
SCAR: Security Compliance Analysis and
Resynthesis of Reconfigurable Scan

Networks

Lylina, Natalia; Wang, Chih-Hao; Wunderlich, Hans-Joachim

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022

doi: https://dx.doi.org/10.1109/TCAD.2022.3158250

Abstract:Reconfigurable Scan Networks (RSNs) enable an efficient reliability management throughout the
device lifetime. They can be used for controlling integrated instruments, such as aging monitors or built-in
self-test (BIST) registers, as well as for collecting the evaluation results from them. At the same time, they may
impose a security threat, since the additional connectivities introduced by the RSN can possibly be misused as
a side-channel. This paper presents an approach for Security Compliance Analysis and Resynthesis (SCAR) of
RSNs to integrate an RSN compliant with the security properties of the initial design. First, the reachability
properties of the original design are accurately computed. The connectivities inside the RSN, which exceed
the allowed connectivity of the initial design, are identified using the presented Security Compliance Analysis.
Next, all violations are resolved by automated Resynthesis with a minimized number of structural changes. As
a result of SCAR, any information leakage due to the RSN integration is prevented, while the accessibility of
the instruments through the RSN is preserved. The approach is able to analyze complex control dependencies
and obtains a compliant RSN even for the largest available benchmarks.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic
reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form
to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE
c©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

https://dx.doi.org/10.1109/TCAD.2022.3158250

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEM, VOL. YYY, NO. ZZZ, MONTH YEAR 1

SCAR: Security Compliance Analysis and
Resynthesis of Reconfigurable Scan Networks

Natalia Lylina, Student Member, IEEE, Chih-Hao Wang, Member, IEEE,
Hans-Joachim Wunderlich, Life Fellow, IEEE

Abstract—Reconfigurable Scan Networks (RSNs) enable an
efficient reliability management throughout the device lifetime.
They can be used for controlling integrated instruments, such as
aging monitors or built-in self-test (BIST) registers, as well as for
collecting the evaluation results from them. At the same time, they
may impose a security threat, since the additional connectivities
introduced by the RSN can possibly be misused as a side-channel.

This paper presents an approach for Security Compliance
Analysis and Resynthesis (SCAR) of RSNs to integrate an RSN
compliant with the security properties of the initial design. First,
the reachability properties of the original design are accurately
computed. The connectivities inside the RSN, which exceed the
allowed connectivity of the initial design, are identified using the
presented Security Compliance Analysis. Next, all violations are
resolved by automated Resynthesis with a minimized number of
structural changes. As a result of SCAR, any information leakage
due to the RSN integration is prevented, while the accessibility
of the instruments through the RSN is preserved. The approach
is able to analyze complex control dependencies and obtains a
compliant RSN even for the largest available benchmarks.

Keywords—Reconfigurable Scan Network; Secure DfT; Design
validation; Synthesis; Integer Linear Programming; SAT

I. INTRODUCTION

THE complexity of electronic circuits has been rapidly
increasing throughout the last decades. In order to ensure

fast yield bring-up and dependable operation of devices
throughout the lifetime, many functional and non-functional
instruments, such as sensors, aging monitors or BIST registers,
are embedded. Reconfigurable Scan Networks, as standardized
by IEEE Std. 1149.1 [1] and IEEE Std. 1687 [2], offer
an efficient access to the instruments and enable a runtime
reliability management [3], [4].

To ensure system-level security, a system designer thor-
oughly develops the connections inside a design in a way
that prevents unauthorized access and information leakage.
A design-for-test (DfT) integrator might not be fully aware
of all the designer’s security intentions and might integrate
the RSN in a way, which is not compliant with the initial
security properties. Attacks using DfT infrastructure, such
as conventional JTAG scan chains are well-investigated in
the literature [5]. A few real examples include but are not

N. Lylina, C.-H. Wang and H.-J. Wunderlich are with the Institute of
Computer Architecture and Computer Engineering, University of Stuttgart,
Pfaffenwaldring 47, 70569 Stuttgart, Germany, Email: lylina@informatik.uni-
stuttgart.de, wangco@informatik.uni-stuttgart.de and wu@informatik.uni-
stuttgart.de. This paper combines and extends preliminary work published in
ITC19 and ITC20.

Manuscript received MONTH DAY, YEAR; revised MONTH DAY, YEAR

limited to the attacks on XBOX 360 [6], and on iPhones [7].
The additional connectivities in the design-under-test (DUT),
introduced due to the RSN integration, might be exploited by
an attacker as a side-channel to leak or manipulate sensitive
data or alternate the system behavior [8]–[11]. The secure
integration of RSNs is even more challenging compared to
conventional scan chains [12], [13] due to the complex control
dependencies [14]. Fully denying access to RSNs during the
functional mode is not an option, since often the dependability
instruments must be available online [15], [16].

It cannot be the responsibility of a DfT-integrator to repeat
the entire security and threat analysis done by a system
designer. However, it should be ensured that the original
analysis and protection policy is not invalidated by the DfT-
infrastructure. For this, the DfT-integrator has to follow both
implicit and explicit security specifications of the design:
• Implicit security specifications follow from the design.

If a physical connection or a path along which two
instruments or components could communicate does not
exist, such a connection must not be introduced by the
RSN infrastructure.

• Explicit specifications can be formulated by the designer
either to allow specific connections through the RSN,
which are not present in the original design, or to
exclude connections even if they were physically present
in the design. The latter may be required for instance, if
a physical connection cannot be activated functionally.

In this paper, we present a comprehensive solution for
Security Compliance Analysis and Resynthesis (SCAR) of
RSNs. The goal is to integrate an RSN in a way that these spec-
ifications are fulfilled and any additional information leakage
through the RSN is eliminated. It allows to efficiently analyze
the compliance of an RSN with the original security properties
provided in specifications, and to automatically resynthesize
the RSN with minimized effort, if any compliance violation
is identified. The first exact approach to perform a security
compliance analysis of RSNs has been published in [17]. In
[18] the first automated resynthesis is presented to minimize
the structural changes, which are required to securely integrate
a given RSN into a DUT, even if the number of violations is
high. The paper at hand extends these preliminary results by
core contributions presented below:
• An efficient implementation of security compliance

analysis in terms of runtime and memory consumption
is presented.

• A complete graph-based approach is formulated to
automatically integrate an RSN into a design, based on

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEM, VOL. YYY, NO. ZZZ, MONTH YEAR

the results of the security compliance analysis.
• Various optimization criteria, such as the minimized

access latency and hardware overhead, are considered
and compared for the automated resynthesis.

The remainder of this paper is organized as follows. Section II
provides the background information and summarizes the ex-
isting solutions for securing the RSNs, and Section III provides
details of the system modeling. Section IV shows an overview
of the whole SCAR methodology. Then, in Section V, the
security compliance analysis is presented. In Section VI,
details for resolving the violations in RSNs are given, followed
by the security validation procedure in Section VII. Finally, the
experimental results in Section VIII demonstrate the efficiency
and scalability of the approach.

II. PREVIOUS WORK ON SECURE RSNS

A. Security Analysis and Specification
Security threats may exist due to unwanted access through

the Test Access Port (TAP), but also due to connectivities
between untrusted parts of an RSN and the pins of the
chip [11].

Security properties of RSNs can be validated via simulation
to check the data integrity by adding hash functions to shift
sequences as in [9], and to provide an evidence about unautho-
rized access attempts. Machine learning-based techniques can
be used to detect attacks on RSNs [10]. Security properties of
RSNs, such as data confidentiality, can be verified by Craig
interpolation [19]. A method from [20] serves as a guidance
for a DfT integrator and identifies the security weaknesses
of RSNs. It is possible to check, if a certain prohibited
connectivity is sensitizable in the RSN [21] or through a
path [22], traversing both the DUT and the RSN. However,
a possibly exponential number of paths must be analyzed
sequentially to generally verify the compliance of the RSN
with the security properties of the DUT. This makes the exist-
ing analysis methods unscalable for large RSNs and realistic
security specifications [23]. A high sequential depth of RSNs
and complex control dependencies make the existing ways
unfeasible to compute the functional reachability [24]–[26].

B. Security-Oriented Integration of Scan Chains
Multiple solutions exist to resolve the security violations,

which have been identified by simulation or formal verifica-
tion. In conventional scan chains, a separate ”secure” mode
can be established to perform the confidentiality-critical com-
putations [12]. The shifted data can be encrypted as in [27]
or obfuscated as in [13]. An unauthorized transition from the
functional mode to the test mode can be prevented as in [28]
to mitigate the test mode attacks. For a comprehensive review
on scan chain security refer to [29].

The flexibility of RSNs makes their secure integration more
challenging compared to conventional scan chains. It is not
an option to disable an RSN by fusing off the TAP port after
performing the manufacturing test. This strategy, would make
the further online usage of RSNs, such as in-field monitoring
[15] or reliability enhancement [16], impossible. Encryption

and obfuscation can secure the RSN access throughout the
life-cycle [30], [31]. Fine-grained schemes, such as Locking
Segment Insertion Bits (LSIBs) [32], Parallel LSIBs [33], and
Secure SIBs (SSIBs) [34], extremely complicate an unautho-
rized access to specific RSN parts. [35] presents a fine-grained
dynamic technique to protect RSNs. In [8], shadow registers
and information-flow tracking logic is added to prevent data
sniffing and alteration. In [11], [36], additional hardware is
used to build extra paths to prevent sniffing and spoofing
through RSNs.

However, all the schemes mentioned above do not guarantee
to prevent possible information leakage due to the RSN
integration. Any additional connectivities, which exceed the
allowed connectivity of the design, should not be introduced by
RSNs. Such connectivities must be cut either functionally by
using sequence filters, or structurally by resynthesizing some
parts of the RSN. In some cases, filters [37], [38] have un-
wanted side-effects and block the access of uncritical segments
as well. Resynthesis resolves all the violations structurally, and
allows to preserve the accessibility to other instruments, but
implies hardware overhead due to the structural changes. The
existing approaches [21], [22] resolve the violating connectiv-
ities locally, by considering a single violation independently.
This incurs many structural changes, especially if the number
of violations is high as in [17].

While the protection methods restrict allowed accesses to
RSNs, all the instruments generally must remain accessible by
the RSN throughout the design lifecycle. To ensure efficient ac-
cessibility, retargeting mechanisms [14], [39], and approaches
to minimize the overall test time [40], [41] have been proposed.

III. MODELING

The considered system is shown in Fig. 1, and comprises:
• DUT: The design-under-test consists of the functional

registers R and the instruments’ registers I .
• RSN: The RSN accesses the instruments’ registers

through the scan segments S.

s1
0

1
Scan

Segment

s6

0

1

s5s3
s2

Primary scan input
(SI)

Primary scan output
(SO)

Scan
Mux

m1 m2

s7

SIB

i2

i6

i1

DUT

r1

r2

i7

Internal signal

s4

Functional
register

Instrument
registers

RSN

i5

Control
Segment

Fig. 1. Considered system: DUT in the upper part, RSN in the lower part
with an activated path in green

RSNs consist of the following components:

LYLINA et al.: SECURITY COMPLIANCE ANALYSIS AND RESYNTHESIS OF RECONFIGURABLE SCAN NETWORKS 3

• The Scan Segments sj 2 S are the scan primitives,
which access the instruments’ registers. A scan segment
consists of a shift- and an optional shadow register.

• The Control Signals csi configure a path from a primary
scan-in (SI) to a primary scan-out (SO). The internal
control signals are driven by the shadow registers of the
control scan segments, while the external control signals
come from outside of the RSN.

• The Scan Multiplexers mj 2 M are the configuration
primitives, which include certain parts of the RSN into
a path, depending on the values of control signals.

• The Segment Insertion Bits (SIBs) are the configuration
primitives, which include or exclude the parts of the RSN
into a path, and are modeled as a combination of a scan
multiplexer and a scan segment.

The set of scan primitives P includes all the scan segments
S and all the scan multiplexers M . A Scan Configuration c is
defined by the state of the control scan segments. An Active
Scan Path (ASP) is an acyclic path through selected scan
primitives from a primary scan-in to a primary scan-out. In
Fig. 1, an initial path starts at the scan-in port, goes towards
the SIB, traverses the segments s1, s2, s3, s4, s5 and s7,
returns back to the SIB and ends at the scan-out. Computing
the control patterns to switch between various active scan paths
is called retargeting.

The system is modeled as a directed graph G with vertices
V and edges E, as shown in Fig. 2 for the RSN from Fig. 1.

i2 i6

s7m1

s5s3

s2SI

i7

s4

i1

s1

s6

m2 SOsSIBmSIB

i5

G
RSN

G
DUT

Fig. 2. Combined system graph: DUT graph in the upper part, RSN graph
in the lower part

It is constructed of two subgraphs, namely the DUT graph
GDUT , the RSN graph GRSN , and the edge set ECON , which
represents the connections between the subgraphs. The system
graph is defined as follows:

V := V DUT [V RSN (1)

E := EDUT [ERSN [ECON (2)

The vertex set V DUT contains all the instruments’ registers,
which are accessed through the RSN. The edges EDUT

represent the direct connectivities between the vertices of the
graph or the connectivities through the functional registers.

So, an edge between the instruments i1 and i5 in Fig. 2
shows that the instrument i5 is reachable from the instrument
i1 through the functional register r1 in the example from Fig. 1.

Each vertex of the RSN graph models either a scan prim-
itive, or corresponds to a primary scan-in or scan-out port.
The edges ERSN represent the direct structural connectivities
between the vertices of the RSN. The logic signals, which
explicitly drive the select-ports of scan primitives, are used
for vertex annotation.

IV. SCAR
A. Definitions

Table I contains the major symbols, which are referred to
throughout the paper. For each vertex vj , the set of its direct
successors ds(vj , G) includes all vertices vk that there exist a
directed edge ej,k, which connects the vertex vj to the vertex
vk. The direct predecessors are defined in a similar way.

The set of structural successors ss(vj , G) of a vertex vj
includes all vertices vk such that at least one path from vj
to vk exists in the graph. We say that each successor vk
is structurally reachable from the vertex vj . The structural
predecessors ss(vj , G) are defined similarly.

Definition 1: A Functional Path path(vj , vk) between the
vertices vj and vk is a path, where a valid assignment to the
logic signals exists, which selects all the vertices on the path
simultaneously.

Definition 2: A Hybrid Functional Path is a functional path,
which consists of two functional subpaths path(vj , vl) and
path(vl, vk), such that if any two vertices from {vj , vk, vl}
belong to the RSN graph, the latter one belongs to the DUT
graph, and vice versa.

A hybrid path might traverse any combination of subgraphs
in the system graph G. In Fig. 2, a hybrid path from the scan
segment s4 to the instrument i7 can be represented as follows:

path(s4, i7) := path(s4, s5)&path(s5, i5)& path(i5, i7) (3)

A set of functional successors fs(vj , G) is defined for each
vertex vj , and contains all vertices vk, which are structurally
reachable from vj , such that either a single functional path
from vj to vk is sensitizable, or the data from the vertex vj
can be transmitted to the vertex vk by sequentially activating
multiple sensitizable functional paths. The functional prede-
cessors fp(vj , G) are defined in a similar way.

Definition 3: A Security Compliance Violation violx(vj , vk)
is defined as an existence of a connectivity between the vertices
vj and vk of the RSN graph, which extends the functional
connectivity of the original design. The vertex vj is called the
source, and the vertex vk is the destination of the violation,
and x is its index.

For each pair of vertices (vj , vk), there might exist at
most one violation from vj to vk, which considers violating
connectivities between these vertices through one or multiple
paths.

Example: In Fig. 1 the instrument i2 serves as a storage
element for an encryption key, while the instrument i5 contains
a wireless communication module. To mitigate information
leakage, any data transfer from i2 to i5 is prohibited by a
system designer, and a corresponding security property ensures
that a corresponding path does not exist in the initial DUT.

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEM, VOL. YYY, NO. ZZZ, MONTH YEAR

TABLE I. TABLE OF SYMBOLS

For the vertices vj , vk in the system graph G, with the control signals (cs1, ...csn):

Symbols Descriptions

G
DUT , GRSN the DUT and the RSN graph

dp(vj , G), ds(vj , G) direct predecessors and successors
sp(vj , G), ss(vj , G) structural predecessors and successors
fp(vj , G), fs(vj , G) functional predecessors and successors

path(vj , vk) a functional path from the vertex vj to the vertex vk

violx(vj , vk) a security compliance violation with the id x, the source vj and the destination vk

ESC(vj , cs1, ...csn), RSC(vj , vk, cs1, ...csn) the essential and the relative select condition

G
RSN
n a representation of GRSN at an abstraction level n

V S, V T , OINT the sets of sources, destinations, and the optimized set of intermediate vertices

However, due to improper RSN integration, this property is
compromised, since an additional path is introduced from the
segment s2 to s5. This connectivity can be used to build a path
between i2 and i5 through the RSN, which is shown with a red
color in Fig.2, and thereby represents a security violation.

B. General flow

Fig. 3 represents the general flow of the presented security
compliance analysis and resynthesis approach, which consists
of the following steps:

• Model construction: A graph-based model of the
system is constructed. It includes the DUT and the RSN.

• Functional reachability computation: The functional
paths in the RSN are calculated considering the valid
assignments to the control signal values. The RSN
reachability properties are combined with the security
properties of the DUT, and the hybrid paths in the
combined system are computed.

• Security compliance analysis: The security compliance
of a given RSN with the properties of the DUT is
analyzed. The connectivities in the RSN, which extend
the allowed connectivity of the DUT, are identified as
security compliance violations.

• Resolving violations: The identified violations in the
RSN are resolved by using an efficient heuristic. A
minimized set of structural changes is identified and
applied to the RSN structure in order to eliminate all
the violations and to prevent information leakage.

• Ensuring accessibility: If certain scan segments are still
not accessible after the previous step, some additional
connectivities are added, and a modified RSN is con-
structed.

• Compliance validation (shown with a red arrow on the
right): The security compliance analysis is performed
once again for the modified RSN. If any violations are
present in the RSN, the procedure above is repeated until
all the violations are resolved. SCAR is guaranteed to
converge with a security compliant RSN, since in the
worst case a parallel RSN structure is obtained, where
each instrument is accessed via a separate branch of
a scan multiplexer. In practice, much less changes are
required, as detailed in Section VIII.

SCAR of RSNs
DUT

RSN

Secure
RSN Violations

Output:

DUT, RSN
Model

Intermed.
RSN

Modified
RSN

Input:

Model construction

Functional reachability
computation

Resolving violations

Ensuring accessibility

Hybrid
Paths

Security compliance
analysis

Analysis

 Resynthesis

Fig. 3. General flow of the SCAR scheme

V. FUNCTIONAL REACHABILITY AND
SECURITY COMPLIANCE ANALYSIS OF RSNS

This section presents an accurate security compliance
analysis for RSNs, which considers the properties of the initial
design and identifies all the security compliance violations due
to the RSN integration. The scheme from [17] is formulated
as a graph-based approach and improved in terms of runtime
and memory usage. The following steps are performed:

• The security properties of the initial DUT are extracted
from the design description and from the explicit secu-
rity specification as shown in Section V-A.

• A precise reachability analysis of the RSN is performed,
as detailed in Section V-B.

• The reachability properties of the system, which consists
of the DUT and the integrated RSN, are computed as
shown in Section V-C.

• Finally, the security compliance of the RSN with the
given DUT is verified as shown in Section V-D. All the
security compliance violations introduced into the DUT
due to the RSN integration are identified.

LYLINA et al.: SECURITY COMPLIANCE ANALYSIS AND RESYNTHESIS OF RECONFIGURABLE SCAN NETWORKS 5

A. Security Properties of the DUT
An implicit security specification of the DUT is defined by

the reachability properties of the vertices of the initial DUT
graph. The structural reachability can be computed by using
Floyd-Warshall’s algorithm [42]. To identify the functional
connectivities inside the DUT, false path analysis [24]–[26]
or SAT-based methods [43] can be applied.

The allowed successors and predecessors of the instruments
are determined by augmenting the implicit security specifi-
cation with the explicit specification [23]. It considers the
trustworthiness of the IP-cores and the information confiden-
tiality and is provided as a list of instrument pairs. For each
instrument pair in the list, it is stated, whether the connectivity
between the instruments is explicitly allowed or explicitly
restricted. If a certain connectivity between the instruments is
explicitly restricted, the information about this connectivity is
saved and is further used by the automated resynthesis. By
contrast, if a connectivity between the instruments through
the RSN is explicitly allowed although no functional path is
sensitizable between these instruments in the initial design, an
additional edge is introduced into the DUT graph.

B. Reachability Analysis of RSNs
An accurate functional reachability analysis using conven-

tional methods is time-consuming due to complex control
dependencies and possible interaction with the system logic.
Also, the number of sensitizable scan configurations can be
exponential in the number of control elements, such as scan
multiplexers or SIBs.

The presented approach effectively overcomes the chal-
lenges above and computes the functional reachability of RSNs
by performing the following steps:

1) Structural dependencies are determined.
2) The possible assignments of control signals are

analyzed to identify a subset of dependencies which
belong to a valid scan configuration.

3) The dependencies between valid scan configurations
due to retargeting are determined and functional reach-
ability of the RSN is computed.

4) The connectivities between the instruments through the
RSN are determined.

1) Structural Dependencies: The direct successors
ds(vj , GRSN) and predecessors dp(vj , GRSN) are obtained
for each vertex vj from the RSN description. Although
functional cycles or cyclic ASPs are considered as a bad
practice by IEEE Std. 1687 [2], structural cycles may occur.
The existence of structural cycles in the RSN graph is checked
by a Depth-First-Search algorithm. If the graph does not
contain any cyclic dependencies, the original RSN graph
is used as its acyclic representation. Otherwise, an acyclic
representation is constructed by removing a small number
of edges from the RSN graph. The information about all
the cycles in the graph is preserved. All the vertexes of the
acyclic representation are ordered topologically. The pairwise
structural connectivities between the scan primitives are
identified by a Breadth-First-Search routine. If the RSN graph
contains cycles, the reachability is adjusted. For each edge,

which has been removed from the original RSN graph to
obtain an acyclic representation, the reachability of its source
and destination vertexes is computed.

2) Control Dependencies: Direct data transfer in RSNs is
only possible between the scan primitives, which are currently
included into an ASP. The control signals are used to drive the
explicit ”select”-ports of the scan primitives and to determine
the activated input of a scan multiplexer. The control depen-
dencies are analyzed to determine the connectivities which are
functionally activated within a single scan configuration.

Definition 4: The Essential Select Condition (ESC)
ESC(vj , cs1, ...csn) for a given scan primitive vj is a Boolean
formula in Conjunctive Normal Form (CNF), which defines
the required group of assignments to the control signal values
(cs1, ...csn), such that the scan primitive vj is sensitized.

The Essential Select Conditions (ESCs) are iteratively com-
puted starting from the sink vertex. The computation traverses
the RSN graph backward to the root vertex in a Breadth-First-
Search-manner. For each scan primitive, only those control
signals are added into its ESC, which are required to place
this scan primitive into an active scan path.

If a scan primitive is directly connected to a multiplexer, the
ESC demands a specific input of the multiplexer to be selected
in order to propagate the data from this scan primitive to the
scan-out. This part of the ESC is defined by the Relative Select
Condition (RSC). The RSC(vj , vk, cs1, ...csn) for a given scan
primitive vj and a scan multiplexer vk, is a Boolean formula
in CNF. If vk is a direct successor of vj , it defines a group
of assignments to the control signals (cs1, ...csn), which are
required to drive the address control signal of vk, in a way that
the scan input corresponding to the primitive vj is selected.

The ESC of each scan primitive vj depends on the ESCs
and the RSCs of all of its n direct successors (vl1, ...vln) and
is computed using the following formula:

ESC(vj , cs1, ...csn) :=
n_

k=1

[ESC(vlk, cs1, ...csn)

^RSC(vj , vlk, cs1, ...csn)]

(4)

According to this equation, a given primitive vj is selected
into an active scan path if and only if one of its direct
successors is selected (ESC(vlk, cs1, ...csn)). If the selected
successor is a scan multiplexer, then its scan-in branch, which
includes the primitive vj must be selected by the address
control signal (RSC(vj , vlk, cs1, ...csn)).

Fig. 4 shows an example of ESC computation for the scan
segment s2.

3) Valid Scan Dependencies: In RSNs, the data transfer
within one CSU-operation from a source scan primitive vj to
a destination scan primitive vk is possible, only if at least one
valid assignment to control signals exists. In this assignment
both scan primitives are selected in a valid active scan path,
and the scan primitive vk is reachable from the primitive vj . If
the primitives vj and vk fulfill the condition above, vj is called
an ASP predecessor of vk, and vk is called an ASP successor
of the primitive vj .

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEM, VOL. YYY, NO. ZZZ, MONTH YEAR

1
0

s2
s1

Select (s2)

SI SO

cs1 m1

Fig. 4. The signal cs1 is driven by the shadow register of s1, and is
used as an address control signal of m1 and to drive the select-port of s2.
Segment s2 is included into an ASP, if cs1 equals to one, which means:
ESC(s2, cs1) := cs1

To verify the condition above, the Essential Select Condi-
tions for the structurally connected primitives vj and vk are
combined by conjunction. The existence of an assignment to
the control signals (cs1, ...csn), which satisfies the boolean
satisfiability (SAT) instance below, is verified:

9(cs1, ...csn) : [ESC(vj , cs1, ...csn)

^ ESC(vk, cs1, ...csn)

^ (vj 2 sp(vk, G
RSN)]

(5)

• If the SAT instance is satisfiable, then an ASP includ-
ing both primitives can be configured. The satisfying
assignments provide the essential values of logic signals
to select both primitives simultaneously. The sets of ASP
predecessors for vk and ASP successors for vj are cor-
respondingly updated, since the data can be transmitted
between vj and vk within one CSU-operation.

• If the SAT instance is unsatisfiable, then the ESCs of
the primitives are contradicting and an active scan path
traversing both primitives does not exist.

4) Functional Reachability Analysis: Data between the in-
struments can also be propagated through RSNs using multiple
sequentially activated paths. The connectivities within single
ASPs, which have been computed as shown in Section V-B3,
are generalized to determine the functional successors and
predecessors of each scan primitive. The number of reconfigu-
rations used to propagate the data between two instruments and
thereby the computation efforts in the worst case are limited
to the sequential depth of the RSN, which is defined as the
length of the longest possible active scan path inside this RSN.

C. Hybrid Connectivity Computation
To compute the connectivity properties after the RSN inte-

gration, the hybrid paths traversing both the initial design and
the RSN are identified. Therefore, the transitive closure over
the system graph is computed by combining the previously
determined connectivities within the DUT and the RSN. The
presented algorithm to compute the dependencies between the
instruments and the scan segments has rather low complexity,
and contains two basic steps detailed below:

• Bridge-dependencies: The connections between the
RSN and the DUT subgraphs are augmented with the
connectivities within the subgraphs to build the hybrid

partial paths between the instruments and the scan seg-
ments (bridges). Following the transitivity property, all
the primitives in the RSN, which are reachable from the
scan segment reading the data from the instrument, are
also reachable from the instrument itself. In this way, all
the scan primitives are identified, which are functionally
reachable from each given instrument through the RSN.
Following the same logic, any instrument reading the
data from a particular scan segment is reachable from
all the primitives in the RSN, which reach this scan
segment.
Example: In Fig. 1, the scan segment s2 is reachable
from the instrument i2. This means that all the scan
segments, which are functionally reachable from s2, are
also reachable from i2 through the RSN.

• Instrument connectivities through the RSN: The par-
tial paths from the first step are combined to find the
instrument connectivities through the RSN. Connectivity
between the source and the destination instruments exists
through the RSN, if at least one intermediate scan
primitive exists, which is reachable from the source
instrument, and such that the destination instrument is
reachable from this scan primitive.
Example: In Fig. 1, the scan segment s6 is reachable
from the instrument i2, and i6 is reachable from s6. This
implies that i6 is reachable from i2 through the RSN.

The identified connectivities between the instruments
through the RSN are augmented with the allowed functional
connectivities within the initial DUT. It allows obtaining
information about hybrid paths which can traverse both parts
of the system an unlimited number of times. As a result, for all
the instruments, the sets of functional successors fs(vj , G) and
predecessors fp(vj , G) after the RSN integration are identified.

D. Security Compliance Verification
The compliance of the RSN with the initial security prop-

erties of the DUT is verified. The intended sets of allowed
successors of the instruments in the initial DUT are compared
with the actual sets of successors in the combined system.
The hybrid connectivities after the RSN integration must not
exceed the allowed connectivities in the initial DUT:
• If the requirement is fulfilled for all the instruments,

the initial RSN is compliant with the initial security
properties and the integration of the RSN is complete.

• If for any instrument this requirement does not hold,
the initial RSN is structurally modified to ensure its
security compliant integration into the DUT. At this step,
the list of security violation warnings is constructed and
provided to the automated resynthesis.

Example: As a result of the security compliance verification,
the violating connectivities from the vertex s1 to s6; from s2
to s5, s6 and s7; and finally from s6 to s7 are identified.

VI. SECURITY PRESERVING RESYNTHESIS

This section presents the automated resynthesis approach.

LYLINA et al.: SECURITY COMPLIANCE ANALYSIS AND RESYNTHESIS OF RECONFIGURABLE SCAN NETWORKS 7

A. Minimum Cut Problem in a Multi-Commodity Flow
Resolving security violations can be mapped to a cutting

problem in a directed graph. A single commodity (vs � vt)
in a directed graph G := (V,E) is a vertex pair, where vs
is a source and vt is a destination. A subset of vertices Vcut

is called a (vs � vt) cut, if its removal from the vertex set
V would remove the connectivity from the source vs to the
destination vt in the resulting graph.

If k commodities (vsk � vtk) coexist in a graph G, a cut
in a multicommodity flow graph can be defined as a vertex
subset Vcut, such that for all the commodities (vsk � vtk) the
connectivity would be precluded [44], [45].

B. Eliminating the Violating Connectivities
The problem of automated RSN resynthesis is formulated as

a minimum cut problem in a multicommodity flow. Since this
problem is NP-complete [45], an efficient and precise divide-
and-conquer heuristic is applied. The presented algorithm
includes the following steps:
• The list of security violation warnings is processed,

and each violation violx(vj , vk) is mapped to a single
commodity. Mapping to a single commodity is possible,
since each violation represents the existence of con-
nectivity between the corresponding vertices, possibly
through multiple paths.

• An initial vertex cut V RSN
cut

⇢ V RSN , which would
remove the connectivities for all the violations is
computed. For each intermediate vertex vm of the RSN
graph, which belongs to at least one violating functional
path between the source vj and the destination vk, we
decide whether (Fig. 5):

1) vm belongs to the cut itself, or
2) all the paths between vj and vm have to be cut,

or
3) all the paths between vm and vk have to be cut.

2 31

vkvmvj
vm1

vm2

Fig. 5. Node cutting options: a single intermediate vertex vm is removed to
cut all the paths between vj to vk .

• The solution is adjusted recursively, as detailed in
Section VI-C, to identify a possibly small vertex cut.
The experimental results show that the presented heuris-
tic resolves a large number of violations by applying just
a few structural changes and is scalable for large RSNs.

• From the connectivity perspective, the removal of a
vertex is equivalent to the removal of all its outgoing
edges. To preserve all the vertices, which correspond
to the scan segments, all the outgoing edges of the
vertices in the cut are removed from the graph instead
of removing the vertices themselves.

• The accessibility of the scan segments, and thereby
of the corresponding instruments, can be affected after
removing the violating connectivities in the RSN graph.
The accessibility of such a scan segment is ensured by
the method described in Section VI-D below.

C. Divide-and-Conquer Heuristic Overview
1) Base Step: Each violation violx(vj , vk), is represented

the source vj , the destination vk, and a temporary edge in
between. The intermediate vertices between the source and
the destination are not considered at this step. Such RSN
representation is referred as the Level-0 graph, as shown in
Fig. 6.a for the RSN from Fig. 1, where the set V S contains
all the violations’ sources, and the set V T contains all the
destinations. These sets are not forced to be disjoint, and a
source of one violation can serve as a destination of another
violation. To resolve the violations, the paths between the
sources and the destinations are cut, and the following steps
determine where.

2) Recursive Step: At each further step with an index n, an
optimized intermediate set OINTn is constructed. It contains
a small number of vertices, such that for each path between
a source and a destination of a violation, there exist at least
one vertex vl whose removal would cut this path. We further
say that vl covers this path. The intermediate vertex set
OINTn is placed in the graph between the sources V S and
the destinations V T of the considered violations. This more
accurate RSN representation is referred as the Level-n graph
GRSN

n
, as shown in Fig. 6.b for the RSN from Fig. 1, and is

used to adjust the accuracy of the solution.
To compute the set OINTn, first the optimized sets of

the intermediate vertices OINTn,x are built for each specific
violation violx(vj , vk). Each set includes a small number of
vertices, whose removal would cut all the functional paths,
which cause this violation. An empty set of covered vertices
COVn,x is initialized to keep track on the covered paths.

For each Level-n graph, an unoptimized intermediate set
INTn includes all the vertices belonging to the violating
paths. Since the size of the optimized set only affects the
runtime performance of the resynthesis, an efficient heuristic
is proposed to reduce its size:
• Firstly, a global weight weightG(vl, GRSN

n
) is defined

for each vertex vl 2 INTn in the Level-n graph. It
shows, how often is the given vertex vl reachable from
any of the violation sources V S, and thereby considers
all the violations simultaneously.

• Secondly, for each vertex vl 2 INTn a local weight
weightL(vl, GRSN

n
, violx(vj , vk)) is calculated with re-

spect to the violation violx(vj , vk). All such vertices vm
are identified, which belong to at least one sensitizable
functional path between the source vj and the destination
vk. Out of these vertices, such vertices are selected that a
connectivity between vl and vm exists. Their quantity is
normalized with respect to the total number of vertices,
which belong to any path between vj and vk. The
resulting local weight defines how many functional paths
between vj and vk are covered with the given vertex.

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEM, VOL. YYY, NO. ZZZ, MONTH YEAR

VT

s7

s5

s6

VS

s6

s1

s2SI SO

INTOPT

s4

m2
s7

s5

s6

s6

s2

s1

SI SO

a) b)
INTOPT

s4

m2
s7

s5

s6

s6

s2

s1

SI SO

VTVS

s7

s4

m2

s2

s1

SI SO

INTOPT

s7

s4

m2

m1

s2

s1

SI SO

c1) c2) d)

Fig. 6. a) Level-0 graph: The vertices s1, s2, and s6 serve as sources of violations, while s5, s6 and s7 as destinations. Auxiliary vertices SI and SO serve
as a global source and destination. s6 serves as a source of one violation and as a destination of another violations. A violating path between the vertices s2
and s5 from Fig. 2 is shown with a red color.
b) Level-1 graph construction: The vertex s4 has the highest value of a cost function and covers all the violating paths from s1 to s6. After s4 is added into
the optimized set, the value of sel(m1) function is incremented. The same vertex s4 is automatically selected to cover the paths from s1 to s5, and all other
violations except the violation from s6 to s7. To cover this violation, the vertex m2 is selected. Finally, the optimized set contains the vertices s4 and m2.
c1) Level-1 graph is resolved: The violations in the graph are removed by cutting all the paths before s4 and after m2, as shown with dashed blue lines.
c2) Level-2 graph is constructed: The paths removed in the previous step (c1) are considered as violations.
d) Level-2 graph is resolved: The paths after m1 and after m2 are removed by cutting the paths from m1 and s4, and from m2 to s7. The violations, including
the one between the vertices s2 and s5, are resolved. The computation converges since the solution cannot be further adjusted.

• Thirdly, a ”memory”-function mem(vl, GRSN
n

) defines
how often a certain vertex has been already included
into the optimized set of intermediate vertices for the
previously processed violations.

• Lastly, a cost function, which depends both on the global
and the local weight as well on the value of the memory
function, is computed:

cost(vl, G
RSN

n
) := �[weightG(vl, G

RSN

n
),

weightL(vl, G
RSN

n
, violx(vj , vk)),

mem(vl, G
RSN

n
)]

(6)
A vertex with the highest value of a cost function is selected

and is added into an optimized set OINTn,x of a considered
violation and into the set of covered vertices COVn,x. All the
functional successors and predecessors of this vertex are also
added into the set of covered vertices COVn,x.

The value of the ”memory”-function is incremented for the
selected vertex, while the global and local weights do not need
to be recomputed. Depending on the new value of the cost
function, the next vertex is selected and the sets of intermediate
and covered vertices are updated. The procedure is repeated,
until all the intermediate vertices for a violation are covered.

The same procedure is performed for all the violations, in a
way that the decision for each further violation considers the
previous decisions for the already processed violations.

The resulting optimized set of intermediate vertices OINTn

is built as a union of the computed sets for single violations:

OINTn :=
#violations[

x=1

OINTn,x (7)

For each vertex vl from the set OINTn, which belongs to
at least one violating path between the vertices vj and vk, it
is decided whether the paths from vj to vl, or the paths from
vl to vk are cut, or the vertex itself is removed.

The minimized set of connectivities, whose removal would
resolve all the violations for the current graph representation
GRSN

n
, is selected by solving a minimum cut problem in a

multicommodity flow on a smaller graph by means of Integer
Linear Programming (ILP).

3) Final Steps and Termination: Assume that at the recur-
sive step n, the functional paths (path1, ..pathm) are cut.
Then, at the next step, it is decided, where exactly these paths
must be cut. The solution accuracy is improved incrementally
at each recursive step and the lengths of the violating paths are
gradually decreasing. The number of recursive steps depends
on the graph size, and on the maximum distance between the
source and the destination of a violation.

At the recursive step n + 1, the first vertices of the paths,
which have been cut in the previous step, are considered as
the violations sources, whereas the last vertices in the paths -
as the destinations of the violations. A minimized number of
the intermediate vertices are added between the sources and
the destinations. As a result, the graph GRSN

n+1 is constructed,
and the minimum cut flow problem is solved again. The

LYLINA et al.: SECURITY COMPLIANCE ANALYSIS AND RESYNTHESIS OF RECONFIGURABLE SCAN NETWORKS 9

computation converges when the exact vertices of the high-
granular graph GRSN are in the cut Vcut. As mentioned before,
instead of removing the vertices, all the outgoing edges of the
vertices of the cut Vcut are removed from the RSN graph.

The secure RSN graph is built, where some edges are
removed to resolve all the violations, as shown in Fig. 7 for
the RSN from Fig. 1.

RSN

i2 i6 DUT

s7m1

s5s3

s2SI

i7

s4

i1

s1

s6

m2 SOsSIBmSIB

i5

Fig. 7. Secure RSN graph: as decided in Fig. 6.d., the edges from s3 and
s4 to m1 and from m2 to s7 are removed from the graph to resolve the
violations.

D. Ensuring the Accessibility
Since removing a violation corresponds to deleting some

edges, some scan segments as well as the corresponding instru-
ments may become inaccessible. The accessibility of the scan
segments is re-installed in an automated way and a minimized
number of novel connectivities is added sequentially into the
RSN graph. The number of added edges is at most 2 ⇤ m,
where m is the number of the previously removed edges.

The connectivities, which are added into the RSN graph,
must fulfill the following conditions:

• Each newly introduced connectivity is compliant with
the security properties of the design-under-test.

• After augmenting the RSN graph with additional edges,
the accessibility of all the scan segments, is guaranteed
through at least one sensitizable active scan path.

The existence of a sensitizable path pathb from a primary
scan-input to a given segment is further referred to as backward
accessibility, whereas the existence of a path pathf from
a given segment to a primary scan-output is called forward
accessibility. If the scan segment is forward and backward
accessible, and if the activation conditions of the subpaths
pathf and pathb are not contradicting, then a path from a
scan-in through a given scan segment to a scan-out exists, and
the scan segment is accessible.

To ensure the accessibility, first, the forward accessibility
of the vertices is ensured, as summarized in Algorithm 1.
To verify the existence of a path from a given vertex to the
primary SO, the vertices are traversed in a reversed Breadth-
First-Search (BFS)-order, which starts from the primary scan-
in port (Lines 1-2).

For each vertex vj with no functional successors (Line 3),
the acccessibility is reintroduced through the following steps:

• Line 4: The candidate vertices vk are identified, which
can serve as possible successors of the vertex vj . Adding

Algorithm 1: Ensuring the forward accessibility
1 V ertexOrder := Reverse(Order(V RSN , BFS, SI));
2 for vj 2 V ertexOrder do
3 if fs(vj , GRSN) = ; then
4 Find allowed functional successors;
5 Select successor based on optimization criteria;
6 Update the reachability properties;
7 end
8 end

a connectivity from the given vertex vj to vk must be
compliant with the security properties of the design, and
a functional path from vk to the primary scan-out should
exist. Here, not only a direct edge between vj and vk
must be considered, but also the connectivities induced
by any combinations of the functional predecessors of vj
and the successors of vk in the combined system graph.
The candidate successors must be also compliant with
the explicit security specification. If the connectivity
between the vertices vj and vk introduces an explicitly
prohibited connectivity into the design, the vertex vk is
not selected. The candidates set is guaranteed to be non-
empty since it always includes the scan-out port.

• Line 5: The actual successor vk is selected out of the
candidates. The choice depends on the optimization
criteria, such as the access latency or the hardware
overhead, which is specified by a DfT integrator.

• Line 6: An edge is added between vj and the selected
successor vk. The reachability of vj and vk, as well as
the reachability of all the functional predecessors of vj
and the functional successors of vk is adjusted to reflect
the novel connectivity.

The process (Lines 4 - 6) is repeated to ensure the forward
accessibility of all the affected vertices, and thereby the
accessibility of the corresponding instruments. The same idea
is applied to guarantee the backward accessibility. The acces-
siblity of the segments with respect to the valid assignments
to the control lines is verified as in [14].

The resynthesis is adjustable to the needs of a DfT integrator
and various optimization criteria can be applied, e.g.:

• Minimized access latency:

minimize[max AT (si)], si 2 S, (8)

AT (si) denotes the access time of the segment si.
Example: The maximal access latency among the regis-
ters of a periodic BIST, accessed through an RSN online,
can be minimized in order to ensure an efficient periodic
access, which is compliant with the safety requirements.
Using this criteria results in a parallelized RSN, with a
higher number of configurable ASPs.

• Minimized hardware overhead:

minimize[
nX

i=0

HW (mi)],mi 2 M,n = |M |, (9)

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEM, VOL. YYY, NO. ZZZ, MONTH YEAR

HW (mi) denotes the hardware overhead of the scan
multiplexer mi.
Example: The overall hardware overhead, motivated
by a number and the complexity of used control prim-
itives, can be minimized in order to reduce the costs
of integrating the RSN. The resulting RSN is organized
more sequentially with fewer possible ASPs.

An example for an accessible RSN graph is shown in Fig. 8
for the RSN from Fig.1.

RSN

i2 i6 DUT

s7m1

s5s3

s2

i7

s4

i1

s1

s6

m2 SOsSIBmSIB

i5

SI

Fig. 8. Accessible RSN graph: the edges from SI , m1 and m2 to mSIB , and
from SI to s4 and s7 are added to ensure the accessibility while preserving
the security compliance.

VII. VALIDATION

After applying the previously described heuristic, the ex-
isting violating connectivities are removed but some novel
connectivities are added into the RSN to ensure accessibility.
These additional connectivities may cause novel violations in
the DUT. Iterative validation is used to guarantee that all the
violations are resolved, as shown in Fig. 3 with a big red
arrow on the right. After applying the resynthesis, the security
properties of the resulting RSN are validated once again by
using the security compliance analysis, described in Section V:

• If the connectivities in the resulting RSN do not extend
the allowed connectivity of the DUT, then the security-
preserving RSN structure is already obtained, and this
RSN is used to access the test instruments.

• If some violations are still present in the RSN, the
heuristic is repeated again until a secure RSN imple-
mentation is synthesized.

The presented scheme guarantees to converge to a security-
preserving RSN. In the worst case, each instrument is accessed
via a scan segment, which is located on the individual branch
of a scan multiplexer. In the experiments we show that the
algorithm terminates much faster, and in most cases, a security
compliant RSN is synthesized after the first iteration of SCAR.

VIII. EXPERIMENTAL RESULTS

A. Experimental Setup
The presented SCAR algorithm is implemented in the

eda1687 framework as introduced in [14]. All the experiments
have been conducted on an Intel(R) Xeon(R) W-2125 CPU at
4.00GHz with 132 GB of main memory. Each evaluated system

models the connectivities between the instruments through
the DUT, the connectivities inside an RSN, and the ones
crossing the boundary between the RSN segments and the
accessed instruments. The connectivities between any other
components of the DUT can be computed by conventional
methods, such as [21-23], and lays out of the scope of this
work. To avoid possible bias in the results, we have decided
to use the ISCAS’89 [46] benchmarks to represent the connec-
tivities between the instruments through the underlying DUT
instead of generating pseudo-random connectivities between
the instruments. Each instrument is represented by a flip-
flop, and is accessed via a single scan cell of the RSN. The
evaluated RSNs have been taken from the well recognized
ITC’16 [47] and the DATE’19 [22] benchmark sets, and have
a hierarchical structure. The DATE’19 benchmarks come from
an industrial partner. They are the largest and also newest
benchmarks available to academia. They represent a realistic
access mechanism to a memory built-in self-test (BIST) block
of a given size. In Table II, the number of scan muxes (Column
2), SIBs (Column 3), scan cells (Column 4) and the highest
hierarchy level (Column 5) are given for all the evaluated
benchmarks.

TABLE II. CHARACTERISTICS OF BENCHMARKS

Design(1) #muxes(2) #sibs(3) #scan cells(4) #level(5)
BasicSCB 10 - 176 4
Mingle 13 10 270 3
TreeFlat 24 12 101 2
TreeUnbalanced 28 28 41,887 11
TreeBalanced 46 43 5,581 7
TreeFlat Ex 60 57 5,194 5
q12710 25 25 26,183 2
a586710 47 - 41,682 3
p34392 142 - 23,261 3
t512505 160 - 77,006 2
p22810 283 283 30,111 3
p93791 653 - 98,637 3
MBIST 1 5 5 15 8 548 4
MBIST 1 5 20 15 8 1,523 4
MBIST 1 20 20 45 23 6,068 4
MBIST 2 5 5 28 16 1,091 4
MBIST 2 5 20 28 16 3,041 4
MBIST 2 20 20 88 46 12,131 4
MBIST 5 5 5 67 40 2,720 4
MBIST 5 20 20 217 115 30,320 4
MBIST 5 100 20 1,017 515 151,520 4
MBIST 5 100 100 1,017 515 671,520 4
MBIST 20 20 20 862 460 121,265 4
MBIST 55 20 5 2,367 1,265 118 970 4
MBIST 100 20 5 8,102 2,300 216,305 4
MBIST 100 100 5 20,102 10,300 1,080,305 4

B. SCAR Runtime Improvement
The SCAR algorithm has been formulated as a graph-

based approach. Thanks to the dramatically improved runtime
performance, and optimized memory consumption (compared
to the matrix-based approach from [17]), larger RSN designs
can be analyzed within an acceptable time.

Fig. 9 shows the ratio between the runtime of the presented
graph-based scheme and the previously published matrix-based
approach for the RSNs from the ITC’2016 benchmark set.
As the benchmark size increases, the runtime ratio increases
up to 3.5 times. As expected, the memory consumption for

LYLINA et al.: SECURITY COMPLIANCE ANALYSIS AND RESYNTHESIS OF RECONFIGURABLE SCAN NETWORKS 11

processing the graphs is lower compared to the sparse matrix
processing.

0

0.5

1

1.5

2

2.5

3

3.5

4

R
un

tim
e

R
at

io

Fig. 9. Runtime ratio between the approach [17] and the presented approach.

For the DATE’19 benchmark set, the runtime performance
ratio for the presented approach compared to the matrix-based
approach from [17] is much higher. Even for the smallest
benchmark (MBIST 1 5 5) from this set, the runtime is
improved by a factor of larger than 5400x. The runtime and
memory consumption of the matrix-based compliance analysis
approach from [17] increases dramatically, as the size of RSN
matrices rises for larger RSN designs. Moreover, the size and
complexity of the ILP equations required for the resynthesis in
the approach from [18] is significantly larger in comparison to
the ILP equations required in the proposed method. Therefore,
for all other benchmarks from the DATE’19 benchmark set,
the computation is performed with the presented improved
approach only.

The whole graph-based SCAR scheme is performed in a
divide-and-conquer manner. The security compliance analysis
is first run on the smaller sized blocks. Next, the reachability
properties of these smaller blocks are merged to analyze the
blocks with a larger size, until the whole RSN is processed.
The identified violations are sorted: for each violation the
smallest possible logical block is identified, such that both
the source and the destination of the violation, as well as all
the paths between them, are located inside this block. This
information is used further by the automated resynthesis: if
a certain violation is located inside an isolated block there is
no need to resynthesize the whole graph. The violations are
resolved hierarchically, starting from the smallest blocks. The
violations between the blocks are handled at a higher granular-
ity, such that, if possible, only the interconnects between the
affected blocks are resynthesized to cut the violating paths.

C. DUT-RSN Reachability Dependencies
Explicit security specifications are modeled by a list of in-

struments pairs, where data propagation is prohibited between
the instruments. The instrument pairs are built randomly, and
the fraction of prohibited instrument pairs compared to the
total number of instrument pairs in the DUT varies from 0%
to 100% with a step of 10%.

For each given fraction of prohibited connectivities, the
SCAR is performed to identify the violating hybrid paths. The
number of security compliance violations is normalized against
the total number of violations in a given RSN, and observed
as the ”fraction of violating connectivities”. Fig. 10 shows the
dependency between the fraction of prohibited connectivities
in the DUT and the average fraction of violations in the RSN.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
io

la
tin

g
co

nn
ec

tiv
iti

es
 in

 th
e

R
SN

Prohibited connectivities in the DUT

Fig. 10. The reachability properties of the DUT and the RSN.

The minimal and maximal fractions between the bench-
marks are also shown in the diagram. As the fraction of the
prohibited connectivities in the DUT reaches 80 percent, the
fraction of such connectivities in the RSN, which violate the
compliance with the DUT, saturates for all the benchmarks.

D. Total Flow Check
The flow from Fig. 3 is performed to securely integrate

an RSN into a given DUT. To assess the influence of the
control signal assignments on the functional reachability, some
correlation between the control signals has been added, such
that 20% of the neighboring mux pairs are controlled by the
same external control signals. Complementary to the implicit
security specification of the connectivities between the in-
struments, an explicit security specification is defined by the
designer: for 20% randomly selected instrument pairs, any
data transfer is prohibited between the instruments through
the RSN. The experimental results are shown in Table III:
• Firstly, the structural connectivities (Column 2,

#struct.), as well as the valid connectivities for
individual ASPs (Column 3, #ASP), and the functional
connectivities (Column 4, #func.) inside the RSN have
been computed.

• Secondly, all the security compliance violations (Column
5, #viol.) have been identified.

• Thirdly, all the violations have been resolved with a few
iterations of the flow from Fig. 3 (Column 6, #iter), by
removing just a few edges (Column 7, #removed).

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEM, VOL. YYY, NO. ZZZ, MONTH YEAR

• The accessibility has been reintroduced by adding
at most 2⇥#removed edges into the graph.

The minimized access latency (”reduce latency”) and the
minimized hardware overhead (”reduce overhead”) have been
used as the optimization criteria, as defined in Section VI-D.
The actual values of the average access latency and the
hardware overhead have been measured for both optimization
criteria. The values of these metrics for the security compliant
RSNs are normalized with respect to the values obtained for
the initial RSNs and are shown in Columns 8, 9, 10, 11.

• When applying the ”reduce latency” criteria, the re-
sulting access latency of the segments was reduced as
expected, and the hardware overhead increased with
respect to the original RSN. This means that in the
resulting RSNs, a larger number of shorter scan paths
is synthesized, which allowed the approach to mitigate
information leakage through RSNs.

• For the ”reduce overhead” criteria, the latency was
slightly increased, while the hardware overhead either
increased only negligibly or even slightly decreased.
That means that in the resulting RSNs it was possible to
prevent all security violations while preserving almost
the same hardware overhead.

Runtime is negligible for all the considered benchmarks,
and the whole flow requires less than 3.5 minutes for the
largest benchmark, while the average runtime is about one
minute. On average 33 percent of the runtime has been spent
for the analysis, while the remaining time has been spent for
performing the automated resynthesis.

Compared to generating fully parallel RSNs, using the
presented method is beneficial. In a fully parallel RSN, all
the scan cells will be located on different branches of a scan
multiplexer. Therefore, the number of required changes for
each initial benchmark would be equal to the number of scan
cells provided in Column 4 of Table II, which is much higher
than the changes required by the presented method (Column
7 in Table III). Maximum latency in terms of shift cycles will
be reduced, since the lengths of scan paths will be decreased.
However, to read and/or write data to multiple instruments
through such an RSN, additional capture and update cycles are
required, which increases overall access time significantly if
the number of parallel branches is too high. Hardware overhead
in a fully parallel RSN, according to Eq.9, is calculated as the
hardware overhead of the scan multiplexer, which is defined as
the number of cascading two-input scan multiplexers required
to access all the parallel branches. Therefore, for a fully
parallel RSN the hardware overhead is much higher than the
one obtained by the presented method (Columns 9 and 11 in
Table III).

IX. CONCLUSION

This paper presents a complete approach for security
preserving integration of RSNs, which ensures the compliance
of the resulting RSN with the requirements of the DUT. The
presented approach overcomes the high sequential depth of
RSNs, and accurately analyzes the RSN functional dependen-
cies. It considers hybrid paths through the DUT and the RSN,

as well as the retargeting capabilities of RSNs, and identifies
all the security violations due to the RSN integration. Based
on the results of a security compliance analysis, the presented
resynthesis approach applies a minimized number of structural
changes to the RSN in order to resolve all the identified
violations.

An efficient divide-and-conquer heuristic is presented, which
avoids exponential complexity in average case. The automated
resynthesis is flexible, and allows to specify additional opti-
mization criteria based on the DfT integrator needs. The fea-
sibility of the presented method, as shown in the experimental
results, allows to securely integrate an RSN into the DUT with
an acceptable runtime and a minor hardware overhead.

ACKNOWLEDGMENT

This work was supported by the German Research Foun-
dation (DFG) under grant WU 245/17-2 (ACCESS) and
partially supported by Advantest as part of the Graduate School
”Intelligent Methods for Test and Reliability” (GS-IMTR) at
the University of Stuttgart.

REFERENCES

[1] “IEEE Standard for Test Access Port and Boundary-Scan Architecture,”
IEEE Std 1149.1-2013 (Revision of IEEE Std 1149.1-2001), pp. 1–444,
May 2013.

[2] “IEEE Standard for Access and Control of Instrumentation Embedded
within a Semiconductor Device,” IEEE Std 1687-2014, pp. 1–283, Dec.
2014.

[3] J. Rearick, B. Eklow, K. Posse, A. Crouch, and B. Bennetts, “IJTAG
(internal JTAG): a step toward a DFT standard,” in Proc. IEEE Int’l
Test Conf. (ITC), 2005, pp. 1 – 8.

[4] C.-H. Wang, N. Lylina, A. Atteya, T.-Y. Hsieh, and H.-J. Wunderlich,
“Concurrent Test of Reconfigurable Scan Networks for Self-Aware
Systems,” in Proc. IEEE Int’l Symp. on On-Line Testing And Robust
System Design (IOLTS), Virtual, June 2021, pp. 1–7.

[5] J. D. Rolt, A. Das, G. D. Natale, M. Flottes, B. Rouzeyre, and
I. Verbauwhede, “Test Versus Security: Past and Present,” IEEE Trans.
on Emerging Topics in Computing, vol. 2, no. 1, pp. 50–62, Mar. 2014.

[6] Free60 SMC Hack. Available https://free60project.github.io/wiki/SMC
Hack/. Accessed December 09, 2021 [Online].

[7] L. Greenemeier. iPhone Hacks Annoy AT&T but Are Unlikely
to Bruise Apple. Available https://www.scientificamerican.com/article/
iphone-hacks-annoy-at/. Accessed December 09, 2021 [Online].

[8] R. Elnaggar, R. Karri, and K. Chakrabarty, “Security Against Data-
Sniffing and Alteration Attacks in IJTAG,” IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), vol. 40, no. 7,
pp. 1301–1314, 2021.

[9] S. Kan and J. Dworak, “IJTAG Integrity Checking with Chained
Hashing,” in Proc. IEEE Int’l Test Conf. (ITC), Oct. 2018, pp. 1–10.

[10] X. Ren, R. D. S. Blanton, and V. G. Tavares, “Detection of IJTAG
attacks using LDPC-based feature reduction and machine learning,” in
Proc. IEEE European Test Symp. (ETS), May 2018, pp. 1–6.

[11] M. A. Kochte, R. Baranowski, and H.-J. Wunderlich, “Trustworthy
Reconfigurable Access to On-Chip Infrastructure,” in Proc. IEEE Int’l
Test Conf. in Asia (ITC-Asia), Sep. 2017.

[12] B. Yang, K. Wu, and R. Karri, “Secure Scan: A Design-for-Test
Architecture for Crypto Chips,” IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), vol. 25, no. 10, pp. 2287–
2293, Oct. 2006.

[13] J. Lee, M. Tehranipoor, C. Patel, and J. Plusquellic, “Securing Designs
against Scan-Based Side-Channel Attacks,” IEEE Transactions on De-
pendable and Secure Computing, vol. 4, no. 4, pp. 325–336, Oct 2007.

[14] R. Baranowski, M. A. Kochte, and H.-J. Wunderlich, “Reconfigurable
Scan Networks: Modeling, Verification, and Optimal Pattern Gen-
eration,” ACM Trans. on Design Automation of Electronic Systems
(TODAES), vol. 20, no. 2, pp. 30:1–30:27, 2015.

LYLINA et al.: SECURITY COMPLIANCE ANALYSIS AND RESYNTHESIS OF RECONFIGURABLE SCAN NETWORKS 13

TABLE III. SECURITY COMPLIANT RSN INTEGRATION

Security Compliance Analysis Resynthesis
Resolve Reduce Latency Reduce Overhead

(1) Design (2) #struct. (3) #ASP (4) #func. (5) #viol. (6)#iter (7) #removed (8) latency (9) overhead (10) latency (11) overhead
BasicSCB 181 175 178 45 1 8 0.91 1.09 1.01 0.93
Mingle 230 155 205 83 1 9 0.90 1.02 0.97 0.93
TreeFlat 300 263 300 103 1 9 0.90 1.05 0.98 0.93
TreeUnbalanced 2,016 1,820 1,987 340 1 9 0.99 0.96 0.99 1.01
TreeBalanced 4,272 2,688 2,899 822 1 18 0.98 1.02 0.97 0.94
TreeFlat Ex 7,869 6,987 7,116 1450 1 20 0.76 0.97 1.15 0.85
q12710 1,275 1,020 1,219 614 1 22 0.72 1.21 1.13 0.80
a586710 1,430 1,034 1,599 345 2 37 0.63 1.67 1.12 0.97
p34392 15,937 12,122 14,435 2,187 3 21 0.75 1.49 1.12 0.96
t512505 41,328 30,623 37,677 1,346 2 36 0.66 1.61 1.16 0.93
p22810 137,550 97,731 125,637 2,104 1 127 0.78 1.60 1.10 1.01
p93791 721,269 523,454 652,825 18,610 3 463 0.59 1.72 1.18 0.85
MBIST 1 5 5 30,193 29,600 29,605 967 1 101 0.18 4.00 1.34 1.00
MBIST 1 5 20 231,043 222,124 229,475 365 1 52 0.28 3.24 1.56 1.01
MBIST 1 20 20 929,218 916,123 923,015 356 1 48 0.24 3.33 1.12 0.97
MBIST 2 5 5 60,327 57,122 59,153 1,056 1 104 0.29 2.12 1.12 0.98
MBIST 2 5 20 462,027 422,173 458,903 5,591 2 187 0.31 2.21 1.15 1.10
MBIST 2 20 20 1,858,377 1,804,592 1,845,983 3,437 2 358 0.49 1.99 1.15 1.02
MBIST 5 5 5 150,783 142,861 147,866 23,177 1 4,826 0.22 3.55 1.56 1.01
MBIST 5 20 20 4,645,908 4,124,739 4,614,941 63,284 1 6,712 0.19 4.05 1.23 0.97
MBIST 5 100 20 23,947,908 22,112,834 23,793,341 56,452 1 2,561 0.45 2.13 1.12 0.99
MBIST 5 100 100 452,167,908 423,175,253 451,493,341 54,765 1 972 0.65 1.16 1.18 1.09
MBIST 20 20 20 18,584,778 15,267,365 18460946 23,683 1 1,835 0.49 1.67 1.42 0.99
MBIST 55 20 5 6,929,683 6,605,819 6,803,666 17,349 2 1,240 0.69 1.46 1.14 0.98
MBIST 100 20 5 12,619.618 11,859.933 12.390,506 87,275 2 5,784 0.34 2.60 1.37 0.96
MBIST 100 100 5 77,299,618 75,738,342 76,158,506 154,235 3 6,246 0.35 2.56 1.14 0.98

[15] A. Tsertov, A. Jutman, K. Shibin, and S. Devadze, “IEEE 1687
Compliant Ecosystem for Embedded Instrumentation Access and In-
Field Health Monitoring,” in In Proc. IEEE AUTOTESTCON, Sep. 2018,
pp. 1–9.

[16] A. M. Y. Ibrahim and H. G. Kerkhoff, “DARS: An EDA Framework for
Reliability and Functional Safety Management of System-on-Chips,” in
Proc. IEEE Int’l Test Conf. (ITC), Nov. 2019, pp. 1–10.

[17] N. Lylina, A. Atteya, P. Raiola, M. Sauer, B. Becker, and H.-J.
Wunderlich, “Security Compliance Analysis of Reconfigurable Scan
Networks,” in Proc. IEEE Int’l Test Conf. (ITC), Nov. 2019, pp. 1–
9.

[18] N. Lylina, A. Atteya, C.-H. Wang, and H.-J. Wunderlich, “Security Pre-
serving Integration and Resynthesis of Reconfigurable Scan Networks,”
in Proc. IEEE Int’l Test Conf. (ITC), Nov. 2020, pp. 1–10.

[19] M. A. Kochte, R. Baranowski, M. Sauer, B. Becker, and H.-J. Wun-
derlich, “Formal Verification of Secure Reconfigurable Scan Network
Infrastructure,” in Proc. IEEE European Test Symp. (ETS), May 2016,
pp. 1–6.

[20] P. Raiola, T. Paxian, and B. Becker, “Minimal Witnesses for Security
Weaknesses in Reconfigurable Scan Networks,” in Proc. IEEE Euro-
pean Test Symp. (ETS), May 2020, pp. 1–6.

[21] P. Raiola, M. A. Kochte, A. Atteya, L. R. Gomez, H.-J. Wunderlich,
B. Becker, and M. Sauer, “Detecting and Resolving Security Violations
in Reconfigurable Scan Networks,” in Proc. IEEE Int’l Symp. on On-
Line Testing And Robust System Design (IOLTS), Jul. 2018, pp. 91–96.

[22] P. Raiola, B. Thiemann, J. Burchard, A. Atteya, N. Lylina, H.-J.
Wunderlich, B. Becker, and M. Sauer, “On Secure Data Flow in
Reconfigurable Scan Networks,” in Proc. Conf. on Design, Automation
Test in Europe (DATE), Mar. 2019, pp. 1–6.

[23] M. A. Kochte, M. Sauer, L. R. Gomez, P. Raiola, B. Becker, and
H. Wunderlich, “Specification and Verification of Security in Recon-
figurable Scan Networks,” in Proc. IEEE European Test Symp. (ETS),
May 2017, pp. 1–6.

[24] Z. Hanna and V. M. Purri. (2013, Apr.) Verifying Security
Aspects of SoC Designs with Jasper App. [Online]. Available:
https://www.edn.com/

[25] K. Nakamura, K. Takagi, S. Kimura, and K. Watanabe, “Waiting false
path analysis of sequential logic circuits for performance optimization,”
in Proc. IEEE/ACM Int’l Conf. on Computer-Aided Design. Digest of
Technical Papers (ICCAD), Nov. 1998, pp. 392–395.

[26] A. Nahiyan, M. Sadi, R. Vittal, G. Contreras, D. Forte, and M. Tehra-

nipoor, “Hardware trojan detection through information flow security
verification,” in Proc. IEEE Int’l Test Conf. (ITC), Oct. 2017, pp. 1–10.

[27] M. Da Silva, M. Flottes, G. Di Natale, and B. Rouzeyre, “Preventing
scan attacks on secure circuits through scan chain encryption,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 38, no. 3, pp. 538–550, 2019.

[28] J. Da Rolt, G. Di Natale, M. Flottes, and B. Rouzeyre, “A smart test
controller for scan chains in secure circuits,” in Proc. IEEE Int’l On-
Line Testing Symp. (IOLTS), Jul. 2013, pp. 228–229.

[29] X. Li, W. Li, J. Ye, H. Li, and Y. Hu, “Scan chain based attacks and
countermeasures: A survey,” IEEE Access, vol. 7, pp. 85 055–85 065,
2019.

[30] H. Liu and V. D. Agrawal, “Securing IEEE 1687-2014 Standard
Instrumentation Access by LFSR Key,” in Proc. IEEE Asian Test Symp.
(ATS), Nov. 2015, pp. 91–96.

[31] B. Thiemann, L. Feiten, P. Raiola, B. Becker, and M. Sauer, “On
Integrating Lightweight Encryption in Reconfigurable Scan Networks,”
in Proc. IEEE European Test Symp. (ETS), May 2019, pp. 1–6.

[32] A. Zygmontowicz, J. Dworak, A. Crouch, and J. Potter, “Making it
harder to unlock an LSIB: Honeytraps and misdirection in a P1687
network,” in Proc. Conf. on Design, Automation Test in Europe (DATE),
Mar. 2014, pp. 1–6.

[33] S. Gupta, A. Crouch, J. Dworak, and D. Engels, “Increasing IJTAG
bandwidth and managing security through parallel locking-SIBs,” in
Proc. IEEE Int’l Test Conf. (ITC), Nov. 2017, pp. 1–10.

[34] R. Baranowski, M. A. Kochte, and H. Wunderlich, “Fine-grained
access management in reconfigurable scan networks,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 34, no. 6, pp. 937–946, June 2015.

[35] M. Portolan, V. Reynaud, P. Maistri, and R. Leveugle, “Dynamic
Authentication-Based Secure Access to Test Infrastructure,” in Proc.
IEEE European Test Symp. (ETS), May 2020, pp. 1–6.

[36] A. Das and N. A. Touba, “A Graph Theory Approach towards IJTAG
Security via Controlled Scan Chain Isolation,” in Proc. IEEE VLSI Test
Symp. (VTS), 2019, pp. 1–6.

[37] R. Baranowski, M. A. Kochte, and H.-J. Wunderlich, “Access Port
Protection for Reconfigurable Scan Networks,” Journal of Electronic
Testing: Theory and Applications (JETTA), vol. 30, no. 6, pp. 711–723,
2014.

[38] A. Atteya, M. A. Kochte, M. Sauer, P. Raiola, B. Becker, and H.-
J. Wunderlich, “Online Prevention of Security Violations in Reconfig-

14 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEM, VOL. YYY, NO. ZZZ, MONTH YEAR

urable Scan Networks,” in Proc. IEEE European Test Symp. (ETS), May
2018, pp. 1–6.

[39] A. Ibrahim and H. G. Kerkhoff, “Analysis and design of an on-chip
retargeting engine for IEEE 1687 networks,” in Proc. IEEE European
Test Symp. (ETS), May 2016, pp. 1–6.

[40] R. Cantoro, L. San Paolo, M. Sonza Reorda, and G. Squillero, “An
evolutionary technique for reducing the duration of reconfigurable scan
network test,” in Proc. IEEE Int’l Symp. on Design and Diagnostics of
Electronic Circuits Systems (DDECS), Apr. 2018, pp. 129–134.

[41] Z. Zhong, G. Li, Q. Yang, and K. Chakrabarty, “Access-Time Mini-
mization for the IJTAG Network Using Data Broadcast and Hardware
Parallelism,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), pp. 1–1, Apr. 2020.

[42] S. Warshall, “A Theorem on Boolean Matrices,” Journal of the ACM
(JACM), vol. 9, no. 1, pp. 11–12, Jan. 1962.

[43] M. Soeken, P. Raiola, B. Sterin, B. Becker, G. De Micheli, and M. Sauer,
Proc. 12th Int’l Haifa Verification Conference (HVC). Springer, 2016,
ch. SAT-Based Combinational and Sequential Dependency Computa-
tion, pp. 1–17.

[44] L. R. Ford and D. R. Fulkerson, “A Suggested Computation for
Maximal Multi-Commodity Network Flows,” Management Science,
vol. 5, pp. 97–101, 1958.

[45] A. Hall, S. Hippler, and M. Skutella, “Multicommodity Flows Over
Time: Efficient Algorithms and Complexity,” Theoretical Computer
Science, vol. 379, no. 3, pp. 387 – 404, 2007.

[46] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in Proc. Int’l Symp. on Circuits and
Systems (ISCAS), May 1989, pp. 1929–1934 vol.3.

[47] A. Tsertov, A. Jutman, S. Devadze, M. S. Reorda, E. Larsson, F. G.
Zadegan, R. Cantoro, M. Montazeri, and R. Krenz-Baath, “A suite of
IEEE 1687 benchmark networks,” in Proc. IEEE Int’l Test Conf. (ITC),
Nov. 2016, pp. 1–10.

Natalia Lylina (S’17) received the Master of Science
(M. Sc.) double degree in computer science from
Moscow Power Engineering Institute (National Re-
search University), Russian Federation and Technical
University of Ilmenau, Germany. Since 2017 she
is with the Institute of Computer Architecture and
Computer Engineering at the University of Stuttgart
as a PhD student. Her research interests include
dependable systems, test and diagnosis infrastructure
and reconfigurable scan networks.

Chih-Hao Wang (S’17-M’21) received his B.Sc. and
Ph.D. degree in electrical engineering from National
Sun Yat-sen University, Kaohsiung, Taiwan, in 2013
and 2020, respectively. During 2019 to 2020, he
was a visiting scholar of the Institute of Computer
Architecture and Computer Engineering at the Uni-
versity of Stuttgart, Germany. His research interests
include VLSI testability and reliability, concurrent
error detection, and reconfigurable scan networks.

Hans-Joachim Wunderlich (M’85–LF’20) received
the diploma degree in mathematics from the Univer-
sity of Freiburg, Germany, in 1981 and the Dr. rer.
nat. (Ph.D. degree) from the University of Karlsruhe
in 1986. Since 1991, he has been a full professor and
from 2002 to 2018 he was the director of the Institute
of Computer Architecture and Computer Engineering
at the University of Stuttgart, Germany.

He has been associated editor of various interna-
tional journals and program committee member of
a variety of IEEE conferences on design and test

of electronic systems. He has published 11 books and book chapters and
around 300 reviewed scientific papers in journals and conferences. His research
interests include test, reliability, fault tolerance and design automation of
microelectronic systems.

