
Efficient and Robust Resistive Open Defect
Detection Based on Unsupervised Deep

Learning

Liao, Yiwen; Najafi-Haghi, Zahra Paria; Wunderlich, Hans-Joachim;
Yang, Bin

Proceedings of the IEEE International Test Conference (ITC’22); Anaheim, CA, USA;

September 2022

doi: https://doi.org/10.1109/ITC50671.2022.00026

Abstract: Both process variations and defects in cells can lead to additional small delays within specifications,
while the latter must be identified because they may degrade soon into critical faults for circuits and result
in threat to reliability. Therefore, discriminating small delays due to defects from those due to variations has
drawn increasingly attention in the test community over the recent years. One promising research direction is to
formulate the task into binary classification by using delays under a few supply voltages as the only variables for
datadriven algorithms. However, many approaches often assume the availability of delay information from both
defective and nondefective cells or combinational circuits. This assumption implies a large time consumption for
simulation, and considerable costs for manufactured defective devices. To address the issues above, this paper
proposes to use unsupervised deep learning technique to train an recognizer on non-defective data only but
still can identify defects during inference. Specifically, we have proposed weighted autoencoder with a novel
data augmentation technique to solve this problem. Experiments show that our approach has comparable
detection capability as supervised learning schemes, while our method does not require any defective data.
Moreover, our approach is more robust to unbalanced datasets and to nontarget defects than other methods.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic
reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form
to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE
c©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

https://doi.org/10.1109/ITC50671.2022.00026

Efficient and Robust Resistive Open Defect
Detection Based on Unsupervised Deep Learning

Yiwen Liao∗, Zahra Paria Najafi-Haghi†, Hans-Joachim Wunderlich†, Bin Yang∗
∗Institute of Signal Processing and System Theory, University of Stuttgart, Germany

Email: {yiwen.liao,bin.yang}@iss.uni-stuttgart.de
†Institute of Computer Architecture and Computer Engineering, University of Stuttgart, Germany

Email: {zahra.najafi-haghi,wu}@informatik.uni-stuttgart.de

Abstract—Both process variations and defects in cells can lead
to additional small delays within specifications, while the latter
must be identified because they may degrade soon into critical
faults for circuits and result in threat to reliability. Therefore,
discriminating small delays due to defects from those due to
variations has drawn increasingly attention in the test community
over the recent years. One promising research direction is to
formulate the task into binary classification by using delays
under a few supply voltages as the only variables for data-
driven algorithms. However, many approaches often assume
the availability of delay information from both defective and
non-defective cells or combinational circuits. This assumption
implies a large time consumption for simulation, and considerable
costs for manufactured defective devices. To address the issues
above, this paper proposes to use unsupervised deep learning
techniques to train an recognizer on non-defective data only
but still can identify defects during inference. Specifically, we
have proposed to use a weighted autoencoder with a novel
data augmentation technique to solve this problem. Experiments
show that our approach has comparable detection capability as
supervised learning schemes, while our method does not require
any defective data. Moreover, in practice, our approach is more
robust to unbalanced datasets and to non-target defects than
other methods.

I. INTRODUCTION

It is well known that resistive open defects can degrade
during the early stage of the lifetime for circuits and the degra-
dation can subsequently lead to catastrophic and irrecoverable
faults for the devices or even the entire systems. Prior works
such as [1]–[5] have already shown that the timing behavior
of the circuits under varying supply voltages can be used as
an indicator for identifying potential resistive open defects,
because the cells with resistive open defects often result in
delays of output signals of a combinational circuit.

Despite the clearly observable delays under different supply
voltages for the circuits that contain resistive open defects,
reliable and efficient identification remains a challenging prob-
lem. One of the major reasons is that similar timing behavior
is also visible for the non-defective circuits due to process
variations, including random local variations for transistors
(e.g. length, width and gate oxide thickness) as stated in [6],
[7]. That is to say, even a non-defective circuit can pose
additional delays. Nevertheless, the delays within the given
specifications for production are still acceptable in order to
maintain as high yield as possible. As a result, in practice, it
is effortful to discriminate the non-defective circuits with small

extra delays due to process variations from the really defective
circuits due to resistive opens. Specifically, Fig. 1 presents
a few simulated delays respectively for non-defective (solid
orange line) and defective (dashed blue line) combinational
circuits. As can be clearly seen from Fig. 1, the resulting
curves (delays) of both cases overlap each other for different
voltages. Thereby, using a single supply voltage is infeasible to
effectively distinguish delays of defective circuits from those
due to process variations. Nonetheless, we can observe that the
timing behavior of defective circuits still slightly differs from
that of the non-defective circuits with respect to the slope and
curvature for the whole curve under a few supply voltages,
which is caused by the different mechanisms how process
variations and resistive open defects affect the delays [4].

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

0.0

0.1

0.2

0.3

overlapped delays

Vdd

D
el
ay

(n
or
m
al
iz
ed
)

Defective
Non-defective

Fig. 1: Exemplary timing behavior of combinational circuits.
The delays under varying voltages have overlapping parts
for both defective and non-defective circuits, which is the
main challenge for effectively identifying defects from defect-
free circuits. Note that the delays are normalized for better
visualization.

Based on this observation, some recent studies such as [4],
[8] have for the first time introduced statistical approaches
and machine learning to detect resistive open defects in
combinational circuits with variation in presence. In particular,
they recorded delays under a few different supply voltages
for both the defective and non-defective circuits. Next, the
detection problem was reformulated into a binary classification

Regular Paper

task. In other words, the delays of defective and non-defective
circuits were considered as two different classes. Subsequently,
in a supervised manner, a classifier was trained on the delays
from both classes. Finally, the trained classifier was expected
to be capable of discriminating the defective and non-defective
circuits during inference. Overall, these studies have shown the
effectiveness of machine learning in identifying resistive open
defect.

Indeed, the introduction of machine learning to resistive
open defect detection is an promising idea, especially for big
data and high demand on semiconductor supply. However,
the approaches based on supervised learning still face several
challenges. Firstly, the training requires the data from both
classes, i.e. the delays of both defective and non-defective
circuits. This corresponds to high time consumption in simu-
lation and large costs on manufacturing due to the defective
devices in real-world production. Secondly, it is well known
that machine learning algorithms is prone to data distribution
shift [9], [10]. This means that it is typically required to retrain
the algorithm on the newly acquired data from scratch, if
users encounter additional data or non-target defects. This is,
however, common in practice, because we on one hand cannot
collect all possible defect types; on the other hand, defects in
the real world cannot be easily and accurately modeled in
simulators. Finally, supervised classification algorithms often
require balanced datasets; i.e. the numbers of data affiliated
with different classes should be as similar as possible, other-
wise the training can be significantly biased by the majority
class. This requirement is sometimes contradictory to the real
world, where defective devices are typically of small volumes.

Based on the concerns above, it is natural to consider using
unsupervised methods to detect defects or anomalies in testing.
There are indeed some previous studies such as [11]–[18]
that used unsupervised anomaly detection algorithms in the
test field. For example, early methods [11], [12] used One-
Class Support Vector Machine (OCSVM) [19] to identify
abnormal wafer maps. [15] used a Recurrent Neural Network
(RNN) [20] to detect anomalies in in-field data by measuring
the residual between original signals and their predictions.
Some other studies leverage Autoencoder (AE) to identify
defects for register transfer level debugging [14], screening
customer returns [13] and system level tests [18].

Nevertheless, to the best extent of our knowledge, no prior
works have evaluated unsupervised deep learning to detect
resistive open defects. In particular, this paper proposes an
unsupervised framework to detect resistive open defects in
an efficient and effective way, which is based on a weighted
autoencoder with a novel data augmentation technique. One of
the most attractive benefits of our work is that no defective data
are necessary for training, while the trained algorithm is still
capable of identifying resistive open defects from the observed
timing behaviors. In a nutshell, the main contributions of this
paper are listed below:

• We have proposed an unsupervised framework to detect
resistive open defects in combinational circuits based on
deep learning with a novel weighted autoencoder;

• We control one parameter (supply voltages) and have to
observe one parameter Fmax only;

• We have designed a special data augmentation technique
to enhance the overall detection performance;

• Training requires no defective data and our method thus
spares time and costs for simulation and production;

• Our method has reliable and consistent detection perfor-
mance facing non-target defects in contrast to supervised
learning algorithms.

II. BACKGROUND

In this section, we first briefly review the most typical and
popular deep unsupervised learning algorithms for anomaly
detection. Secondly, we present the generation process of the
simulation data used in this research.

A. Unsupervised Anomaly Detection based on Deep Learning

Unsupervised anomaly techniques have become increas-
ingly popular in the deep learning community over the last
years [21]–[27]. This is due to the high demand of relia-
bility and robustness for modern systems, including medi-
cal imaging [28], autonomous systems [25]–[27], and visual
scenarios [23], [24]. Among these studies, we can observe
that many state-of-the-art approaches use autoencoders as a
backbone detection algorithm. The reason is intuitive: If an
AE is trained on the normal data only, it can capture the
most critical latent representations for the normal data. Note
that the terms normal and abnormal are more common in
the context of anomaly detection and deep learning. In this
paper, accordingly, defective data are considered as abnormal,
whereas non-defective data are considered as normal.

Generally speaking, an autoencoder is usually composed of
one encoder and one decoder. Both of them can be understood
as unknown nonlinear mappings to be approximated and
learned from the data. In the scenario of anomaly detection,
an autoencoder is trained on the normal data only so that the
intrinsic structure of the normal data is captured. That is to
say, the encoder learns to map normal data into some lower-
dimensional latent representations, while the decoder maps
them back to the original data space as reconstructions. Corre-
spondingly, the learning objective is to maximize the similarity
between the original inputs and their reconstructions. Thereby,
after training, the autoencoder is expected to be capable of
well reconstructing normal data only, while abnormal data
are expected to have significantly larger reconstruction errors.
Consequently, normal and abnormal data can be discriminated
from each other by comparing the reconstruction errors to a
predefined threshold.

Fig. 2 shows an intuitive example of detecting anomalies
using an AE. In this example, an AE is trained with images of
digit 2 only; i.e. the class of digit 2 is considered to be normal.
After training, the AE has learned the most representative
latent structure of digit 2 only and can therefore reconstruct
digit 2 well, meaning that the reconstruction errors for the
images of digit 2 are small. In contrast, the autoencoder has

Regular Paper

no information about anomalies and is thus incapable of recon-
structing abnormal samples such as digit 6, meaning that the
images of digit 6 can lead to large reconstruction errors. Based
on this intuition, our work also leverages autoencoder as the
backbone detection algorithm and two special modifications
are introduced in Section III.

Autoencoder

Autoencoder

trained on digit 2

small reconstruction errors

large reconstruction errors

in
pu

ts

re
co

ns
tr

uc
tio

ns
Fig. 2: An example to show how an autoencoder detects
anomalies. The autoencoder is trained on the images of digit
2 only. After training, digit 2 as normal class can be well
reconstructed (top), while digit 6 as abnormal class was poorly
reconstructed (bottom). Intuitively, reconstruction errors can
indicate the affiliation of new data.

B. Data Generation for Combinational Circuits
In this work, the modeling of defective and non-defective

circuits as well as data generation followed a recent prior
research [4]. Specifically, we connected an NAND cell to
a chain of λ inverters, where the delay of each individual
transistor was independent and followed a Gaussian distri-
bution as τ ∼ N (µτ , σ

2
τ). To generate different training

samples, two process variations, the channel length L and
gate width W were sampled from a Gaussian distribution by
a Monte Carlo simulation on SPICE [29]. These simulated
data were considered as non-defective data for training and
evaluating our algorithms. It should be noted that in order to
confirm the detection capability of our method, we still need
defective data in this work to justify if the trained algorithm
can successfully identify them. Thereby, resistive opens of
different sizes were injected to the embedded NAND cells.
Subsequently, similar Monte Carlo simulation was performed
to obtain different samples for evaluation. The modeling of
circuits and data generation are not the main focus of this paper
and we encourage interested readers to refer to the previous
papers [4] for more details.

III. METHODOLOGY

This section introduces our methodology to perform unsu-
pervised open defect identification based on deep learning.
Firstly, we present the overall workflow of the resistive open
defect identification as an overview. Next, in order to meet the
detection requirements, we propose a weighted autoencoder
and a special data augmentation technique for this task.
Finally, detailed implementations for our method are given
for reproducibility.

A. Workflow

The entire workflow of the unsupervised open defect iden-
tification is shown in Fig. 3. As in the previous work [4],
we feed the process parameters to the simulator (e.g. SPICE)
to obtain the simulation results, i.e. the delays under varying
voltages for circuits with random process variations. It should
be emphasized that we only simulate the non-defective circuits
and do not require any defective data in our case. This can save
considerable time for simulation and decrease costs in practice,
which is one of our major contributions. Subsequently, the
simulated results are used to train our method in order to
obtain a trained AE with weighted latent space (wAE). During
deployment or inference, given some new measurements (de-
lays) for a circuit, we can directly feed them to the trained AE
and obtain the corresponding reconstruction errors. Based on
a predefined threshold, defects can be identified. Although this
paper deals with the simulation data, the overall workflow is
also effective for real-world use cases by training our method
using measurements from manufactured devices.

Our method

Simulation results

Simulator

Process parameters

Identification

Trained wAE

New measurements

Training Deployment

Fig. 3: Workflow for the unsupervised resistive open circuit
defect identification. Simulation results for non-defective cir-
cuits only are necessary for training. Once deployed, we can
feed new measurements to the wAE for identification.

B. Autoencoder with Weighted Latent Space

As mentioned before, autoencoders have been widely
and successfully used for unsupervised and semi-supervised
anomaly detection in many applications. Naturally, in this
work, we also leverage autoencoder as the backbone algorithm.
Different from a vanilla autoencoder, a learnable weighting
vector w is applied to the latent space of the autoencoder in
order to automatically focus on the most critical and important
latent features for anomaly detection, as shown in Fig. 4, and
we call this model a weighted Autoencoder (wAE).

Formally, let the delays under varying voltages of
all simulated instances be denoted as a matrix X =
[x1,x2, . . . ,xN]T ∈ RN×D, where N is the total number of
simulated instances and D is the number of varying voltages.
The encoder is typically a nonlinear mapping fenc(·;Θenc)
parameterized by Θenc and the latent representation is

z = fenc(x;Θenc), (1)

Regular Paper

x z

w

z̃ x̂

fenc(·) fdec(·)

Fig. 4: The structure of an autoencoder with weighted la-
tent space. x (delays) is mapped to a lower-dimensional
representation z under the nonlinear mapping fenc(·). Next,
a weighting vector w is generated and is element-wisely
multiplied to z. Finally, the decoder fdec(·) maps the weighted
latent representation z̃ back to the original data space as the
reconstruction x̂.

where z ∈ RL is a latent representation for x.
To automatically focus more on the most critical latent

dimensions for better detection capability, we apply an FM-
module [24] on z, where the FM-module provides a batch-
wise attention on the inputs. A similar design has shown its
effectiveness in a two-stage semi-supervised anomaly detec-
tion algorithm proposed in [30]. However, we directly integrate
the FM-module to the latent space of the autoencoder in order
to obtain an end-to-end solution, which is more efficient and
easier to use in practice. The effectiveness of this design
has been demonstrated on image data [31] and we have
for the first time introduce it to unsupervised circuit defect
identification. In particular, the FM-module can generate a
batch-wise weighting vector w as

w = softmax
(1

B

B∑
i=1

(
W2 tanh(W1zi + b1) + b2

))
, (2)

where W1 ∈ RL′×L, b1 ∈ RL′
, W2 ∈ RL×L′

and b2 ∈ RL

are trainable parameters. Based on this batch-wise weighting
vector, the weighted latent representation is defined as

z̃ = w ⊙ z, (3)

which can be interpreted that a batch-wise attention is applied
to the latent representations during training.

The decoder is a another nonlinear mapping fdec(·;Θdec)
parameterized by Θdec and the reconstruction is

x̂ = fdec(z̃;Θdec). (4)

As in other autoencoder-based anomaly detection algorithms,
the learning objective is to maximize the similarity between
the input data and their reconstructions. The differentiable
similarity measure can be specifically defined by users or
practitioners. In this paper, to demonstrate the effectiveness of
our framework, we minimize the mean squared error (MSE)
loss as our learning objective:

argmin
Θ

1

N

N∑
i=1

||xi − x̂i||22, (5)

where Θ = {Θenc,Θdec,W1,W2, b1, b2} are trainable param-
eters of the entire model.

C. Defect Detection

The detection for defects is intuitive: Defective timing
behavior is expected to have larger reconstruction errors than
those of a non-defective timing behavior, since the wAE
is trained on fully non-defective data. Specifically, after the
deployment, given a new sample xt, the reconstruction error
is calculated as εt = ||xt−fdec(w⊙fenc(xt))||22. Accordingly,
the detection rule is defined as

xt ∈
{

non-defective, if εt < ε
defective, otherwise (6)

where ε is a predefined threshold by users or practitioners. This
threshold is typically defined based on a maximally acceptable
false positive rate1 in order to maintain a high yield.

D. Data Augmentation

As introduced in Section II, the simulation of circuits is
time consuming, which can take hours to days for circuits with
different sizes. Therefore, we often have a limited number of
non-defective instances in practice to spare simulation time,
although we can theoretically generate as many instances as
we need on simulators. From a practical view, manufactured
prototype devices are limited as well, and measurements can
be costly. This also leads to limited available data, which
becomes a major challenge for DL-based approaches because
DL often requires large amounts of data.

In order to tackle this problem, we propose a data aug-
mentation method specifically designed for the timing be-
havior data. More precisely, given a training sample x =
[x1, x2, . . . , xD]T ∈ RD, where each element denotes the
small measured or simulated delay for a given voltage as
introduced before, we randomly generate a mask vector m ∈
{0, 1}D with the constraint |m| = K; i.e. m is a D-
dimensional vector consisting of K ones and D − K zeros.
Then, an augmented sample xa with respective to the original
sample x is defined as

xa = x⊙m. (7)

Exemplary augmented data with K = 2, 3, 4 are illustrated
in Fig. 5. In this sense, we can generate maximally

(
D
K

)
samples for a given K from one single sample. Literally, the
augmented data can be interpreted as the samples in which
D −K simulated delays or measurements are missing, since
these D −K entries are zeros. Thereby, the augmented data
forces the wAE to focus on the non-zero delays and reconstruct
these delays from the same latent space. In parallel, the
wAE tries to recover the missing delays from the neighboring
delays as well. This augmentation makes sense because we
cannot guarantee each measurement is valid in a real-world
test scenario. In should be additionally emphasized that the
augmented data xa must be reconstructed as x as similar
as possible, instead of being reconstructed to xa. This is to
avoid the case that wAE implicitly learns to reconstruct the

1In this case, non-defective data are denoted as negative, while defective
data are denoted as positive.

Regular Paper

0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

D
el
ay

Original delays

0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

Augmentation with K = 2

0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

Vdd

D
el
ay

Augmentation with K = 3

0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

Vdd

Augmentation with K = 4

Fig. 5: Exemplary augmented data. The augmentation is per-
formed by randomly setting K delays to zeros as missing
measurements. During training, our algorithm is forced to
recover these missing delays as well. Note that the delays are
normalized for better visualization.

missing delays in xa, otherwise wAE would be too powerful
so that both defective and non-defective data can be well
reconstructed and lose the detection capability.

E. Implementations

In this work, the simulation data are not of extremely high
dimensionality, so the implementation of our method was
based on a few simple fully connected layers2. Specifically,
as shown in Fig. 6, fenc(·) consisted of three fully connected
layers with 64, 32 and 16 neurons, respectively. After each
dense layer, a Leaky-ReLU [32] activation with a rate of 0.02
was used. The decoder consisted of two hidden dense layers
with 32 and 64 neurons, respectively, and one output layer.
Same activation layers were used after each hidden layer in
the decoder as well. The latent weighting block consisted of
two dense layers with 8 and 16 neurons, respectively. After the
first dense layer in the weighting block, tanh was used as the
activation function as the original paper. Specifically, a detailed
architecture can be found in TABLE I, where B denotes the
minibatch size during training. In total, our implementation
had 7156 trainable parameters, corresponding to about 28
Kibibyte only. It should be noted that our method is generic
and thus not restricted to the aforementioned architecture, and
in this work, the implementation aims to justify the effective-
ness of our idea on the simulated combinational circuits.

IV. EXPERIMENTS

This section evaluates the proposed framework for unsuper-
vised resistive open circuit defect identification. The conducted
experiments aim to answer the following four questions:

i) Can our unsupervised method achieve comparable per-
formance as supervised approaches?

ii) Can our method outperform supervised methods when
limited defect data only are available?

iii) Can our method provide robust identification performance
for novel (unknown) defect types?

2Fully connected layer is also known as dense layer and we use both terms
equally through out this paper.

x

z

x̂

z̃

FM-module w

⊙fdec fdec

Fig. 6: The architecture of our method. Both the encoder and
decoder are composed of multiple dense layers with corre-
sponding activations (rectangular blocks in dashed frames).
The FM-module is applied to the latent space to automatically
weight different latent dimensions to further improve the
capability of detecting defects.

TABLE I: Architecture of the implementation.

Layer type Output shape # Parameters

Encoder

Input layer (B, 12) 0
Dense layer (B, 64) 832
Leaky-ReLU (B, 64) 0
Dense layer (B, 32) 2080
Leaky-ReLU (B, 32) 0
Dense layer (B, 16) 528

Weighting FM (B, 16) 280

Decoder

Dense layer (B, 32) 544
Leaky-ReLU (B, 32) 0
Dense layer (B, 64) 2112
Leaky-ReLU (B, 64) 0
Dense layer (B, 12) 780

iv) How do the novel augmentation and weighting in latent
space facilitate the overall identification ability?

A. Settings

In an unsupervised setup, non-defective data only were used
for training our method and no defective data were accessible
during training. In total, 802 defect-free training samples were
generated and we augmented the data by randomly setting 2
or 3 input features (delays) to zeros and the training dataset
was thus increased to 4010. Note that 5% of the training data
were used for validation. The test set consisted of 193 non-
defective and 205 defective samples. The Area Under Receiver
Operating Characteristic Curve (AUC) [33] was used as the
metric to measure the defect identification performance. AUC
is bounded in the range [0, 1] and a higher AUC indicates
better anomaly detection performance.

1) Supervised Reference Methods: As supervised refer-
ence methods, we considered three popular algorithms, i.e.
k-Nearest Neighbor (kNN) [34], Support Vector Machine
(SVM) [35] and Random Forest (RF) [36] from literature be-

Regular Paper

cause they are popular supervised classifiers with simple train-
ing pipelines. Grid search was performed for the aforemen-
tioned reference methods. In particular, for RF, we selected the
number of estimators from {5, 10, 25, 50, 100} and depth from
{5, 10, 20, 50, 100}; for SVM, we used radius basis function
as the kernel and selected C from {0.01, 0.1, 1, 10, 20, 50};
for kNN, we used Euclidean distance as metric and selected
the number of neighbors from {5, 10, 15, 20, 25, 50, 100}.

2) Unsupervised Reference Methods: In order to justify the
effectiveness of the proposed unsupervised method, we se-
lected three unsupervsied anomaly detection algorithms from
literature for comparison, namely One-Class Support Vector
Machine (OCSVM) [19], Isolation Forest [37] and Local
Outlier Factor (LOF) [38]. For each reference method, we
did a grid search on the key hyperparameters as follows.
For OCSVM, we chose the optimal hyperparameters combi-
nations γ and ν from {0.001, 0.01, 0.1, 0.5, 1, 10., 100, 500}
and {0.01, 0.1, 0.5, 0.75}, respectively; for Isolation For-
est, the optimal number of estimators was determined
from the set {5, 10, 15, 25, 50, 75, 100, 150, 200, 250, 500}; for
LOF, we searched different numbers of neighbors from
{5, 10, 25, 50, 75, 100, 150, 200, 250, 500}.

3) Hyperparameters: Our method was implemented using
TensorFlow 2 [39] in Python. Both the supervised and unsu-
pervised reference methods were implemented using the scikit-
learn package [40] in Python. The optimizer for training
the proposed wAE was Adam [41] with a learning rate of
0.0001. Batch size was 512 for all experiments. We stopped
training when validation losses converged. The input data were
preprocessed by standard-scaling for an efficient training.

B. Comparison with Unsupervised Methods

TABLE II: Comparison with unsupervised methods.

OCSVM Isolation Forest LOF Ours

AUC 0.895 (± 0.000) 0.880 (± 0.008) 0.889 (± 0.000) 0.942 (± 0.005)

In order to investigate the superiority of the proposed
wAE, we compared wAE to three other popular unsupervised
anomaly detection algorithms introduced above. TABLE II
presents the detection performance in terms of AUC for
all considered methods. As can be easily seen, our method
significantly outperformed the other three data-driven unsuper-
vised anomaly detection algorithms for resistive open defect
identification with about 5.3% ∼ 7.0% higher AUC, which
confirms the effectiveness of our method for detecting defects.

C. Comparison with Supervised Methods

TABLE III: Comparison with supervised methods.

kNN SVM Random Forest Ours

AUC 0.948 (± 0.000) 0.947 (± 0.000) 0.949 (± 0.002) 0.942 (± 0.005)

Unsupervised anomaly detection is typically more challeng-
ing than anomaly detection in supervised manner due to the
lack of information of missing classes. Thereby, the binary

0.4 0.5 0.6 0.7 0.8 0.9
-1

0

1

2

D
el
ay

Input delays
Reconstructed delays

0.4 0.5 0.6 0.7 0.8 0.9
-1

0

1

2
Input delays

Reconstructed delays

0.4 0.5 0.6 0.7 0.8 0.9

-1

0

1

2

Vdd

D
el
ay

Input delays
Reconstructed delays

0.4 0.5 0.6 0.7 0.8 0.9

-1

0

1

2

Vdd

Input delays
Reconstructed delays

Fig. 7: The delays and reconstructions for non-defective data.
The delays were well reconstructed with invisible differences.

0.4 0.5 0.6 0.7 0.8 0.9

-1

0

1

2
D
el
ay

Input delays
Reconstructed delays

0.4 0.5 0.6 0.7 0.8 0.9

-1

0

1

2

Input delays
Reconstructed delays

0.4 0.5 0.6 0.7 0.8 0.9

-1

0

1

2

Vdd

D
el
ay

Input delays
Reconstructed delays

0.4 0.5 0.6 0.7 0.8 0.9

-1

0

1

2

Vdd

Input delays
Reconstructed delays

Fig. 8: The delays and reconstructions for defective data. The
delays were poorly reconstructed with notable differences.

classification performance of supervised learning algorithms
can be considered as an upper bound for the anomaly detec-
tion performance of unsupervised approaches. Nevertheless,
it is still interesting to justify whether our method can have
comparable performance as that of the supervised approaches.
TABLE III shows the resulting AUCs on the test set for our
method and other three supervised reference methods. All
three reference methods outperformed our method without
surprise. Nevertheless, we can still clearly observe that the
performance difference is minor; i.e. our method achieved
more than 99.3% anomaly detection ability of the reference
supervised methods in terms of AUC. This indicates that
our method already captured the key discriminative latent
features for the non-defective data, although we did not

Regular Paper

0% 20% 40% 60% 80% 100%
0.75

0.80

0.85

0.90

0.95

Proportion of defect data

A
U
C kNN

Random Forest
SVM
Ours

Fig. 9: The comparison of the defect identification ability
under different amounts of defect data during training. Our
method (red solid line) was independent of defect data and had
consistent AUC. On the contrary, supervised methods had poor
performance when limited defect data only were available.

use any label information, meaning that using our method
only requires a few non-defective simulation samples but can
provide comparable defect identification performance as using
both defective and non-defective simulation samples. Clearly,
using our method is valuable for users and practitioners to
spare much time and cost.

Furthermore, Fig. 7 and Fig. 8 demonstrates some exem-
plary defective and non-defective delays (blue dashed line)
and their reconstructions (orange solid line). In Fig. 7, the
reconstructed delays well match the original input delays,
indicating small reconstruction errors. On the contrary, in
Fig. 8, there is obvious discrepancy between the original
delays and their reconstructions. As introduced before, no
defective data were available during training, so delays of
defective data cannot be well reconstructed. As a result, by
comparing the reconstruction errors of a new test sample (i.e.
delays under various voltages), we can justify whether the test
sample is defective.

D. Case Study I: Lack of Defect Simulations

In this case study, we compared our method to the other
supervised reference methods when only limited defective data
were available during training. This is a typical and important
scenario in practice, since it is time consuming to generate
many enough defective instances or difficult to collect real
devices with defects, which is a threat to yield. Thereby,
the defect identification ability under different amounts
of available defect data is a critical criterion for anomaly
detectors. Importantly, we should emphasize that our method
did not use any defect data and different amounts of the defect
data were used for the supervised reference methods only.
Specifically, we considered 11 cases; i.e. the ratio between
defective and non-defective data was defined as ρ with ρ ∈
{1%, 2%, 5%, 10%, 15%, 20%, 25%, 50%, 60%, 75%, 100%}.
That is to say, for example, ρ = 20% indicates that the
number of defective samples is only 20% of that for the
non-defective data. Fig. 9 presents the overall AUCs versus
different proportions of defective data. Since our method
did not require any defective data, it resulted in a consistent
performance (red solid line) of 0.942, while the performance

kNN SVM Random Forest Ours
0.5

0.6

0.7

0.8

0.9
12.3% ↓

26.0% ↓ 21.4% ↓

A
U
C

Same defect type New defect type

Fig. 10: The performance comparison for detecting non-target
defects. Blue bars demonstrate the case where same defect
type was encountered during test, while orange bars shows
the performance for non-target defects during test. Notable
performance drops can be easily observed by the supervised
methods, while our method had consistent AUCs due to the
unsupervised nature.

of the reference methods was affected by the amounts of
defective data available for training as expected. It can be
observed that references methods required at least about
20% defective data (i.e. #defect : #defect-free = 1 : 5)
to have a comparable AUC to that of our method. This
implies that using our unsupervised defect identification
methods can spare at least about 16.7% simulation time
in practice. Moreover, for different proportion of defective
data, the hyperparameters of each individual supervised
learning algorithms must be separately fine-tuned. Therefore,
the actual time consumption for supervised algorithms is
significantly larger than the results shown above. It should be
additionally noted that we only focus on the training time for
simplicity. However, in practice, using our method means that
much time of simulation and costs for real defective devices
can be significantly spared as well.

E. Case Study II: Non-Target Defects

Machine-learning-based approaches often suffer from poor
performance in presence of test data distribution shifts [9],
[10]. This phenomenon is notably severe in anomaly detection
because we cannot cover all possible or potential defect types
during simulation and there can be non-target defects in the
real world. In this case study, we designed two experiments.
First, for the supervised methods, they were trained and
tested on the defective and non-defective data from the same
distribution (i.e. exactly the dataset introduced above); i.e they
encounter same defect types during both training and test.
Second, for the supervised methods, they were trained on a
dataset, in which defect type was easier to detect, while tested
on a harder test set; i.e. they encounter different defect types
during training and test. The resulting AUCs are shown in
Fig. 10. The blue bars present the first experiment (i.e. same
defect type for both training and test) and this results are
exactly the same results in TABLE III. The orange bars show
the second case (i.e. different defect types during training and
test). We clearly see that the AUCs for all three supervised
methods significantly dropped by up to 26%, meaning that
these methods are not robust and cannot deal with non-

Regular Paper

target defects in practice. On the contrary, the training of our
method was independent of defective data and it can thus have
consistent AUCs for both cases. This robustness is valuable in
practice because it means that our method does not require
to collect all different defect types (which is infeasible in
the real world) but can still achieve satisfied identification
performance. More importantly, less modeling of the defect
data also means notably less simulation time and less costs on
defective devices.

F. Ablation Study

TABLE IV: Ablation study.

without Augmentation with Augmentation
without w 0.890 (± 0.006) 0.927 (± 0.005)

with w 0.913 (± 0.004) 0.942 (± 0.005)

As presented in Section III, the conspicuous design of
our methodology is twofold in comparison with a vanilla
autoencoder for detecting defects: i) We applied a batch-
wise weighting block in latent space; ii) The simulated data
were augmented by using random masks. In order to justify
whether both designs contribute to the detection performance
in comparison with a vanilla autoencoder, we conducted the
ablation study. Note that ablation study is a common paradigm
in Artificial Intelligence (AI) to identify the contribution of
individual component to the entire AI system. In particular,
we considered four cases: i) our method without data augmen-
tation and without weighting, which can be understood as a
vanilla autoencoder; ii) our method without data augmentation;
iii) our method without weighting in latent space; iv) our
method, i.e. wAE with data augmentation. TABLE IV shows
the overall results. A vanilla autoencoder only achieved an
AUC of around 0.890. Nevertheless, this anomaly detection
performance is already comparable to supervised learning
algorithms if only a few defective data are available. More
importantly, we can observe that using either augmentation or
weighting can moderately improve the identification capability
in comparison with a vanilla autoencoder, respectively. For ex-
ample, the novel augmentation led to about 4.2% improvement
in terms of AUC for a vanilla autoencoder. In our case, the
proposed novel data augmentation played a more critical role
than weighting in latent space. One feasible reason might be
that the original dataset was of small scale, i.e. having less than
1000 training samples, which made the training difficult. As
expected, by using both the novel data augmentation and the
batch-wise weighting mechanism in latent space, the overall
detection capability was significantly improved.

V. CONCLUSION

In this paper, we present an unsupervised resistive open
defect identification framework by introducing a novel data
augmentation and an automatic weighting mechanism in latent
space for autoencoders. The proposed method has shown
comparable identification performance in comparison with
supervised approaches. Our method requires no defective

data and thus has consistent performance regardless of how
many defective data are available in practice. Furthermore,
the proposed method has shown robust performance w.r.t non-
target defects, which is not possible for supervised approaches.
Finally, ablation studies have shown the necessity of integrat-
ing both data augmentation and weighting to obtain a superior
defect detection capability. Future work may include further
evaluating the proposed method for real-world data measured
from manufactured devices. In addition, the entire method is
generic and can be applied to the test of different levels.

ACKNOWLEDGMENT

This research was supported by Advantest as part of the
Graduate School “Intelligent Methods for Test and Reliabil-
ity” (GS-IMTR) at the University of Stuttgart. This work is
partially supported by the project grant WU 245/19-1 (FAST)
funded by the German Research Foundation (DFG).

REFERENCES

[1] U. Ingelsson and B. M. Al-Hashimi, “Investigation into voltage and
process variation-aware manufacturing test,” in 2011 IEEE International
Test Conference, 2011, pp. 1–10.

[2] S. Kundu, P. Engelke, I. Polian, and B. Becker, “On detection of resistive
bridging defects by low-temperature and low-voltage testing,” in 14th
Asian Test Symposium (ATS’05), 2005, pp. 266–271.

[3] S. Deutsch and K. Chakrabarty, “Contactless pre-bond tsv test and
diagnosis using ring oscillators and multiple voltage levels,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 33, no. 5, pp. 774–785, 2014.

[4] Z. P. Najafi-Haghi and H.-J. Wunderlich, “Resistive open defect classi-
fication of embedded cells under variations,” in 2021 IEEE 22nd Latin
American Test Symposium (LATS), 2021, pp. 1–6.

[5] A. Karel, F. Azais, M. Comte, J.-M. Galliere, M. Renovell, and K. Singh,
“Detection of resistive open and short defects in fdsoi under delay-based
test: Optimal vdd and body biasing conditions,” in 2017 22nd IEEE
European Test Symposium (ETS), 2017, pp. 1–2.

[6] K. J. Kuhn, M. D. Giles, D. Becher, P. Kolar, A. Kornfeld, R. Kotl-
yar, S. T. Ma, A. Maheshwari, and S. Mudanai, “Process technology
variation,” IEEE Transactions on Electron Devices, vol. 58, no. 8, pp.
2197–2208, 2011.

[7] V. Champac and J. G. Gervacio, Timing Performance of Nanometer
Digital Circuits Under Process Variations. Springer, 2018.

[8] Z. P. Najafi-Haghi, M. Hashemipour-Nazari, and H.-J. Wunderlich,
“Variation-aware defect characterization at cell level,” in 2020 IEEE
European Test Symposium (ETS), 2020, pp. 1–6.

[9] J. Quiñonero-Candela, M. Sugiyama, A. Schwaighofer, and N. D.
Lawrence, Dataset shift in machine learning. Mit Press, 2008.

[10] M. Sugiyama and M. Kawanabe, Machine learning in non-stationary
environments: Introduction to covariate shift adaptation. MIT press,
2012.

[11] J. Tikkanen, N. Sumikawa, L.-C. Wang, L. Winemberg, and M. S.
Abadir, “Statistical outlier screening for latent defects,” in 2013 IEEE
International Reliability Physics Symposium (IRPS), 2013, pp. 2E.1.1–
2E.1.4.

[12] N. Sumikawa, L.-C. Wang, and M. S. Abadir, “A pattern mining frame-
work for inter-wafer abnormality analysis,” in 2013 IEEE International
Test Conference (ITC), 2013, pp. 1–10.

[13] H. Hu, N. Nguyen, C. He, and P. Li, “Advanced outlier detection using
unsupervised learning for screening potential customer returns,” in 2020
IEEE International Test Conference (ITC), 2020, pp. 1–10.

[14] C.-H. Shen, A. C.-W. Liang, C. C.-H. Hsu, and C. H.-P. Wen, “Fae:
Autoencoder-based failure binning of rtl designs for verification and
debugging,” in 2019 IEEE International Test Conference (ITC), 2019,
pp. 1–10.

[15] F. Su and P. Goteti, “Improving analog functional safety using data-
driven anomaly detection,” in 2018 IEEE International Test Conference
(ITC), 2018, pp. 1–10.

Regular Paper

[16] N. Sumikawa, M. Nero, and L.-C. Wang, “Kernel based clustering for
quality improvement and excursion detection,” in 2017 IEEE Interna-
tional Test Conference (ITC), 2017, pp. 1–10.

[17] Y. J. Zeng, L.-C. Wang, C. J. Shan, and N. Sumikawa, “Learning a
wafer feature with one training sample,” in 2020 IEEE International
Test Conference (ITC), 2020, pp. 1–10.

[18] C. Liu and J. Ou, “Smart sampling for efficient system level test: A
robust machine learning approach,” in 2021 IEEE International Test
Conference (ITC), 2021, pp. 53–62.

[19] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distribution,”
Neural computation, vol. 13, no. 7, pp. 1443–1471, 2001.

[20] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[21] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A
survey,” arXiv preprint arXiv:1901.03407, 2019.

[22] D. Gong, L. Liu, V. Le, B. Saha, M. R. Mansour, S. Venkatesh, and
A. v. d. Hengel, “Memorizing normality to detect anomaly: Memory-
augmented deep autoencoder for unsupervised anomaly detection,” in
The IEEE/CVF International Conference on Computer Vision, 2019, pp.
1705–1714.

[23] P. Schlachter, Y. Liao, and B. Yang, “Deep one-class classification using
intra-class splitting,” in 2019 IEEE Data Science Workshop (DSW).
IEEE, 2019, pp. 100–104.

[24] Y. Liao, A. Bartler, and B. Yang, “Anomaly detection based on selec-
tion and weighting in latent space,” in 2021 IEEE 17th International
Conference on Automation Science and Engineering (CASE), 2021, pp.
409–415.

[25] Y. Liao, E. Hashemi, T. Wang, and B. Yang, “A learning-aided generic
framework for fault detection and recovery of inertial sensors in au-
tomated driving systems,” IEEE Systems Journal, vol. 15, no. 2, pp.
3001–3011, 2020.

[26] X. Cui, J. Cao, T. Wang, and X. Lai, “Robust randomized autoencoder
and correntropy criterion-based one-class classification,” IEEE Trans-
actions on Circuits and Systems II: Express Briefs, vol. 68, no. 4, pp.
1517–1521, 2020.

[27] A. B. Chowdhury, B. Tan, S. Garg, and R. Karri, “Robust deep learning
for ic test problems,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 41, no. 1, pp. 183–195, 2022.

[28] T. Fernando, H. Gammulle, S. Denman, S. Sridharan, and C. Fookes,

“Deep learning for medical anomaly detection–a survey,” ACM Com-
puting Surveys (CSUR), vol. 54, no. 7, pp. 1–37, 2021.

[29] L. W. Nagel and D. Pederson, “Spice (simulation program with inte-
grated circuit emphasis),” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/ERL M382, Apr 1973. [Online]. Available:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html

[30] Y. Liao, R. Latty, and B. Yang, “Feature selection using batch-wise
attenuation and feature mask normalization,” in 2021 International Joint
Conference on Neural Networks (IJCNN), 2021, pp. 1–9.

[31] Y. Liao and B. Yang, “To generalize or not to generalize: Towards
autoencoders in one-class classification,” in 2022 International Joint
Conference on Neural Networks (IJCNN), 2022.

[32] A. L. Maas, A. Y. Hannun, A. Y. Ng et al., “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. icml, vol. 30, no. 1.
Citeseer, 2013, p. 3.

[33] N. Goix, “How to evaluate the quality of unsupervised anomaly detection
algorithms?” arXiv preprint arXiv:1607.01152, 2016.

[34] N. S. Altman, “An introduction to kernel and nearest-neighbor non-
parametric regression,” The American Statistician, vol. 46, no. 3, pp.
175–185, 1992.

[35] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[36] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[37] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 Eighth
IEEE International Conference on Data Mining, 2008, pp. 413–422.

[38] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying
density-based local outliers,” in Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, 2000, pp. 93–104.

[39] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “{TensorFlow}: A system
for {Large-Scale} machine learning,” in 12th USENIX symposium on
operating systems design and implementation (OSDI 16), 2016, pp. 265–
283.

[40] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

Regular Paper

