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Abstract—Reconfigurable Scan Networks (RSNs) access em-
bedded instruments throughout the whole system lifecycle. To
support dependability management by means of RSNs, RSNs
themselves must be continuously tested.

The paper-at-hand presents the first online periodic test
method for RSNs. The developed algorithm generates a short
sequence of test patterns, which tests all parts of an RSN.
The generated sequence is uploaded on-chip and is applied
periodically to avoid fault accumulation in RSNs. The overall
test application time is minimized to comply with the timing re-
quirements of the well-known safety standards. The experimental
results show that the method is efficient for all considered RSN
designs and is scalable with the increasing size and complexity
of RSNs.
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I. INTRODUCTION

Modern digital systems integrate an extensive number of
instruments, which enhance the system dependability. Recon-
figurable Scan Networks (RSNs), as standardized by IEEE Std.
1149.1 [1] and IEEE Std. 1687 [2], provide an efficient access
to the instruments. In Fig. 1, each instrument is accessed in
parallel through a scan segment. The values in the control
segments cs0, cs1, and cs2 determine a dynamically activated
Active Scan Path through the scan segments, as shown with
a yellow color. In the provided example, the activated path
traverses the control registers, as well as the scan segments
s1 and s3. For better readability, only the selected instruments
are shown in Fig. 1.
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Fig. 1. An example of a Reconfigurable Scan Network

Nowadays RSNs are increasingly used in-field to support
silicon lifecycle management. The data collected by RSNs
from sensors, monitors, and Built-In Self-Test (BIST) registers
is continously analyzed for ensuring dependability, safety and
even security [3–7]. Runtime-adaptive instruments, such as
adaptive voltage and frequency scaling (AVFS), error rate
adoption or temperature control blocks, can be accessed by
RSNs, and RSNs can be used to control online BIST registers
[8]. Reliability threats, such as faults or abnormal changes in
the system behavior [3–5, 7] can be fetched by RSNs from
monitors and sensors. In the case of performance degradation,
RSN-based fault-handling mechanisms can be used to adjust

the operating conditions and thereby to prolong the useful
lifetime of a device [6].

The applications above depend on the correct operation
of RSNs. Since RSNs occupy a significant fraction of the
chip area, the probability of a fault therein is not negligi-
ble. Conventional methods [9–13] test RSNs once, after the
manufacturing, or perform online concurrent test of RSNs
[14]. To avoid fault accumulation concurrent test has to be
complemented by periodic test, since components not used
for some time may be still subject to aging [15]. The need for
periodic test is especially strong in safety critical applications
like automotive [16, 17].

The paper-at-hand presents the first online periodic test
method for RSNs. The goal of the presented method is to
access all primitives of an RSN with a minimized number of
selected activated scan paths. A short scheduled set of access
sequences is generated based on the selected scan paths, stored
on-chip and applied to test an RSN online. The overall test
application time is minimized to comply with the functional
safety requirements.

The remainder of this paper is organized as follows. First,
in Section II, background information about RSNs and the
existing test methods is provided. Section III provides a top-
down overview of the presented test generation method. In
Section IV, a scheduling approach is provided, which activates
those ASPs which to minimize the overall test application
time. In Section V, it is shown how to generate a minimized
set of active scan paths, which cover all the components of
an RSN. The experimental results in Section VI show the
efficiency of the presented approach and its applicability for
a wide set of benchmarks. Section VII concludes the paper.

II. BACKGROUND

This section presents background information about RSNs
and the considered fault models. The latter part of the section
summarizes the existing methods to test RSNs and highlights
their limitations.

A. Reconfigurable Scan Networks

Each scan segment (s1 to s5 in Fig. 1) of an RSN consists
of one or multiple scan cells, and each scan cell includes a
shift flip-flop and an optional shadow flip-flop.

Control scan segments (cs0 to cs2) issue control signal
for control primitives, such as multiplexers (m0 to m2) and
Segment Insertion Bits (SIBs). Depending on the value of
the address control signal, a scan multiplexer includes one
of the incoming branches into an activated path. A SIB either
includes or excludes an underlying segment into a path. Such
a path, which can be activated by valid assignments to address



control signals through an RSN, and which traverses the RSN
from a primary scan-input (SI) to a primary scan output
(SO) is further referred to as an Active Scan Path. The
scan primitives include the scan segments and the control
primitives.

A scan configuration c in an RSN is defined as the state
of the scan primitives. In a valid scan configuration, only one
scan path through selected scan primitives is activated. The
set C defines all valid scan configurations.

Each access through an RSN can be represented as a single
Capture-Shift-Update (CSU) operation [18]. During a capture-
phase, the data from the instruments is captured into the scan
segments. During the shift-phase, the data is shifted through
an activated path towards the scan-output, while new data
is shifted-in. This data can come from an Automated Test
Equipment or from the cloud, or can even be stored on-chip.
Finally, during the update-phase, the data from the shadow flip-
flops of the scan segments is latched into the instruments or
is used to propagate the control signals from the control scan
segments to the control primitives. The transition relation of
an RSN defines such pairs of scan configurations, which can
be reached from one another within one CSU-operation.

An RSN is modeled as a graph G := (V,E), as shown
in Fig. 2. Each vertex vi ∈ V models a scan segment, a
multiplexer input or output, a scan-in/out port. The vertices
are annotated with their address control signals.

Fig. 2. Graph of an Reconfigurable Scan Network from Fig. 1

An active scan path aspj := {v0, . . . , vi, vi+1, vk} is an
ordered sequence of vertices, such that an edge (vi, vi+1) ∈ E
exists in the RSN graph for any pair of vertices (vi, vi+1)
vi, vi+1 ∈ aspj and the control signal assignments allow to
include both vertices to the path. For a path aspj , the vertex
set V (aspj) ⊂ V includes the vertices which belong to this
path. The initial state c0 ∈ C corresponds to the initial active
scan path asp0, and includes the vertices V (asp0) ⊂ V .

An access to an instrument of an RSN might require the
sequential activation of multiple scan paths. A sequence of
paths Seqk := {aspk0 , asp

k
1 , . . . asp

k
i } starts from the initial

state asp0, which is obtained by applying a global reset.

B. Faults in RSNs

Faults in RSNs might arise in different scan primitives, such
as scan segments and control primitives.

Faults in scan segments include two types:

• Shifting faults: Fault affecting shift flip-flops might pre-
vent correct data from being latched while shifting.
Few important examples here are setup- and hold-time
violations, which affect the timing behavior of a scan
cell. A shifting fault may affect the integrity of the active
scan paths traversing it.

• Faults at the interfaces to the instruments: Faults at the
capture- and update-circuitry of a scan cells may affect
reading and writing data to and from the instruments.

Fault in control primitives such as multiplexers and SIBs,
make certain parts of an RSN inaccessible for observation and
control. If a scan multiplexer is affected by a stuck-at-X fault,
then its X-branch is always selected independent of the current
assignment to the address control signal. All the other branches
of the multiplexer become inaccessible. A SIB affected by a
stuck-at-asserted fault always includes the underlying segment
into an active scan path. If it is stuck-at-de-asserted, then the
segment is never included.

C. Test of RSNs

Conventional scan chains are tested by shifting-in a flush
test sequence, such as ”01100” or ”10011”, and observing
the shifted-out sequence at the scan-output. Testing an RSN
is more challenging, since only selected primitives are tested.
The method from [19] can be used to ensure that single faults
are detectable. To test an RSN, a set of test sequences is
generated, such that each scan primitive of interest is tested at
least once. Each test sequence in the set contains the values
which are shifted into an RSN. Two types of sequences exist:

• Test access sequences are used to load the control scan
segments of the RSN with the required control values to
bring the RSN into the desired scan configuration.

• Test workload sequences are used to test the scan primi-
tives located on a configured scan path.

If possible, access merging techniques, as in [18], are applied
to minimize the test access time.

1) Scan Segments: To propagate a fault effect from a scan
segment to the output of the RSN, an scan path must be
configured through the target scan segment [12]. Then a flush
test sequence is shifted through the active scan path and
observed at the scan-output. If the sequence is unchanged, all
the segments on the path are considered fault-free, otherwise
some scan segment is faulty.

2) Control Primitives: To test a multiplexer, a sequence
of paths is configured, such that each scan-input of the
multiplexer is included into at least one path. A flush test
sequence is shifted through each such path and the output
sequences for all these paths are compared to the expected
outputs [20]. To test a SIB, a pair of paths is configured
such that the first one includes the underlying segment and
the second one excludes this segment from the path. If the
lengths of the output sequences are different and as expected
for both activated paths, the SIB is fault-free.

III. OVERVIEW OF AN ONLINE PERIODIC TEST

GENERATION METHOD

Due to stringent real-time operation and performance re-
quirements, periodic test must be performed within a limited
time frame. For the major time, the system must operate in a
functional mode, as shown in Fig. 3. If the periodic test time
budget is not sufficient for executing the complete test, it is
usually divided into multiple sessions, each within the budget
and applied successively [16, 17].

Fig. 3. Periodic test

The test method presented below generates a short set of test
access sequences, which are stored on-chip and are applied to



the RSN periodically. Through a set of sequences, the RSN is
configured in a way that all scan primitives, which include the
scan segments and the inputs of scan multiplexers, are covered
within a minimized test time. Thereby, the control signals
are also implicitly covered. The test workload sequences can
be generated by the existing methods [9–13]. This section
formulates the test sequence generation problem in terms of
graphs and presents a top-down overview of the solution.

A. Problem Formulation

The solution to the scheduling problem is a minimized set
of test access sequences Test := {Seq0, . . . Seqk . . . SeqN}
for k = 1, . . . N , such that all the vertices of the RSN graph
are covered at least once and the overall test application time
is minimized. The following constraints must hold:

• Each vertex is covered at least once:
⋃

Seqj∈Test

⋃

asp
j

i
∈Seqj

V (aspji ) = V (1)

• The cost of the test sequence set is minimized:
∑

Seqj∈Test

∑

asp
j

i
∈Seqj

cost(aspji , Seqj) → min (2)

where cost(aspji , Seqj) is the cost of adding a path asp
j
i

at the end of a sequence Seqj .

For Seqj and asp
j
i , the cost is calculated as follows:

cost(aspji , Seqj) := switch(aspji , Seqj) + 2 + |aspji |
(3)

where switch(aspji , Seqj) represents the number of cy-
cles which are necessary to configure the path aspj from
the last path in the sequence Seqj ; 2 cycles are required

to perform capture and update phases, and |aspji | cycles
are requred to perform shift phase.

B. Top-Down Overview

It is possible to obtain an optimal solution with respect
to the constraints above, if the computing runtime and the
storage capacities are not limited. However, in this case, all
possible transitions between the scan configurations must be
compared exhaustively, which is not feasible even for medium-
sized RSNs. To efficiently generate the test sequence set, an
efficient heuristic is presented:

• If all possible transitions between the scan configurations
would be considered which are reachable by applying
an unlimited number of CSU-operations, an optimum
solution would be obtained. However, it is infeasible to
explore the resulting solution space even for medium-
sized RSNs. To reduce the solution space, at each step, we
only consider such pairs of scan configurations (c1, c2)
that the second configuration c2 is reachable from the first
configuration c1 by applying a given limited number of
CSU-operations.

• In an RSN, the number of configurations may grow
exponentially in terms of the number of configuration
bits. Therefore, exploiting all possible transitions between
the scan configurations is infeasible, even if the number
of considered CSU-operations is restricted. In Section V,
it is shown how to select those active scan paths, whose

activation would bring the highest additional gain among
all other candidates with respect to the coverage, without
exhaustively checking all the candidates.

IV. SCHEDULING OF TEST ACCESSES

A. Vertex Covering Problem Formulation

A test access scheduling method identifies a set of active
scan paths, which cover all the reachable scan primitives in the
RSN, and also their activation order. To comply with safety
requirements, the test sequence set is minimized with respect
to the overall test application time. Let the set ASP include

all active scan paths asp
j
i , which are included into the test

sequence set at a given time.

The algorithm is applied to the RSN graph, where each
vertex is annotated with two values:

• cost(vj , asp
j
i ) shows the additional cost of including the

vertex vj into a path asp
j
i and is defined as the length

of the corresponding scan primitive. The costs of all the

included vertices in the path asp
j
i are summed up to

calculate the length of the path asp
j
i .

• gain(vj , ASP ) represents the gain of covering the vertex
vj . The gain equals to 1, if the vertex has not been
previously included into any active scan path in ASP .
After a vertex is included at least into one active scan
path, its gain is reset to 0.

The transitions between the activated configurations are
represented by using the transition relation. Since storing the
complete transition relation is inpractical even for medium-
sized RSNs, only rather small parts of the transition relation
are generated dynamically and stored in the local memory. The
transition relation for the running example is shown in Fig. 4.
Each bit in a configuration corresponds to a scan multiplexer.
The bit is set to 0, if the 0-branch of the multiplexer is selected
and to 1 otherwise. Each path can be reset to the initial path
asp0 within 1 CSU-operation, and the reset transitions are
omitted in the figure.

Fig. 4. Possible configurations for Fig. 1

Each vertex of the transition relation graph corresponds to
a single path. The edges of the graph show the reachability
between the corresponding vertices within one CSU-operation.

At each iteration it of the algorithm, an intermediate test
sequence set Tit is updated and some new paths are added.
At each point, it is possible to assess the cost and the gain of

adding a path asp
j
i into the sequence set Tit:

• The cost of adding a path asp
j
i at the end of a sequence

Seqj is referred to as cost(aspji , Seqj) and is defined as
in Eq. 3.

• The gain of adding asp
j
i into the sequence set Tit is

referred to as gain(aspji , Tit). It is defined as a number of
vertices in the RSN graph, which have not been covered

by the set Tit, but are covered by the path asp
j
i .



Algorithm 1: generateTestSequenceSet

Input: RSN graph G := (V,E), where the initial path asp0 is
activated

Output: Test as a set of sequences Test := {Seq0, . . . Seqk}, where

Seqj := {aspj
0
, asp

j
1
, . . . asp

j
i}; Boolean flag

CoveredStatus which shows, whether all the requested
vertices are covered

/* Initialize the initial state asp0; the first
path sequence Seq0; and the test set T */

1 asp0 ← reset;
2 Seq0 ← (asp0)
3 T0 ← {Seq0}
/* Initialize the covered vertices with the

vertices of asp0 */
4 Vcov ← V (asp0)
/* asp0 is included into each path Seqj so it is

not needed to cover it explicitly */
5 V (asp0).resetGain()
/* Initialize the distance value */

6 maxDistance← m
/* Initialize the iterator */

7 it← 0
/* Proceed until all the vertices are covered */

8 while (Vcov 6= V ) do
9 k ← k + 1

/* For each sequence in the test set */
10 for Seqj ∈ Tit do

/* Find the candidate paths with a minimum
distance from Seqj and relevant positive
gain */

11 candidates← getPathsMaxGainMinCost(Seqj)
/* Select the path to add: if multiple

branch-and-bound */
12 addedPath(Seqj)← selectPath(candidates)
13 end

/* Collect the potentially added paths */

14 AddedPaths←
Test⋃

Seqj

addedPathj

/* If it is not possible to find at least one
path within the specified distance from any
of the sequences then stop the operation */

15 if AddedPaths == ∅ then
16 break
17 end

/* Select such a sequence S in Tit and a path
asp, which have the shortest distance
between them */

18 (S, asp)← getTheSequenceToAppend(Tit, AddedPaths)
/* Add the path at the end of the selected

sequence */
19 S′ ← S + asp

/* Update the coverage */
20 Vcov ← Vcov ∪ V (asp)

/* Reset the gain of the included vertices */
21 V (asp).resetGain()

/* Update the test set with the selected
sequence and ensure that the reset sequence
is still in the test set */

22 Tit+1 ← Tit \ {S} ∪ {S′} ∪ {Seq0}
23 it← it+ 1
24 end

/* After all the sequences are generated, return
the final test set and the coverage status */

25 Test← Tit

26 return (Test, Vcov)

B. Test Sequence Generation

Algorithm 1 presents the general scheduling flow:

• (Line 1-5): The computation starts with initializing the
initial test sequence set T0 with the first sequence Seq0
and adding the ASP asp0 into the sequence Seq0.

• (Line 6): The maximum number of CSU-operations for
test sequence generation is initialized. Depending on the
selected value, the trade-off between the runtime and the
test application time is established.

• (Line 8-24): The test sequence generation runs until either
all the vertices of the RSN graph are visited at least once
or it is not possible to cover any more vertices (Line 16).

• (Line 10-13): For each sequence in Tit, possible paths
are determined, which are reachable within a specified
number of CSU-operations, and which allow to cover

more vertices in the RSN graph (gain(aspji , Tit) > 0). If
multiple such paths exist, the added path is selected by
using a branch-and-bound approach.

• (Line 14-17): If none of the sequences in the test set can
be extended by a path, the test generation converges.

• (Line 18-21): The sequence Seqj to augment with an

additional path asp
j
i is selected, such that the cost

of adding the path into the sequence is minimized

(cost(aspji , Seqj) → min).
• (Line 22): The test sequence set is updated. The selected

sequence is augmented with the selected path. It is explic-
itly ensured that a basic sequence, which only includes
the reset ASP, is still in the set.

• (Line 26): The algorithm provides the test sequence set
Test and the covered vertices as an output.

Example: In Fig. 4, just one CSU-operation is considered
at a time (m = 1). The computation starts at the reset
configuration {m0,m1,m2} = {0, 0, 0}. The configurations
{1, 0, 0}, {0, 1, 0}, {0, 0, 1} and {0, 1, 1} are reachable. The
configuration {0, 1, 1} has the highest gain and is added into
the sequence. At the next step, it is possible either to add
a configuration {1, 1, 1} into the existing sequence, or to
initialize a new sequence, which starts with a reset configura-
tion and includes also one the reachable configurations. The
configuration {1, 1, 1} has the highest gain and is selected for
adding into the existing sequence. All the vertices of the RSN
graph are covered with three configurations, which all belong
to the same sequence.

V. SELECTION OF RELEVANT ACTIVE SCAN PATHS

Given an initial path asp
j
i , it is not required to consider

all the paths, which are reachable from this path within a
given number of CSU-operations. Instead, it is possible to

generate a relevant subset of paths for asp
j
i by mutating the

corresponding scan configuration as much as possible within
a given number of CSU-operations.

Fig. 5. RSN chain: Each scan multiplexer is controlled independently

This section provides a method to quickly identify those
paths, which might have the highest gain among all other
candidates. First, an ASP selection method is presented for
so-called series-parallel RSNs [19]. Then we show, how the
presented method is applied even for those RSNs, which are
do not have a series-parallel property.

A. SP-RSNs

Definition 1: Let G := (V,E) be a directed acyclic graph
with the vertex set V and the edge set E ⊂ V 2 with a single
source sc ∈ V and a single sink si ∈ V . G is called series-
parallel (SP), if one of the following holds:



• V := {sc, si}
• G is a parallel composition of two series-parallel graphs

G1 := (V1, E1), G2 := (V2, E2):

V := V1 ∪ V2;E := E1 ∪ E2 (4)

sc := sc1 = sc2; si := si1 = si2

V1 ∩ V2 = {sc, si}
(5)

scj and sij are sources and sinks of Gj ; j = 1, 2.
• G is a series composition of two SP graphs, Eq. 4 holds:

sc := sc1; si := si2; si1 = sc2 (6)

Any directed graph, which does not fulfill the conditions
above is referred to as a non-series-parallel graph.

B. SP-RSN Path Selection

For SP-RSN graphs, the hierarchical dependencies between
the graph vertices are stored in a binary decomposition tree, as
shown in Fig. 6. The ”P” vertices show the parallel connections
between the vertices, while the ”S” vertices represent the
vertices connected in series.

Fig. 6. Dependencies between the multiplexers for the RSN graph in Fig. 2

Analyzing this tree has a logarithmic complexity and is used
to identify which vertices belong to the same path according
to the RSN topology. A valid path in an RSN is defined from
the top vertex of the tree by traversing the tree in a depth-first-
search manner. Each time, when a ”P” vertex is met, only one
branch must be selected for further investigations. If a ”S”
vertex is met, both branches must be selected. To generate

the most relevant scan configurations from a given path asp
j
i

within 1 CSU-operation, the states of the multiplexer vertices
are flipped starting from the lowest-level vertices in a reserse
polish order, until the first ”P” vertex is met. If more CSU-
operations are considered, the flipping is also allowed for the
second lower-level multiplexer vertices.

Example: In Fig. 6, the initial path is shown with yellow.
The next path is obtained by flipping the states of the vertices
m1 and m2. The next path traverses the lower branches of
m1 and m2 through the vertices s2 and s4.

C. Path Selection for non-SP-RSNs

It is straight-forward to check, if an RSN is series-parallel
[19]. According to our experiments, most of the available
benchmarks are already series-parallel. A general RSN struc-
ture can be transformed into a series-parallel representation by
inserting a small number of virtual vertices.

Fig. 7. Non-series-parallel RSN and its transformation

The newly added vertices (such as s2 and s2c in Fig. 7.c) are
referred to as twins. Any pair of twins is mutually equivalent
for the means of testing, which means that if one of them
is tested by a given sequence - another one is tested as
well. Applying the procedure above for series-parallel models
of non-series-parallel RSNs is a pessimistic estimation - the
test pattern sequence, which is generated for a series-parallel
representation, covers all the primitives in the original RSN
but may require longer test application time, since the twins
might be tested more than one time.

VI. EXPERIMENTAL RESULTS

In the experiments, the test access sequence sets have been
generated according to the developed method. The solution
space has been explored and a tradeoff between the test cost
and the coverage of scan primitives has been investigated.
The coverage of scan primitives is defined as a fraction of
scan primitives, which are accessed by a given test sequence
set, from the whole set of scan primitives. A set of close
to pareto-optimal solutions has been generated by means of
genetic algorithms. For a required coverage, the best generated
solution with respect to test cost has been selected.

The genotype describes a test sequence set as a sequence
of Boolean values, where each sequence comes after another,
and each sequence contains one or multiple configurations.
Each bit shows the state of a control scan primitive in the
configurations. The initial genotypes are created following
Algorithm 1. Each next configuration is chosen so that the gain
is maximized as shown in Section V. The choice is randomized
within the most prominent candidates to efficiently explore
relevant parts of the search space. The crossover operation
(with a probability of 0.95) between two-parent genotypes
creates two child genotypes from two parental genotypes. The
first child inherits the first part of test sequences from the
first parent and the second part from the second parent, for
the second child the inheritance is reversed. The mutation
operation (with a probability of 0.05) randomly removes one
sequence from the test sequence set or adds a new sequence
into the set.

All the experiments have been performed using an Intel(R)
Xeon(R) W-2125 CPU at 4.00GHz with 132 GB of main
memory and implemented in the eda1687 tool of [18]. The
RSN benchmarks have been taken from the widely-recognized
ITC’2016 [21] benchmark set. The basic characteristics of
the benchmarks are provided in Table I, and includes the
information about the design name (Column 1), the number of
multiplexers, SIBs, scan segments and scan cells in Column
2, 3, 4 and 5 correspondingly.

Table II shows the experimental results. The genetic pro-
gramming solver Opt4J [22] is used with the NSGA-II method
[23] to perform the optimization. The number of generations
to find a solution is given in Column 2 and is determined as
a minimum number of generations when the solutions stop
improving for 5 consequent operations. The size of the initial
population is given in Column 3. The time to generate the
solution is provided in Column 4, which is rather low for
all the benchmarks. Column 5 shows the number of required
test sequences and Column 6 represents the total number
of configurations. For all the benchmarks, the generated test
sequence set covers all the scan primitives. The test cost is
given in Column 7. Given a minimal required coverage of



TABLE I. Benchmarks Characteristics

(1)Design (2) #muxes (3) #sibs (4) #segs (5) #cells
BasicSCB 10 - 21 176
Mingle 13 10 22 270
TreeFlat 24 12 24 101
TreeUnbalanced 28 28 63 41,887
TreeBalanced 46 43 90 5,581
TreeFlat Ex 60 57 123 5,194
q12710 25 25 47 26,183
a586710 47 - 79 41,682
p34392 142 - 245 23,261
t512505 160 - 288 77,006
p22810 283 283 537 30,111
p93791 653 - 1,241 98,637

scan primitives, e.g. 90%, the genetic algorithm generates a
test sequence set with a significantly decreased test cost, as
provided in Column 8.

The experimental results show that the developed method
is efficient for a wide range of RSN designs and is scal-
able with an increasing size of RSNs. Scalable graph-based
modeling and efficient mapping to a genetic programming
problem instance allow to generate a test sequence set with
a required coverage, while minimizing the test cost. Since the
test sequences are independent of one another they can be
applied individually, during independent online periodic test
sessions to meet safety margins.

VII. CONCLUSION

The paper presents the first online periodic test of RSNs,
which ensures that all critical scan primitives are examined
within a safety interval with a minimized number of test
patterns. The generated test sequences can be used throughout
the whole RSN lifetime, both as an online periodic test
compliant with the safety requirements and as an efficient
offline manufacturing test to reduce the test application time
on ATE, The experimental results show the scalability and the
efficiency of the presented method for all the considered RSN
sizes and topologies.
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BasicSCB 10 100 00:32 1 7 265 102
Mingle 30 300 02:11 1 11 385 199
TreeFlat 10 100 00:02 2 4 3,890 2,506
TreeUnbalanced 30 300 02:16 7 39 66,416 28,464
TreeBalanced 30 300 05:02 2 9 57,610 31,747
TreeFlat Ex 30 300 04:11 2 9 24,226 11,078
q12710 10 300 01:12 1 4 39,394 30,118
a586710 30 300 04:30 1 7 55,957 34,376
p34392 30 500 10:11 3 2 40,923 20,410
t512505 50 1000 05:16 2 6 143,112 102,557
p22810 100 1000 10:10 9 41 379,373 210,214
p93791 100 1000 15:13 4 28 1,225,512 469,840


