU operation:

– A shift path starts at the scan input (SI) and ends
at the scan output (SO) of a cell. It contains two
multiplexers (the shift multiplexer M1 and the cap-
ture multiplexer M2) and an internal data path of
the shift flip-flop. During the shift-phase of a CSU
operation, the shift multiplexer M1 propagates the
data from the scan input through the capture mul-
tiplexer M2 and the shift flip-flop towards the scan
output.

– An update path starts at the scan flip-flop’s output
and leads to the data output Q. This output may be
connected to an instrument or drive RSN-internal
control signals. The path comprises the update mul-
tiplexerM3 and the internal data path of the update
flip-flop. During the update phase, the update mul-
tiplexer M3 propagates the data from the update
flip-flop to the output Q.

– A capture path starts at the data input D, traverses
the capture multiplexerM2 and the data path of the
scan flip-flop. During the capture phase, the capture
multiplexerM2 propagates the data from the instru-
ment into the shift flip-flop.

2.2 RSN Model

An RSN is modeled as a directed graph G := (V,E),
where V is the vertex set, and E is the edge set. Each
vertex corresponds to a scan primitive, a primary scan
input or output, or represents a fanout stem fi, as
shown in Fig. 6 for the example from Fig. 3. Each edge
models a direct connectivity between the vertices.

A source of an RSN graph is a vertex, which has
only outgoing edges, while a sink has only incoming
edges. We assume a single source SI 2 V , and a single
sink SO 2 V . If the modeled RSN has multiple scan in-
puts, then the corresponding vertices are connected to a
single pseudo-primary source vertex. The same logic is
valid for RSNs with multiple scan outputs. Control scan

A Complete Design-for-Test Scheme for Reconfigurable Scan Networks 5

cs1 m1f1 cs2

s3

f2 m2

mSIB

sibf0SI SO

s1

s2

Fig. 6 RSN graph model

primitives, i.e., multi-input scan multiplexers, SIBs, are
modeled as a combination of one or multiple scan seg-
ments and one or multiple two-input scan multiplex-
ers. The following relations are determined for an RSN
graph:

– Structural reachability: A vertex mj is structurally
reachable from a vertex mi, if at least one path ex-
ists from mi to mj .

– Reconvergence vertex [21]: A vertex mj is a recon-
vergence vertex of the vertex mi, if there are two
paths p1, p2 with the corresponding vertex sets V (p1)
and V (p2) such that V (p1)\ V (p2) = {mi,mj}, mi

is the source of both p1 and p2, and mj is their sink.
– A closing reconvergence of a vertex mi is such a

reconvergence vertex mj , which does not reach any
other reconvergence vertex of the vertex mi.

– A reconvergence region of a vertex mi includes all
the vertices, which are reachable from this vertex
and also reach its closing reconvergence.

Example: In Fig. 6, the reconvergency region of the
vertex f1 includes the vertices s1 and s2, and the vertex
m1 is a closing reconvergence.

2.3 Faults in RSNs

A fault in an RSN may a↵ect the interfaces to the in-
struments, the control signals, or the scan segments.
The remainder of this subsection discusses possible fault
locations and their e↵ects on the RSN functionality.

2.3.1 Faults at Interfaces to Instruments

Communication to the attached instruments and gener-
ation of internal control signals can be a↵ected by faults
in the update flip-flops, as well as the multiplexer M2

and M3. Possible fault locations are shown in Fig. 5
with a red color and explained below:

– A capture multiplexer M2 and data path of an up-
date flip-flop: A timing violation a↵ecting the up-
date flip-flop or a fault at the capture multiplexer
M2 may corrupt writing the data to the instrument
during the update phase.

– An update multiplexer M3: If the update multiplexer
M3 is faulty, it may prevent from reading correct
data from the instrument during the capture phase.

– A reset line of an update flip-flop: If the reset line of
an update register is a↵ected by a stuck-at-0 fault, it
may not be possible to reset its value into an initial
known state.

In general, controllability and observability shall never
be exercised through the instrument. Any attempt to
do so would require a bespoke and hence a non-scalable
DfT solution. At the same time, the logic around an up-
date register can only be observed via the instrument.
That makes the value of the signal Q unobservable for
a test. Similarly, the value of D is uncontrollable, since
it fully depends on the value of the instrument. This
makes the faults at the capture multiplexer M2 and the
update multiplexer M3, as well as the faults a↵ecting
the update flip-flops, in general not testable.

Example: In Fig. 3, a fault may a↵ect an interface
between the scan segment s1 and the instrument i1, as
shown with a grey box. If the capture-circuitry of the
scan interface of the scan segment s1 is faulty, incorrect
data can be provided to the instrument i1.

2.3.2 Faults in Control Primitives

Faults in the control primitives, such as the scan mul-
tiplexers and the SIBs, may arise due to defects in con-
trol lines, or internal defects in the control primitives.
These faults are usually modeled as high-level ”stuck-
at” faults, as defined in [12]:

– Scan Multiplexers: If a scan multiplexer always se-
lects a specific input with an identifier id, regardless
of the assignment to the address control line, we say
that this scan multiplexer is a↵ected by a ”stuck-at-
id” fault.

– SIBs: If a certain SIB always provides access to the
underlying segment, regardless of the applied access
pattern, we say that this SIB is ”stuck-at-asserted”.
If access to the underlying segment is never pro-
vided, the SIB is ”stuck-at-deasserted”.

Example: Assume the scan multiplexer m1 from
Fig. 3 is a↵ected by a stuck-at-1 fault. Due to this fault,
the scan segment s1 becomes inaccessible. The latter
leads to the inaccessibility of the instrument i1 via the
RSN.

2.3.3 Faults in Scan Segments

Examples of faults, which a↵ect the primitives located
on the shift path of a scan segment, include setup-

6 Natalia Lylina et al.

and hold-time violations in the corresponding shift flip-
flops. These violations may prevent correct data from
being latched into the flip-flops while shifting.

Example: If the shift flip-flop of the scan segment
s2 from Fig. 3 has a setup-time violation, the data is
not properly latched into this flip-flop. The propagation
through the activated path which traverses the scan seg-
ment s2 is a↵ected.

3 State of the Art

Testing RSNs has been extensively studied in recent
years. This section summarizes the existing methods to
test RSNs with respect to the fault locations discussed
above.

3.1 Test of Scan Interfaces

In [11], the primitives are tested, which are located at
the capture- and the update-paths of scan segments.
Read and write operations with opposite values are per-
formed for each segment on the active scan path. How-
ever, as discussed above, it is not possible to test the
primitives located at the interfaces independently from
the values stored at the connected instruments. In re-
alistic designs, the value of the instrument, may not be
controllable or observable. Moreover, the existing test
methods do not consider testing reset lines of update
registers.

3.2 Test of Control Primitives

Numerous works in the past have presented methods
to detect faults in control primitives and control lines.
In [11], the conditions for activating faults, which may
alter or break an activated scan path, are formally an-
alyzed with a deterministic test pattern generator. The
generator tests the faults in the combinational elements
on the scan path, which are located between two adja-
cent scan segments, but might not be scalable due to
the high sequential depth of an RSN. [10] presents the
first method to test those update registers, which guide
the operation of control primitives. In [12], the control
primitives themselves are targeted. A method is pre-
sented for smaller RSN designs to minimize the test
application time while detecting faults in the control
primitives. In [22], the scalability of the test method
above has been significantly improved by presenting a
scalable evolutionary heuristic. In [19], the test method
above has been used as a basis for an e�cient diagnos-
tic procedure for permanent faults in the control logic.

An approach from [23] performs access time optimiza-
tion for RSNs located in multiple power domains, and
[13] enhances the method above in terms of scalabil-
ity. In [18], a post-silicon validation technique is pre-
sented, which identifies possible mismatches between
the specification and the actual silicon implementation
of RSNs. In [24], this method has been improved to con-
sider equivalence between the structural description of
an RSN and its Register Transfer Level implementation
using simulation.

The above-mentioned test, validation, and diagnosis
methods rely on the fact that a fault or a mismatch is
detected based on the altered scan path length [9,14,
11,12,22,18,24,19]. However, if a such fault does not
alter the length of the activated scan path, it remains
undetected. Although, the untestable mismatches can
be enumerated using simulation-based techniques as in
[18], the first systematic solution to detect them during
the test has been presented in [15] which is extended in
the article at hand.

3.3 Test of Scan Segments

[10] presents a method to test the scan shift logic of
a particular scan segment. First, an active scan path
is configured to select the target segment. Next, faults
are tested by shifting a flush sequence into an activated
path and observing the output sequence at the scan
output. If the expected sequence is shifted-out, the seg-
ments on the scan path are fault-free. Otherwise, there
is a fault. For ”stuck-at-faults”, flush sequences, such as
“01100” or “10011”, are used. Such a sequence gener-
ates all possible transitions, including ”00”, ”01”, ”10”,
and ”11”. The flush sequences are modifiable for more
complex fault models, such as delay faults.

4 Overview of the Developed DfT Scheme

As discussed above, specifics of some RSN structures
may a↵ect the fault coverage. In Fig. 7, some examples
of the testability issues are presented, which would arise
for the RSN example from Fig. 3 if the existing test
methods are applied.

1. Undetected fault a↵ecting an update register of s3: If
the update register of the scan segment s3 is faulty,
an erroneous data might be captured into the corre-
sponding instrument i3. The existing methods rely
on the assumption that the value in the instrument
i3 is directly observable, which is not always true.

2. Faulty reset line: The existing methods do not guar-
antee to detect faults a↵ecting the reset values of the
update registers.

A Complete Design-for-Test Scheme for Reconfigurable Scan Networks 7

0

1
s2

cs1
0

1

s3

cs2

Scan-In Scan-Out
SIB

m1 m2

System
i2 i3

RSN
s1

i1

s@1

Fig. 7 Testability issues in the RSN example from Fig. 3

3. Undetected fault at the multiplexer m1: If the multi-
plexer m1 is a↵ected by a ”stuck-at-1” fault, a path
through the grey-colored primitives would be acti-
vated in Fig. 7 instead of the intended path in Fig. 3.
Since both paths have the same length, the fault at
m1 would remain undetected, and the data from the
instrument i2 would appear at scan output instead
of the data from the instrument i1.

4. Corrupted scan path integrity due to the faulty seg-
ment s2: If the scan segment s2 is faulty, the in-
tegrity of the configured scan path (in grey) is cor-
rupted. Using the existing methods, it is not possible
to detect this fault concurrently with the functional
operation.

The remainder of this article presents a complete
design-for-test (DfT) solution for RSNs which overcomes
the above mentioned limitations of existing schemes.

The presented scheme has the following goals:

– Testability: Faults a↵ecting all parts of an RSN
must be detectable, which includes instrument in-
terfaces, scan segments, and control primitives.

– Flexibility: The presented scheme must be adjustable
towards a used-defined fault model.

– Cost-e�ciency: The presented scheme must have
a low hardware overhead.

– Compliance: The DfT logic must not a↵ect pre-
computed retargeting sequences.

– Scalability and generality: The presented scheme
must apply to large arbitrary RSN designs.

– Compactness: Test sequence must be able to cover
multiple test locations.

– Compatibility with the existing test methods
The presented DfT scheme must be compatible with
the test, diagnosis, and post-silicon validation meth-
ods discussed above and is supposed to be used com-
plementary to these schemes.

5 Testability of the Scan Interfaces

This section discusses the testability enhancement of
scan interfaces between the scan segments and the in-
struments. First, the problem is formulated for the fault
locations, which cannot be tested with the existing meth-
ods. Next, a DfT enhancement is presented to signifi-
cantly increase the coverage of the faults at the scan
interfaces of all data scan segments without corrupting
the data stored in the instruments. As a result, the scan
cell internal multiplexers (M2 andM3 in Fig. 5) and the
update registers must become testable.

5.1 DfT Enhancement

The testability of the scan interfaces is improved by
significantly increasing the observability of the update
registers. The test of the multiplexers M2 and M3 is de-
coupled from the data in the underlying instruments.
With this scheme, the corresponding fault e↵ects be-
come observable at the scan output of a scan cell and
can be propagated to the global scan output port by
using conventional test methods.

The test of scan interfaces to the instruments is
enabled by augmenting the initial scan cell structure
(Fig. 5) with an additional feedback loop between the
update flip-flop and the shift flip-flop, as shown with
green color in Fig. 8.

UFF1
0

1

Reset

SI SO

0

1
0

1

D QFeedbackEn

FF1

ShiftEn
CaptureEn

1

0

Instrument

Capture M2

Update M3

Shift M1

Fig. 8 Scan cell with a DfT Enhancement (in green).
The additional scan multiplexer allows to propagate the data
from the update flip-flop to the shift flip-flop.

The DfT structure provides direct visibility of the
update flip-flop without requiring knowledge about or
control over the connected instrument. The feedback
loop propagates the value stored in the update flip-flop
into a shift flip-flop. This data is then shifted through an
activated scan path, such that the value of the update
flip-flop is observable at the scan output.

8 Natalia Lylina et al.

The feedback loop is activated by setting the con-
trol signal FeedbackEn to a logic one. The scheme is
compliant with IEEE Std. 1687-2014 [2]. The feedback
loop can be described using the Instrument Connec-
tivity Language, and therefore can be readily handled
by EDA tools supporting this standard. The additional
feedback enable signal can be controlled externally by
the access interface or internally by using previously
unused assignments to the internal control signals.

The remainder of this section discusses how the DfT
scheme is applied to test the scan interfaces and the re-
set functionality. Since the newly integrated DfT feed-
back loop must be tested as well, a discussion about
the testability of the corresponding faults concludes the
section.

5.1.1 Testability Enhancement for the Scan Interfaces

In an enhanced scan cell (Fig. 8), an update register
can be tested by writing complementary values into the
update flip-flops and reading them through a feedback
loop. Faults e↵ects residing in the update flip-flop are
propagated to the scan output of the RSN with the
help of the feedback path (shown in green in Fig. 8)
and the initial paths through a scan cell by applying
the following steps:

1. First, the newly introduced feedback line is used to
propagate the fault e↵ect from the update flip-flop
towards the shift flip-flop.

2. Next, the data is shifted through the shift path to-
wards the scan output. During those two steps, the
functional operation of an RSN is paused.

3. Finally, the data at the scan output of the scan seg-
ment is further propagated through an RSN by ap-
plying regular CSU operations.

5.1.2 Testability Enhancement for the Reset Line

The reset lines of update flip-flops are testable with the
help of the DfT enhancement. To perform a test, an
RSN is set into a known state which di↵ers from its
reset state. A non-reset state is read from the update
flip-flops into the shift flip-flops through the 1-branch of
the feedback multiplexer, as shown in Fig. 8. This value
is propagated towards the global scan out using conven-
tional retargeting methods. Then, a global reset is ap-
plied to activate faults a↵ecting the reset functionality.
Next, the fault e↵ects are read from the update regis-
ters through the feedback loop and shifted out of the
RSN. The shifted-out sequences for reset and non-reset
states are compared to test a fault. Finally, a global
reset signal is applied again to bring the RSN into its
initial state.

5.1.3 Testability of the Feedback Loop Primitives

The faults a↵ecting the additional feedback loop prim-
itives are tested in multiple phases, while testing the
D output of the instrument and hence the feedback
multiplexer 0-input cannot be covered without control-
ling the instrument from outside. This paper considers
faults within the RSN including the interfaces. Faults
within the instruments lay out of the scope and do
not contribute to the resulting coverage. In the first
phase, the D-value is captured and observed by set-
ting FeedbackEn = 0. Then, with FeedbackEn = 1,
D is shifted into the loop and observed outside. If the
feedback multiplexer output stayed still at D, the cor-
responding stuck-at-D faults at the multiplexer output,
its 1-input or a stuck-at-0 fault at FeedbackEn are de-
tected. Next, D is shifted into the loop to detect stuck-
at-D at the multiplexer output and 1-input. Finally, D
is shifted again into the loop, and with FeedbackEn = 0
it will load D again, otherwise there is a stuck-at-1 fault
at FeedbackEn.

6 Test of Control Primitives

This section presents a method to formally validate
whether all the faults a↵ecting the control primitives
can be tested by observing an erroneously activated
scan path with a changed length. If a fault exists, which
is not testable this way, the RSN is transformed into
a testable functionally equivalent one with negligible
hardware overhead. In the resulting RSN, it is guaran-
teed that all the single faults a↵ecting the control prim-
itives are testable. As a result, the existing methods to
test RSNs can be e�ciently applied to this RSN. First,
we present a formal definition of the testability concept.
Then we provide a scalable method for so-called series-
parallel RSNs defined below. Finally, we show how can
an arbitrary RSN be modeled as a series-parallel one.

6.1 Testability Concept

In this subsection, we present the testability concept
for control primitives of RSNs.

Definition 1: An active scan path pathl is called
to be ”single fault reachable” from another path pathk,
if and only if there is a single fault f which activates
the path pathl instead of pathk erroneously for some
control input.

To check whether a given path is single fault reach-
able from another path, their activation conditions are
compared, as shown in the example below.

A Complete Design-for-Test Scheme for Reconfigurable Scan Networks 9

Example: In Fig. 9, a multiplexer m1 has two in-
puts. The paths through the upper branch of the scan
multiplexer are single fault reachable from the paths
through the lower branch, by a single fault a↵ecting the
address control signal of m1.

0

1

0

1

0

1

m1

Fig. 9 Testability concept example

If the paths arriving at di↵erent multiplexer inputs
have di↵erent lengths, any fault of the multiplexer con-
trol can be tested.

Definition 2: A single fault f a↵ecting the RSN
control primitives is categorized as ”detectable by an
altered path length (DT-PL)” if under the same scan
configuration, the length of the paths through a fault-
free RSN is di↵erent compared to the length of any
faulty path, which is single fault reachable from the
initial path.

For a ”detectable by an altered path length” fault, it
is always possible to find a test sequence, which would
detect the fault. Otherwise, a fault is categorized as
”undetectable by a path length (UDT-PL)”, since the
existence of such a test sequence is not guaranteed.

Example: In Fig. 9, it is only necessary to com-
pare the sets of lengths through the upper and the lower
branches of m1 to identify, whether the faults a↵ecting
m1 are ”detectable by a path length”. If at least one
path length exists, which appears in both sets, it may
not be possible to detect the fault a↵ecting m1 by an al-
tered path length. In this example, the paths through the
upper branch consist of 1 and 2 scan cells respectively.
There also exist two other paths through the lower input
of the multiplexer with the lengths 1 and 3. So, two paths
shown in red have the same length, and the fault a↵ect-
ing m1 is not ”detectable by an altered path length”.

If an RSN contains any fault, which is not proven
to be detectable by a path length, it is referred to as an
untestable RSN. The goal of this section is not only to
determine whether an RSN is testable, but also to pin-
point the exact single faults location a↵ecting the RSN
control primitives, which may not be detectable by dif-
ferences in a path length, and to resolve such untestable
spots via resynthesis.

6.2 Series-Parallel RSN Model

In the following, the testability analysis is extended for
large RSN designs by applying a divide-and-conquer
algorithm on so-called series-parallel RSN models.

Definition 3: Let G := (V,E) be a directed acyclic
graph with the vertex set V , the edge set E ⇢ V

2, a
single source sc 2 V and a single sink si 2 V . G is
called series-parallel (SP), if one of the following three
statements is true:

1. G is an elementary series-parallel graph with V =
{sc, si}; E = {(sc, si)}

2. G is a parallel composition of two series-parallel
graphs G1 := (V1, E1), G2 := (V2, E2):

V := V1 [V2

E := E1 [E2
(1)

sc := sc1 = sc2

si := si1 = si2

V1 \ V2 = {sc, si}
(2)

scj and sij are sources and sinks of Gj ; j = 1, 2.
3. G is a series composition of two series-parallel graphs:

V := V1 [V2

E := E1 [E2
(3)

sc := sc1

si := si2

si1 = sc2

(4)

Any directed graph, which does not fulfill the condi-
tions above is referred to as a non-series-parallel graph.
Fig. 10.a shows an example of a series-parallel graph,
and Fig. 10.b shows an example without the series-
parallel property.

a) Series-parallel graph

b) Non-series-parallel graph

Fig. 10 Series-parallel property examples

10 Natalia Lylina et al.

The hierarchical relations are stored in a binary de-
composition tree, as shown in Fig. 11 for the running
example, where the vertices corresponding to the multi-
plexers are located higher in the hierarchy than the ver-
tices in their reconvergence regions. The leaves of the
decomposition tree represent the scan primitives, while
the intermediate vertices define, whether the subgraphs
are connected in parallel, as shown with the green ”P”
vertices in Fig. 11, or in series, as shown with the blue
”S” vertices.

S

sibP/mSIB

bypassS

P/m2

s3 bypass

cs2

P/m1

s1 s2

cs1

S

S

Fig. 11 Binary decomposition tree for the graph in Fig. 6

Example: Fig. 11 shows a binary decomposition
tree for the graph from Fig. 6. The tree is constructed
bottom-up. First, the vertices s1 and s2 are connected in
parallel via the vertex m1, as shown with the ”P/m1”
vertex in Fig. 11. Next, this sub-RSN is connected in
series with the vertex cs1 and then with the vertex cs2.
The same logic is applied to generate the remainder of
the tree. The tree generation continues until the vertex
modeling the configuration bit of the SIB is connected in
series, as shown with the top-level ”S” vertex of Fig. 11.

In the following, we first present the initial testabil-
ity analysis and resynthesis for the case of series-parallel
RSNs. The developed approach processes large RSN de-
signs in a scalable way. Finally, we show how can the
developed methods be applied to arbitrary RSNs.

6.3 Testability Analysis of Series-Parallel RSNs

In this section, a divide-and-conquer approach is for-
mulated to process the series-parallel graph of an RSN
in a bottom-up manner. The analysis starts with ele-
mentary graph structures, such as parallel and series
connections between the vertices of the RSN graph.

For the vertices connected in parallel, the testabil-
ity concept from Section 6.1 is applied. The testability
of the vertices connected in series does not depend on
one another and thereby can be considered indepen-
dently. As soon as the smaller subgraphs are processed,

the analysis abstracts each such subgraph into a single
edge. The computation then proceeds with the analysis
of bigger subgraphs until the whole RSN graph is pro-
cessed. The remainder of this subsection presents the
details of the testability analysis implementation.

Let the set pathsj be the set of paths through a sub-
graph Gj , where each path pathl has a length pathLenl

and is activated if the path activation conditions condsl
are satisfied. The set Lj contains all the path lengths
through the subgraph. For two subgraphs G1 and G2,
the following cases are considered:

– Series composition:

For two serially-connected subgraphs, the set of path
lengths through the resulting graph G includes all the
possible combinations of the sums of the paths through
the individual subgraphs.

L := {pathLen1+pathLen2|
pathLen1 2 L1, pathLen2 2 L2}

(5)

At the same time, the conditions for activating the
partial paths should not be contradicting:

cond(path) := cond(path1) ^ cond(path2) (6)

A fault f in G1, which is detectable by an altered
path length, leads to a changed length of at least one
path path1 through G1:

pathLen
f
1 := pathLen1 + � (7)

where pathLen
f
1 is the length of a faulty path, � is

the relative change to the path length compared to the
fault-free case, which arises due to a fault f .

Given the single fault assumption, the subgraph G2

is fault-free, and any path through G, which includes
an erroneously activated partial path through G1, also
di↵ers from a fault-free path by the value of �:

pathLen
f := [pathLen1 + �] + pathLen2 (8)

As a result, the fault f is detectable in G by an
altered path length.

– Parallel composition:

For two subgraphs connected in parallel, the set of
path lengths includes the lengths of the paths, which
traverse one of the subgraphs:

L := L1 [L2 (9)

The sets of path lengths should not be intersecting:

A Complete Design-for-Test Scheme for Reconfigurable Scan Networks 11

L1 \ L2 = ; (10)

If the intersection is not empty, it indicates a prob-
lematic spot, meaning that the fault is undetectable by
an altered path length. For all paths path1 and path2

through G, such that path2 is single fault reachable
from path1 or vice versa, the information about the
di↵erences between the corresponding path lengths is
saved.

The paths through an RSN are analyzed recursively
with a binary decomposition tree. Each time, the com-
putation considers a series or a parallel composition
of subgraphs. The initial computation starts with the
leftmost leaf of the tree. The vertices of the tree are
traversed in the order of the Reverse Polish notation.

After the analysis is completed for the subgraph,
it is abstracted to a single vertex of the binary de-
composition tree. All possible path lengths through the
subgraph are used for the annotation of this vertex.
The computation continues with the next low-level sub-
graph until all low-level graphs are processed and then
proceeds to a higher level, until the whole RSN is ana-
lyzed.

If all the target faults are detectable by an altered
path length, then the RSN is already testable. Then the
testability-enhancing resynthesis is not needed for this
RSN. Otherwise, if the RSN is not testable, the infor-
mation about the control primitives with undetectable
faults is saved and used for resynthesis. The saved in-
formation also includes the possible di↵erences of the
partial path lengths.

Example:Given the decomposition tree from Fig. 11,
the computation starts at the configuration segment cs1.
The tree is traversed following the Reverse Polish nota-
tion until the first parallel composition vertex is found.
First, the subgraph consisting of the vertices P/m1, s1
and s2 is analyzed, and possible path lengths are used
for vertex annotation. The computation continues with
analyzing the subgraph consisting of the vertices P/m2,
s3 and s4. As soon as all low-level subgraphs are an-
alyzed, the higher-level subnetwork through the vertex
P/mSIB is analyzed.

6.4 Testability-enhancing Resynthesis

For the resynthesis of series-parallel RSNs, the following
cases are considered for the subgraphs G1 and G2:

– Series composition: A fault in G1 only a↵ects the
path lengths through this subgraph, and does not
change the path length through the second subgraph

G2, and vice versa. Therefore, it is not required to
consider the subgraphs simultaneously.

– Parallel composition: The lengths of the paths through
the 0-input of the multiplexer mi must be distinct
from the lengths of the paths through the 1-input.
Let Diff = {l0 � l1|l0, l1 path length through 0, 1
input } and m = min{|c||c /2 Diff}. If m = 0,
the paths through the di↵erent multiplexer inputs
are not ”single fault reachable”. If m /2 Diff , we
can insert m flipflops in front of the 1-inputs of the
multiplexers which leads to distinct path lengths. If
�m /2 Diff , we can put m scan cells in front of the
0-input, but not at the 1-input.

0

1

0

1

0

1

m1

Fig. 12 Resynthesis example: The testability issue from
Fig. 9 is resolved by inserting two scan cells

Example: Consider the example from Fig. 9 again.
To ensure that a fault at m1 is detected by an altered
path length, two scan cells are added at the lower scan-
input of the multiplexer mi, as shown in Fig. 12.

The resynthesis algorithm is applied recursively by
traversing a binary decomposition tree in the same or-
der as during the testability analysis. After the testa-
bility in a subgraph is enhanced, this subgraph is ab-
stracted to a single vertex. Each vertex is annotated
with the possible lengths of the path considering the
newly added cells. After all the lower-level subgraphs
are processed, the computation goes one level higher
in the binary decomposition tree, until the whole RSN
is processed. In the resulting RSN, all the single faults
a↵ecting the RSN control primitives are detectable by
a changed path length.

6.5 Application for Arbitrary RSN Structures

The method presented above is only applicable if an
RSN can be represented by a series-parallel graph. The
method presented in Section 6.5.1 below allows us to
identify whether the initial graph is series-parallel. Al-
though most RSNs graphs are series-parallel, for some
RSNs, additional steps might be required to obtain a
functionally equivalent series-parallel graph, as shown

12 Natalia Lylina et al.

in Section 6.5.2. After an equivalent series-parallel rep-
resentation of a non-series-parallel RSN graph is con-
structed, this generated representation is used for per-
forming the testability analysis and the automated resyn-
thesis presented above.

6.5.1 Validation of the Series-Parallel Property

To check whether a specific RSN graph is series-parallel,
a few simple checks are applied first. Then a reduction
algorithm based on [25] is used:

– Initial Checks
First, the reachability of all scan primitives is com-
puted. If the initial RSN graph has multiple sinks
or sources, auxiliary vertices are added to the RSN
graph and serve as a pseudo-primary sink and source
correspondingly.
The acyclicity of the initial graph is validated, since
a graph, which contains cycles, is non-series-parallel
by definition. If the initial RSN graph contains cy-
cles, an acyclic representation is constructed by re-
moving a few edges in a similar way as it is well-
known in partial scan design [26].

– Main Flow
The main flow of the check follows the well-known
reduction algorithm from [25]. If two vertices v1 and
v2 of the RSN graph are connected in series or in
parallel, they are merged into a single vertex. The
vertices are merged until it is not possible to merge
any pair of vertices.
For a series-parallel graph, after the algorithm above
is applied, the whole RSN graph is represented with
a graph, which consists of a single vertex. If such
a representation is not possible, the graph is non-
series-parallel and has to be further processed as de-
scribed below. The Church-Rosser property of the
applied reduction system [27] allows to apply re-
ductions in an arbitrary order to validate the series-
parallel property.

6.5.2 Transformation into a Series-Parallel Graph

To build a series-parallel equivalent representation of
a non-series-parallel graph region, a minimized number
of additional virtual vertices is added into the initial
RSN graph [28]. Since the virtual changes are reverted
in the resynthesis phase, additional hardware overhead
is not needed to transform the RSN graph into a series-
parallel representation.

In the RSN graph, the fanout stems are identified,
which prevent the RSN graph from being series-parallel.
Any fanout stem fviol in the stem region of another

fanout stem finit, which has either the same closing re-
convergence gate or its closing reconvergence is reach-
able from the closing reconvergence of the stem finit,
is referred to as a violation spot. To resolve the viola-
tion, the vertices, which are located between the fanout
stem finit and the violation spot fviol, are duplicated
and are placed after the violation stem in the graph
representation. The violation spots are resolved sequen-
tially until a series-parallel representation of the RSN
graph is obtained. The violation spots and their rela-
tive processing order, are selected in a topological order
of the RSN graph, which starts at the scan input port.
The fanout stems located closer to a primary scan-in
vertex are processed first, followed by the fanout stems
in their stem region. Each time, the computation ei-
ther goes deeper in the hierarchy or moves forward to
a succeeding fanout stem.

Example: In Fig. 13, a connection from the vertex
f3 to the vertices m2 and m3 makes the RSN graph non-
series-parallel. If it would be simplified as much as pos-
sible, a two vertex representation will not be achieved.

cs2

s3

m2 cs3 m3f2

f3

s4cs1 m1f1

s1

s2

Fig. 13 Non series-parallel graph

The decomposition tree for the resulting structure is
shown in Fig. 14. In Fig. 15, an NSP region is trans-
formed into a series-parallel form by duplicating the
vertex s3 and the fan-out stem f3.These changes are
virtual, are only used to achieve a scalable computation
flow and will be reverted after the resynthesis, which
works as follows.

Assume that in Fig. 13 the scan segments corre-
sponding to the vertices s4 and s3 have the same length.
Then the duplicated vertex s3c in the series-parallel rep-
resentation in Fig. 15 would also have the same length
as s4. As a result, the fault a↵ecting the vertex m2 will
be undetectable by an altered path length. To resolve the
testability problem, an additional scan cell will be added
to the RSN. This change is not virtual and is not re-
verted, since it enhances the testability of the network.

The resulting binary decomposition tree, as shown
in Fig. 16, only contains parallel and series composi-
tions, as well as the leaf nodes, which correspond to the
individual scan segments. It can be processed to enhance
the testability, as discussed above.

A Complete Design-for-Test Scheme for Reconfigurable Scan Networks 13

NSP

cs2

P/m1

s1 s2

cs1

S

S

S

Fig. 14 Binary decomposition tree for the non-series-parallel
RSN graph in Fig. 13

duplicated
vertices

cs2

s3

m2 cs3

m3f3

f2 s4

s3c f3c

Fig. 15 Transformed subgraph of the non-series-parallel
graph from Fig. 13

P/m3

s3

S

S P/m2

s3c s4

cs2

P/m1

s1 s2

cs1

S

S

cs3

S

Fig. 16 Binary decomposition tree for a series-parallel rep-
resentation of the non-series-parallel graph from Fig. 13

7 Test of Scan Segments

The method presented above ensures that the faults
a↵ecting the control primitives are testable. In this sec-
tion, the test of scan segments is considered. In contrast
to the existing schemes in Section 3, the test of scan seg-
ments is applied concurrently with instrument access. A
compact built-in self-test structure is added to the RSN
and is used to generate a short test presequence. This
presequence is augmented with a workload sequence,
shifted into the tested RSN, and is used to check the
shift logic of the scan segments in the currently con-
figured scan path, as shown in Section 7.1. An exam-
ple implementation of a concurrent BIST structure for
RSNs is shown in Section 7.2.

7.1 Test Pattern Generation

Each complete test sequence (Fig. 17.a) includes a work-
load sequence W and a flush test sequence T . Workload
sequences access RSNs and are generated as further dis-
cussed in Section 8.2. Flush test sequences are used to
test the shift logic of the scan segments on the currently
activated scan path. In general, a flush test sequence is
symmetric with respect to inversion. This means that if
a sequence T =< tn�1, ...t0 > is a flush test for the ac-
tivated scan path, then its inversion T =< tn�1, ...t0 >

is one as well.

(a)

(b)

Workload sequence Pre-sequence T or T

Shared
bits

Fig. 17 Test sequence construction a) workload sequence is
augmented with a flush sequence b) bit sharing mechanism

For testing stuck-at faults in a scan path, the appli-
cable sequences include a sequence ”00110” and its in-
version ”11001”. For di↵erent fault models, other flush
test sequences can be used. The flush test sequences can
be either provided by automated test equipment (ATE)
together with the workload sequences or generated on-
site, as discussed below in Section 7.2.

Fig. 17.b represents the bit sharing mechanism, which
is used for merging the workload sequence with the flush
presequence. There, the last bit w0 of the workload se-
quence W =< wm�1, ...w0 > is used to decide, which
of the tail flush test sequences (T or T) overlaps with
the head of W by at least one bit, and there is no need
to repeat these overlapping bits in T or T . For stuck-at
faults, the worst-case reduction in the test application
time comprises 20% of a five-bit flush test sequence, if
a constant overlap of the last bit is considered.

7.2 Test Pattern Application

ROSTI (RSN Online/O✏ine Self-Test Infrastructure) is
a self-test structure for RSNs to generate test sequences
and attach them to the workload sequences. Its struc-
ture is shown in Fig. 18 and includes a test sequence
generator (TSG), an acceptor, and a controller. ROSTI
is placed between the RSN and the TAP controller.

Data is propagated from a TAP controller through
ROSTI to the RSN, and back towards the TAP con-
troller. ROSTI operates as follows:

14 Natalia Lylina et al.

ROSTI

TSG

Controller

AcceptorTAP
controller

Access
Port

System
Manager

R
S
N

CSU CSU

Viol

Fig. 18 RSN Online/O✏ine Self-Test Infrastructure
(ROSTI) structure

– After the capture signal and with the shift signal, a
flush test sequence is generated in the test sequence
generator, and it is inserted in front of the workload
sequence.

– The flush sequence and the workload sequence are
shifted towards the scan input of the RSN and are
further propagated through the activated path.

– If the path is not corrupted, the bits of the prese-
quence are shifted out unchanged, and the workload
sequence is at the target instrument. If the path is
faulty, the V iol violation signal indicates a defect in
the RSN.

The idea behind ROSTI is valid for a wide range of
fault models. To extend ROSTI for a fault model of in-
terest, the flush test sequence needs to be modified. The
same applies to the exact implementation of the test se-
quence generation and acceptor blocks. ROSTI can be
implemented as a simple hardware block as presented
below. In the following, the hardware implementation
is explained in a block-by-block manner including three
major parts:

1. Test Sequence Generator (TSG)
The TSG is used to generate flush test sequences
(”01100” or ”10011” for stuck-at-faults) based on
the first bit of a workload sequence, and to merge
them without adding any hold cycle. The TSG op-
erates as follows:

(a) Reuse the first bit: The first bit of the workload
sequence is reused as the first bit of the gener-
ated flush test sequence.

(b) Generate and apply the flush test sequence: The
rest of the flush sequence are generated in a four-
bit shift register.

(c) Apply the workload sequence: As soon as the
flush test sequence is generated and shifted into
the RSN, the workload sequence starts to being
shifted into the RSN for the whole length of the
workload sequence.

2. Acceptor
The acceptor is used to compare the shifted-out re-
sults with the expected ones, and to issue an internal
violation signal if these values do not match. As soon
as the workload sequence is shifted into the accep-
tor, its first bit is recorded into a flip-flop of the ac-
ceptor. It allows deciding which flush test sequence
(”01100” or ”10011”) to use in a given test sequence.
The acceptor is constructed as a finite state ma-
chine, which consists of a few flip-flops and a few
logic gates. The presented acceptor is independent
of the length of the ASP. Its hardware costs depend
only on the length of the test sequence since the ac-
ceptor is controlled by the available global shift and
update signals.

3. Controller
The major task of the controller is to generate the
violation signal (V iol) with the correct timing. When
a violation occurs, i.e. if an RSN test fails and the
acceptor issues the internal violation signal, ROSTI
raises the violation signal to the system. This signal
is triggered by the rising transition of the clock sig-
nal after the removal of the shift signal and it holds
for one cycle. The controller also is used to propa-
gate the first bit of the workload test sequence from
the test sequence generator toward the acceptor to
allow correct test response comparison.

The P1687.1 standard proposal [20], which is also
discussed in [29], suggests using access mechanisms rather
than just a JTAG Test Access Port (TAP) controller to
access an RSN. [30] presents a hardware module to per-
form online retargeting block which is used as a part of
an access mechanism. In [31], a scan encryption module
is implemented as a part of a custom access mechanism.
TIn the paper at hand, the developed self-test block
represents an access interface together with a TAP con-
troller and an access port, which enables RSN self-test
and is also in line with the P1687.1 standard proposal.

8 Test Integration

This section discusses the integration of the presented
DfT scheme into the RSN-under-test. First, a summary
of the necessary changes to the RSN structure is pre-
sented followed by some details about test sequence
construction for the enhanced RSN. Finally, the ap-
plication of the developed DfT scheme throughout the
lifetime is discussed.

A Complete Design-for-Test Scheme for Reconfigurable Scan Networks 15

8.1 Changes to the RSN Structure

The developed DfT scheme for scan interfaces, control
primitives, and segments is integrated during the design
phase. A summary about the testability enhancements
is provided below.

1. Scan Interface Observability Enhancement (see
Section 5): The design-for-test scheme is integrated
to increase the observability of the update registers.
As a result, the faults in the capture- and update-
circuity of the scan segments become detectable,
and the interfaces to the instruments (including the
interface of s3 in Fig. 7) can be tested. The re-
set functionality of the update flip-flops is now also
testable.

2. Control Primitives Testability Enhancement
(see Section 6): The RSN structure is analyzed
to check whether any single fault a↵ecting the RSN
control primitives is undetectable by a changed path
length. It implies, that if the path length is correct,
then the correct path is activated through the RSN.
Thereby it is ensured that the registers of the cor-
rect instruments are accessed. In our example, fault
detection is ensured by adding a single scan cell c1
before the multiplexer m1.

3. Scan Segment Test Enhancement (see Sec-
tion 7): The described compact BIST hardware is
integrated into the RSN. It allows testing the shift
logic of the scan segments concurrently. A fault af-
fecting a scan segment is detected with the help of
a flush test presequence, as soon as a path through
this segment is activated.

In Fig. 19, the example from Fig. 7 is enhanced with
the required DfT changes above. In the resulting RSN,
all the testability issues are resolved.

0

1
s2

cs1
0

1

s3

cs2

SIB

m1 m2

System
i1 i2 i3

RSN1. Enhance
observability

2. Ensure
single fault
detection s1 c1

ROSTI3. Enable concurrent test

Fig. 19 RSN example from Fig. 7 is enhanced by using the
developed DfT Scheme

The developed scheme is intended to support the
o✏ine test of RSNs. It not only tests the control prim-

itives and the interfaces to the instruments but also
examines the shift logic of those scan segments which
are included in the currently configured Active Scan
Path. Although an Automated Test Equipment (ATE)
can also handle testing the scan segments, it could be
costly since it requires an extra step. ROSTI automat-
ically generates and compares flush sequences, and, in
the presence of ROSTI, an ATE will only need to exam-
ine one violation signal. After the presented DfT scheme
is integrated, ROSTI can be reused to test the shift logic
of the scan segments on the activated scan path online
concurrently to the functional workload. If a fault is de-
tected by ROSTI, the information about it can be fur-
ther reused to support the operation of fault-tolerant
or error-resilient networks [32].

8.2 Test Sequence Construction

As soon as the testability flaws in the initial RSNs are
identified and resolved, a sequence of e�cient test pat-
terns can be generated and applied to the RSNs. To
test specific scan segments, it is required to include
them into an activated scan path. Test compression and
scheduling algorithms are beyond of the scope of this
paper. A set of test sequences can be generated au-
tomatically to cover the whole RSN structure with a
minimized test application time, as in [9,22,13].

To keep this paper self-contained, a test sequence
generation process is briefly summarized below. Unlike
the conventional structural test, the test of RSNs re-
quires multiple reconfigurations. Therefore, workload
sequences generated by a TSG are of two types:

– Access sequences configure a desired path through
the RSN by switching scan multiplexers, and open-
ing and closing SIBs. Those sequences are generated
by using a Test Sequence Generation algorithm. In
this work, the TSG is based on the retargeting en-
gine, which has been first published in [9]. It en-
sures that the scan primitives of an RSN are covered
by activating a minimized number of activated scan
paths.

– Workload test sequences test the scan primitives which
are included in the activated path. They are usually
based on flush test sequences and are applied after
a desired active scan path is configured.

Each workload test sequence may include an instru-
ment test sequence W , which is used for testing the
interface to instruments, and a flush test sequence T ,
which is responsible for testing the shift logic of the
scan segments on the currently activated scan path. Af-
ter the test is applied, the flush test sequence will be
shifted-out unchanged in the fault-free case. The bits

16 Natalia Lylina et al.

of the workload sequence would contain the test results
for the scan interfaces. The length of the shifted-out se-
quence is used as an indicator for single faults a↵ecting
the RSN control primitives. The same applies to the
single flip-flop transparency faults in the shift registers,
since they reduce the length of the activated path by
one shift cycle. Similarly, an access sequence contains a
sequence to retarget an RSN and a flush test sequence
T to test the shift logic on the path.

9 Experimental Results

The complete design-for-test method is implemented in
the framework eda1687, which has first been presented
in [9]. It uses Instrument Connectivity Language (ICL)
descriptions of RSNs as input for test generation and
generates Hardware Description Language (HDL) de-
scriptions for gate-level synthesis.

The experiments have been conducted on a CPU In-
tel(R) Xeon(R) W-2125 CPU at 4.00GHz with 132 GB
of main memory. The remainder of the section summa-
rizes the experiments for the individual DfT enhance-
ments. Next, the results are provided for the complete
DfT method, which considers test integration. In the
experiments, stuck-at faults a↵ecting scan interfaces,
scan segments, and scan multiplexers are considered.

9.1 Scan Interfaces

A gate-level description of a scan segment is enhanced.
A feedback line is injected to improve the testability of
a scan interface and a reset line. Enhanced scan seg-
ments are used further as scan primitives for all RSN
benchmarks during test sequence generation and syn-
thesis.

9.2 Control Primitives

For any RSN design, the developed DfT method ensures
that the RSN is testable for single faults in the control
primitives. If all faults a↵ecting the control primitives
are detectable by an altered path length, the testabil-
ity of the RSN is algorithmically proven. The ability
to prove this property for any arbitrary RSN structure
eliminates the danger of silent data corruption for sin-
gle faults a↵ecting the RSN control primitives and is
thereby one of the major contributions of this article.
To ensure fault detection, the lengths of a minor num-
ber of scan chains may be slightly increased.

The scalability and the e↵ectiveness of the devel-
oped method have been proven using the benchmarks

from the ITC’2016 [33] and the DATE’2019 benchmark
sets [34]. As shown in Table 1, for the benchmarks Tree-
Balanced, Mingle, BasicSCB from the ITC’2016 [33]
set, the testability analysis identified single stuck-at
faults a↵ecting the RSN control primitives, which are
undetectable by an altered path length (Column 3). The
total number of faults is reported in Column 2. To en-
sure fault detection, a minor number of scan cells (Col-
umn 5), has been added to the initial RSN structure.
This number is negligible compared to the total num-
ber of faults in the benchmark (Column 4). Thanks to
the scalable algorithm, the runtime is acceptable even
for the most time-consuming benchmarks (Column 6).

9.3 Scan Segments

To test scan segments, an RTL description of ROSTI
has been developed. ROSTI requires four flip-flops for
the test sequence generator and another four bits for
the acceptor. For the ROSTI controller, eight flip-flops
are used. The architecture of ROSTI is independent
of the RSN and the number of the required flip-flops
is also fixed for any RSN under test. To test ROSTI
itself, a commercial tool has been used to perform test
pattern generation with a full-sequential ATPG setting.
It achieves a fault coverage of 96.84% with 16 patterns
and 278 test cycles.

The developed DfT enhancements for scan inter-
faces and scan segments are independent of the RSN.
The gate-level fault coverage for stuck-at-faults is de-
termined with a commercial sequential stuck-at-fault
simulator.

9.4 Complete DfT Method

In this section, the complete developed DfT approach is
evaluated. To evaluate the testability-enhancing resyn-
thesis for control primitives on a wider benchmark set,
while being able to assess the DfT enhancements for
scan interfaces and shift logic, the benchmarks have
been constructed with the help of the ITC’02 SoC (System-
on-a-Chip) benchmark set [35]. The characteristics of
the benchmarks are presented in Table 2. In Column
2 the number of hierarchical levels, and the number of
scan multiplexers are given, followed by the number of
scan segments in Column 4 and the number of scan cells
in Column 5.

The experimental results for the developed scheme
are shown in Table 3:

– Integration of the Design-for-Test scheme:
– Scan interfaces: Scan registers are enhanced by

injecting a feedback line.

A Complete Design-for-Test Scheme for Reconfigurable Scan Networks 17

Table 1 Control Primitives Testability Enhancement

(1) Design (2) # Total Faults (3) # Undetected Faults (4) # Total Cells (5) # Added Cells (6) Runtime [s]
BasicSCB 40 8 176 4 1.0
Mingle 52 16 270 8 1.2
TreeBalanced 200 12 5,581 6 2.1

Table 2 RSN Benchmark circuits

Design #Hier. #Scan #Scan #Scan #ASPs
lvl muxes segs cells

u226 2 59 99 1 457 615
d281 2 67 117 3 880 774
d695 2 178 335 8 407 2,385
h953 2 63 109 5 649 702
g1023 2 94 159 5 400 1,005
f2126 2 45 81 15 834 540
q12710 2 30 51 26 188 327
p34392 3 142 245 23 261 1,815

– Control primitives: The testability for single stuck-
at faults in the control primitives is proven for
all the benchmarks. As detailed in Section 9.2,
for general RSNs the testability property is not
guaranteed. The total number of faults a↵ecting
the control primitives is given in Column 2. The
runtime is provided in Column 3 and is negligible
for all the benchmarks.

– Scan segments: ROSTI is integrated to generate
self-test for scan segments.

– Simulation of test sequences: The test cost in terms
of the number of clock cycles for di↵erent test se-
quence sets is given in Columns 4-6. The details
about the generated test sequence sets are provided
below:

– Scan interfaces and control primitives: Access
sequences configure a desired active scan path.
They are generated as in [9] and cover all the
scan segments and all the branches of scan mul-
tiplexers. Since any active scan path which in-
cludes a faulty control primitive is guaranteed
to have a di↵erent length compared to a fault-
free path, faults in control primitives are de-
tectable. Workload test sequences are generated
to test scan interfaces in the enhanced RSN as
detailed in Section 5. The corresponding test
cost in terms of clock cycles is provided in Col-
umn 4.

– Scan segments: To test those scan segments, which
are located on the configured path, a test se-
quence is constructed of a workload test sequence
to configure a desired path and a flush test se-
quence. ROSTI generates flush test sequences to
test the shift logic of the selected scan segments.
The test cost is given in Column 5.

Area overhead compared to the underlying RSN is
given in Column 8 and is negligible. A commercial se-

quential stuck-at-fault simulator is used to determine
the gate-level fault coverage. The fault coverage for
RSN benchmarks with feedback lines in the scan seg-
ments is given in Column 9. Fault coverage is above
92.60% for nine benchmark circuits, and is 94.72% on
average. To mitigate the coverage gap above, it is nec-
essary to test the interfaces to instruments and logic. If
scan segments are enhanced by integrating a feedback
line and the workload patterns are used to test the scan
interface, a complete fault coverage is obtained for all
the benchmarks.

In the resulting RSNs, faults in scan interfaces, con-
trol primitives, and scan segments are detectable. The
scalability and e↵ectiveness of the developed DfT scheme
have been shown for a wide range of benchmarks.

10 Conclusion

In this paper, the first design-for-test scheme is pre-
sented, which allows for complete covering all the stuck-
at faults in a Reconfigurable Scan Network. It signifi-
cantly enhances the RSN testability, such that faults
a↵ecting the interfaces to the instruments, the control
primitives, and the scan segments can be tested. Each
test sequence may cover multiple faults, which allows
for significantly optimizing the size of the test sequence
set.

The presented scheme is flexible for the fault model,
has a low hardware overhead, and does not require
changing the RSN topology rules. Therefore, it is com-
pliant with the existing test methods for RSNs and is
supposed to be used complementary to these schemes.
The scheme is also flexible with respect to the access
mechanisms, and can be controlled by the workload test
patterns from an ATE, from the cloud, or even stored
on-chip internally. The experimental results show that
the presented scheme generates test sequences with com-
plete fault coverage and reduced test cost. It is scalable
with the increasing size and complexity of RSNs.

Data Availability

The datasets generated during and/or analysed during
the current study are available from the corresponding
author on reasonable request.

18 Natalia Lylina et al.

Table 3 Experimental results

Control primitives Runtime Test Cost [#cycles] Overhead[%] Coverage [%]
(1)Design (2) #faults (3) [s] (4) Inter. (5) Segs. (6) Sum (7) Our (8) with respect (9) with

to the RSN feedback
u226 118 0.2 15,536 22,647 38,183 17,996 0.69 93.65
d281 134 0.2 32,863 34,113 66,976 35,959 0.27 95.51
d695 356 0.3 84,026 116,234 200,260 93,566 0.19 92.17
h953 126 0.2 44,296 38,247 82,543 47,104 0.18 96.32
g1023 188 0.3 46,443 50,418 96,861 50,463 0.20 95.66
f2126 90 0.1 114,563 75,269 189,832 116,723 0.06 95.11
q12710 60 1.0 184,971 109,904 294,875 192,231 0.03 95.43
p34392 288 2.2 181,591 156,403 337,994 188.851 0.06 94.70

Funding, Conflicts of Interests, and Competing
Interests.

This work was supported by the German Research Foun-
dation (DFG) under grant WU 245/17-2 (ACCESS)
and partially supported by Advantest as part of the
Graduate School ”Intelligent Methods for Test and Re-
liability” (GS-IMTR) at the University of Stuttgart.
The authors declare that they have no conflict of interest
or competing interests.

References

1. “IEEE Standard for Test Access Port and Boundary-
Scan Architecture,” IEEE Std. 1149.1-2013 (Revision of

IEEE Std 1149.1-2001), pp. 1–444, 2013.
2. “IEEE Standard for Access and Control of Instrumenta-

tion Embedded within a Semiconductor Device,” IEEE

Std. 1687-2014, pp. 1–283, 2014.
3. “IEEE Standard for System Test Access Management

(STAM) to Enable Use of Sub-System Test Capabilities
at Higher Architectural Levels,” IEEE Std. P2654.

4. M. Portolan, J. Rearick, and M. Keim, “Linking Chip,
Board, and System Test via Standards,” in Proc. IEEE

European Test Symposium (ETS), 2020, pp. 1–8.
5. K. Shibin, S. Devadze, A. Jutman, M. Grabmann, and

R. Pricken, “Health Management for Self-Aware SoCs
Based on IEEE 1687 Infrastructure,” IEEE Design &

Test, vol. 34, no. 6, pp. 27–35, 2017.
6. A. M. Y. Ibrahim and H. G. Kerkho↵, “An On-chip

IEEE 1687 Network Controller for Reliability and Func-
tional Safety Management of System-on-Chips,” in Proc.

IEEE International. Test Conference in Asia (ITC-

Asia), 2019, pp. 109–114.
7. M. A. Kochte and H.-J. Wunderlich, “Self-Test and Di-

agnosis for Self-Aware Systems,” IEEE Design & Test,
vol. 35, no. 5, pp. 7–18, 2018.

8. K.-J. Lee and M. A. Breuer, “A Universal Test Sequence
for CMOS Scan Registers,” in Proc. Custom Integrated

Circuits Conference, 1990, pp. 28.5/1–28.5/4.
9. R. Baranowski, M. A. Kochte, and H.-J. Wunderlich,

“Reconfigurable Scan Networks: Modeling, Verification,
and Optimal Pattern Generation,” ACM Transactions

on Design Automation of Electronic Systems (TO-

DAES), vol. 20, no. 2, pp. 1–28, 2015.
10. R. Cantoro, M. Montazeri, M. S. Reorda, F. G. Zadegan,

and E. Larsson, “On the Testability of IEEE 1687 Net-

works,” in Proc. IEEE Asian Test Symposium (ATS),
2015, pp. 211–216.

11. M. A. Kochte, R. Baranowski, M. Schaal, and H. Wunder-
lich, “Test Strategies for Reconfigurable Scan Networks,”
in Proc. IEEE Asian Test Symposium (ATS), 2016, pp.
113–118.

12. R. Cantoro, F. G. Zadegan, M. Palena, P. Pasini, E. Lars-
son, and M. S. Reorda, “Test of Reconfigurable Modules
in Scan Networks,” IEEE Transactions on Computers

(TC), vol. 67, no. 12, pp. 1806–1817, 2018.
13. P. Habiby, S. Huhn, and R. Drechsler, “Optimization-

based Test Scheduling for IEEE 1687 Multi-Power Do-
main Networks Using Boolean Satisfiability,” in Proc.

International Conference on Design Technology of Inte-

grated Systems in Nanoscale Era (DTIS), 2021, pp. 1–4.
14. D. Ull, M. Kochte, and H. Wunderlich, “Structure-

Oriented Test of Reconfigurable Scan Networks,” in Proc.

IEEE Asian Test Symposium (ATS), 2017, pp. 127–132.
15. N. Lylina, C.-H. Wang, and H.-J. Wunderlich,

“Testability-Enhancing Resynthesis of Reconfigurable
Scan Networks,” in Proc. IEEE International Test

Conference (ITC), Virtual, 2021, pp. 1–10.
16. C.-H. Wang, N. Lylina, A. Atteya, T.-Y. Hsieh, and H.-

J. Wunderlich, “Concurrent Test of Reconfigurable Scan
Networks for Self-Aware Systems,” in Proc. IEEE In-

ternational Symposium on On-Line Testing And Robust

System Design (IOLTS), Virtual, 2021, pp. 1–7.
17. R. Cantoro, A. Damljanovic, M. S. Reorda, and

G. Squillero, “A New Technique to Generate Test Se-
quences for Reconfigurable Scan Networks,” in Proc.

IEEE International Test Conference (ITC), 2018, pp. 1–
9.

18. A. Damljanovic, A. Jutman, G. Squillero, and A. Tsertov,
“Post-Silicon Validation of IEEE 1687 Reconfigurable
Scan Networks,” in Proc. IEEE European Test Sympo-

sium (ETS), 2019, pp. 1–6.
19. R. Cantoro, A. Damljanovic, M. S. Reorda, and

G. Squillero, “A Novel Sequence Generation Approach
to Diagnose Faults in Reconfigurable Scan Networks,”
IEEE Transactions on Computers (TC), vol. 69, no. 1,
pp. 87–98, 2020.

20. “Standard for the Application of Interfaces and Con-
trollers to Access 1687 IJTAG Networks Embedded
Within Semiconductor Devices,” IEEE Std. P1687.1.

21. F. Maamari and J. Rajski, “A method of fault simu-
lation based on stem regions,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Sys-

tems (TCAD), vol. 9, no. 2, pp. 212–220, 1990.
22. R. Cantoro, L. San Paolo, M. Sonza Reorda, and

G. Squillero, “An Evolutionary Technique for Reducing
the Duration of Reconfigurable Scan Network Test,” in

A Complete Design-for-Test Scheme for Reconfigurable Scan Networks 19

Proc. IEEE International Symposium on Design and Di-

agnostics of Electronic Circuits Systems (DDECS), 2018,
pp. 129–134.

23. P. Habiby, S. Huhn, and R. Drechsler, “Power-aware Test
Scheduling for IEEE 1687 Networks with Multiple Power
Domains,” in Proc. IEEE International Symposium on

Defect and Fault Tolerance in VLSI and Nanotechnology

Systems (DFT), 2020, pp. 1–6.
24. A. Damljanovic, A. Jutman, M. Portolan, E. Sanchez,

G. Squillero, and A. Tsertov, “Simulation-based Equiv-
alence Checking between IEEE 1687 ICL and RTL,” in
Proc. IEEE International Test Conference (ITC), 2019,
pp. 1–8.

25. J. Valdes, R. E. Tarjan, and E. L. Lawler, “The Recogni-
tion of Series Parallel Digraphs,” in Proc. Annual ACM

Symp. on Theory of Computing, 1979, p. 1–12.
26. A. Kunzmann and H.-J. Wunderlich, “An Analytical

Approach to the Partial Scan Problem,” Journal of

Electronic Testing: Theory and Applications (JETTA),
vol. 1, no. 2, pp. 163–174, 1990.

27. A. Church and J. B. Rosser, “Some properties of conver-
sion,” Transactions of the American Mathematical Soci-

ety, vol. 1, no. 2, p. 472–482, 1936.
28. J. Keller and R. Gerhards, “PEELSCHED: a Simple and

Parallel Scheduling Algorithm for Static Taskgraphs,”
PARS: Parallel-Algorithmen, -Rechnerstrukturen und -

Systemsoftware, vol. 28, 2014.
29. A. L. Crouch, B. G. Van Treuren, and J. Rearick,

“P1687.1: Accessing Embedded 1687 Instruments using
Alternate Device Interfaces other than JTAG,” in Proc.

IEEE European Test Symposium (ETS), 2020, pp. 1–6.
30. E. Larsson, P. Murali, and G. Kumisbek, “IEEE Std.

P1687.1: Translator and Protocol,” in Proc. IEEE Inter-

national Test Conference (ITC), 2019, pp. 1–10.
31. M. Portolan, E. Valea, P. Maistri, and G. D. Natale,

“Flexible and portable management of secure scan imple-
mentations exploiting p1687.1 extensions,” IEEE Design

& Test, vol. 39, no. 3, pp. 117–124, 2022.
32. S. Brandhofer, M. A. Kochte, and H. Wunderlich, “Syn-

thesis of Fault-Tolerant Reconfigurable Scan Networks,”
in Proc. Design, Automation Test in Europe Exhibition

(DATE), Mar. 2020, pp. 798–803.
33. A. Tsertov, A. Jutman, S. Devadze, M. S. Reorda,

E. Larsson, F. G. Zadegan, R. Cantoro, M. Montazeri,
and R. Krenz-Baath, “A suite of IEEE 1687 benchmark
networks,” in Proc. IEEE International Test Conference

(ITC), 2016, pp. 1–10.
34. P. Raiola, B. Thiemann, J. Burchard, A. Atteya,

N. Lylina, H.-J. Wunderlich, B. Becker, and M. Sauer,
“On Secure Data Flow in Reconfigurable Scan Net-
works,” in Proc. Conference on Design, Automation Test

in Europe (DATE), 2019, pp. 1–6.
35. E. J. Marinissen, V. Iyengar, and K. Chakrabarty, “A

Set of Benchmarks for Modular Testing of SOCs,” in
Proc. IEEE International Test Conference (ITC), 2002,
pp. 519–528.

Natalia Lylina received the Master of Science (M.
Sc.) double degree in computer science from Moscow
Power Engineering Institute (National Research Uni-
versity), Russian Federation and Technical University
of Ilmenau, Germany in 2017. Since 2017 she is with
the Institute of Computer Architecture and Computer
Engineering at the University of Stuttgart as a PhD stu-
dent. She is a Student Member of IEEE. Her research

interests include dependable systems, test and diagno-
sis infrastructure and reconfigurable scan networks.

Chih-Hao Wang received his B.Sc. and Ph.D. de-
gree in electrical engineering from National Sun Yat-
sen University, Kaohsiung, Taiwan, in 2013 and 2020,
respectively. During 2019 to 2020, he was a visiting
scholar of the Institute of Computer Architecture and
Computer Engineering at the University of Stuttgart,
Germany, and he is currently a postdoctoral researcher
of the same institute. He is a Member of IEEE. His
research interests include VLSI testability and reliabil-
ity, concurrent error detection, and reconfigurable scan
networks.

Hans-Joachim Wunderlich received the diploma
degree in mathematics from the University of Freiburg,
Germany, in 1981 and the Dr. rer. nat. (Ph.D. degree)
from the University of Karlsruhe in 1986. Since 1991,
he has been a full professor and from 2002 to 2018 he
was the director of the Institute of Computer Archi-
tecture and Computer Engineering at the University of
Stuttgart, Germany. He is a Life Fellow of IEEE.

He has been associated editor of various interna-
tional journals and program committee member of a
variety of IEEE conferences on design and test of elec-
tronic systems. He has published 11 books and book
chapters and around 300 reviewed scientific papers in
journals and conferences. His research interests include
test, reliability, fault tolerance and design automation
of microelectronic systems.

