
GPU-accelerated Time Simulation of

Systems with Adaptive Voltage and

Frequency Scaling

Schneider, Eric; Wunderlich, Hans-Joachim

Proceedings of the ACM/IEEEConference on Design, Automation Test in Europe

(DATE’20), Grenoble, France, 2020, pp. 879–884

doi: https://doi.org/10.23919/DATE48585.2020.9116256

Abstract: Timing validation of systems with adaptive voltage-and frequency scaling (AVFS) requires an
accurate timing model under multiple operating points. Simulating such a model at gate level is extremely time-
consuming, and the state-of-the-art compromises both accuracy and compute efficiency.This paper presents a
method for dynamic gate delay modeling on graphics processing unit (GPU) accelerators which is based on
polynomial approximation with offline statistical learning using regression analysis. It provides glitch-accurate
switching activity information for gates and designs under varying supply voltages with negligible memory and
performance impact. Parallelism from the evaluation of operating conditions, gates and stimuli is exploited
simultaneously to utilize the high arithmetic computing throughput of GPUs. This way, large-scale design
space exploration of AVFS-based systems is enabled. Experimental results demonstrate the efficiency and
accuracy of the presented approach showing speedups of three orders of magnitude over conventional time
simulation that supports static delays only.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic
reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form
to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

https://doi.org/10.23919/DATE48585.2020.9116256

GPU-accelerated Time Simulation of Systems with
Adaptive Voltage and Frequency Scaling

Eric Schneider and Hans-Joachim Wunderlich
University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany

schneiec@iti.uni-stuttgart.de, wu@informatik.uni-stuttgart.de

Abstract—Timing validation of systems with adaptive voltage-
and frequency scaling (AVFS) requires an accurate timing model
under multiple operating points. Simulating such a model at
gate level is extremely time-consuming, and the state-of-the-art
compromises both accuracy and compute efficiency.

This paper presents a method for dynamic gate delay modeling
on graphics processing unit (GPU) accelerators which is based on
polynomial approximation with offline statistical learning using
regression analysis. It provides glitch-accurate switching activity
information for gates and designs under varying supply voltages
with negligible memory and performance impact. Parallelism
from the evaluation of operating conditions, gates and stimuli
is exploited simultaneously to utilize the high arithmetic com-
puting throughput of GPUs. This way, large-scale design space
exploration of AVFS-based systems is enabled. Experimental
results demonstrate the efficiency and accuracy of the presented
approach showing speedups of three orders of magnitude over
conventional time simulation that supports static delays only.

Keywords— AVFS, voltage-dependent delay, logic level time
simulation, GPU parallelization, statistical learning

I. INTRODUCTION

Today’s advanced nano-scaled CMOS technology systems

often rely on parametrization and self-adaptation by adaptive

voltage and frequency scaling (AVFS) [1–3] to actively control

internal voltages and clock frequencies. The parametrization

allows to adapt the system to current workloads, environmental

conditions [4] and performance degradation caused by transis-

tor aging [5]. This way, a fine-grained trade-off in power and

performance is enabled, which has gained increasing interest

for application to low-power designs [6], as well as embedded

systems and automotive area [7]. With the increasing sensitiv-

ity of devices to process-, voltage- and temperature variations

[8–10], the timing validation of parametrizable systems has

become difficult since the delays change with the system

parameters. Especially for AVFS-systems, design validation

and exploration require thorough investigation of different

operating conditions [11, 12].

To validate the timing of AVFS-designs under different

supply voltages, simulation approaches with accurate voltage-

dependent delay modeling are necessary. They have to reveal

the glitch-accurate switching activity in the design, which is

of particular interest for small delay fault testing [13, 14] as

well as power estimation [15].

So far, voltage-dependent delays have been incorporated

into gate level evaluations and worst-case analyses in various

ways. Besides common look-up table based approaches, ana-

lytical models with enclosed delay formulas [16–19] and delay

approximation techniques [20, 21] were developed. Yet, con-

ventional timing-accurate logic level simulation already shows

severe scalability issues when applied to evaluate many input

patterns under different parameters in medium-sized and larger

designs with glitch-accuracy. Hence, incorporating parameter-

variation-aware models in conventional timing simulation also

comes along with a further increase in runtime complexity of

the simulations as well as their applications [22].

The simulation complexity can currently only be tackled by

exploiting the inherent parallelism of circuit [23–25] and fault

simulation [26–28] on general-purpose graphics processing

unit (GPU) accelerators. GPUs are able to provide high

arithmetic floating-point throughput and can handle thousands

to millions of light-weight threads concurrently on a single

die to achieve high application speed-ups. However, not all

simulation models and algorithms are suitable for GPUs and

usually many restrictions have to be conquered to enable an ef-

ficient parallelization. The currently existing GPU-accelerated

logic level simulators either do not consider timing at all, or

they utilize simplified timing models that do not capture the

impact of supply voltage on the gate delays.

The paper at hand overcomes the challenges of GPU-

parallelization and presents a massively parallel logic level

time simulator with parametric voltage-dependent delay mod-

eling for scalable glitch-accurate timing validation of AVFS-

based systems on GPUs. The delay modeling utilizes polyno-

mial approximation with regression analysis to formulate the

voltage-impact on the propagation delays at logic level. Si-

multaneous exploitation of different dimensions of parallelism

from varying operating points, gates and input stimuli, allow

to fully utilize the high-arithmetic throughput capabilities of

the GPUs to maximally speed up the simulations. This way,

fast and efficient design and test validation as well as large-

scale early design space exploration of systems with AVFS is

enabled for the first time.

The remainder of the paper is organized as follows: The

next section summarizes the background on parametric delay

modeling and timing simulation on GPUs. In section III,

the cell delay characterization and the parameter-variation-

aware delay modeling are introduced. Section IV describes

the implementation of the according simulation algorithm and

its GPU-parallelization. Finally, experimental results regarding

the accuracy of the model and the performance of the simu-

lation are provided.

II. BACKGROUND

Traditional validation approaches typically use parametriz-

able delay models based on linear interpolation within look-

up tables for each gate type, which contain the propagation

delays over different process- and parameter corners [8]. To

achieve a reasonable accuracy, these tables have to provide

sufficient resolution and their size can grow exponentially with

the number of parameters. These approaches do not scale well

for AVFS systems and accuracy has to be compromised. As a

consequence, worst-case margins and guardbands have to be

increased further to overcome the uncertainties due to both

variations and reduced modeling accuracy.

Analytical delay models on the other hand express the delay

behavior by closed-form expressions [16–19]. For example, a

simple way of modeling supply voltage impact on the gate

delay is the α-power law [16], which dictates that the time

constant τ should be proportional to the supply voltage VDD

and some process parameter α P r1, 2s such that

τ 9 VDD{pVDD ´ Vthqα. (1)

A general analytical approach was proposed in [18], that

relies on the logical effort delay model [17, 29]. The model

is based on a simplified RC delay modeling in which the

propagation delay is generally described as

d “ τpgh ` pq, (2)

where τ is the process-dependent delay constant, g is the

gate-specific logical effort, h describes the fanout (electrical

effort) and p represents some parasitic impact. Extensions in

[18] consider process- as well as voltage- and temperature

variations through a linear relation reflected in the logical ef-

fort. A delay model for static timing analysis under variations

was proposed in [17], which deduces non-linear components

and introduces derating coefficients for expressing the delay

impact. In a similar way, topological correlation of gates

was incorporated in [30]. Analytical models typically consider

parameters as independent components for simplification and

require thorough understanding of the low-level impact.

Delay approximation techniques [8] utilize extensive SPICE

simulations to extract gate delays under different operating

points. Linear regression is then applied to find a fitting

hypersurface that closely matches the observed delay be-

havior. Another approximation approach based on machine-

learning was proposed in [21]. Similarly, it learns the delay-

dependencies of voltage- and temperature parameters by using

neural networks. The derived functions are then utilized to

calculate the gate delays approximatively.

While these models are suitable for worst-case analyses,

scalability issues occur in glitch-accurate evaluation of large

test sets. Timing-accurate logic simulation is a runtime-

intensive task, and by adding more complex delay models the

complexity of the evaluation further increases due to many

additional real-valued arithmetic operations being required.

A first logic level time simulation with GPU-acceleration

was proposed by [25], which efficiently computes the switch-

ing history (waveforms) in a circuit with full glitch support.

It utilizes parallelism from structurally independent gates and

data-independent input stimuli waveforms. The simulation

kernels are organized as a two-dimensional array of threads

each of which handles an individual gate for a particular

stimuli in parallel. This way, massive simulation throughput is

achieved enabling speedups of up to three orders of magnitude

compared to conventional logic level time simulation thus

overcoming the complexity of timing-accurate evaluation.

III. CELL CHARACTERIZATION

The paper at hand employs an intuitive and fine-grained

approximative delay modeling for efficient and timing-accurate

evaluation on GPUs. Given a standard cell library, the pin-to-

pin propagation delays of the cells are analyzed for different

operating points (e.g., parameter corners).

In this work, all cell delays are parametrized via supply

voltage v P R and load capacitance c P R of the cell. The

parameters are assumed to be constrained by intervals (v P
rVmin , Vmax s and c P rCmin , Cmax s) that define the range of

the supply voltage and gate load capacitances in the design.

Both, supply voltage and load capacitance form a continuous

two-dimensional parameter (sub-)space P Ď R
2 in which

each point corresponds to a distinct operating point P :“
pv, cq P P with voltage v and capacitance c. It is assumed

that under any given operating point Pi P P , a gate(-pin)

has a propagation delay di P R. The nominal operating

point is denoted as Pnom P P which has a corresponding

delay dnom P R.

A. Overview

The overall flow of the cell delay characterization prepro-

cess is illustrated in Fig. 1. For each cell type and input

pin, the propagation delay of rising and falling transitions

are extracted from SPICE transient analysis (step A) with

parameter sweeps over a finite set of operating points. Linear

interpolation and sub-sampling is employed on normalized

data points to increase the density of the sample data-grid

(step B). Eventually, multi-variable linear regression is applied

to calculate a fitting hypersurface that represents the delay

function (step C). Prior normalization of the parameters is

used to avoid over-fitting during regression [21]. The surface

parameters are then compiled (step D) for the use as delay

kernels that allow to compute the propagation delays under

different operating points during simulation on the GPU. This

flow has to be repeated only once for each new cell type in the

library as the computed functions are reused during simulation.

normalization, linear

interpolation & sub-sampling
B

propagation

delays

SPICE transient analysis

with parameter sweeps
Astandard

cell
library

parameter

corners

data-grid fitting via multi-

variable linear regression
C

delay

kernels

compilation of fitted

cell delay functions
D

cell d1,...,dm

P1,...,Pm

f(x)

Fig. 1. Gate delay characterization and kernel generation pre-process.

B. Efficient Parameter-Aware Delay Modeling

The parametric delay behavior of a cell under a given

operating point P P P is derived from the deviation of the

resulting propagation delays from the nominal operating point

Pnom P P . The delay deviation forms a continuous surface

in the (also continuous) parameter space. For this surface, a

function f : P Ñ R is constructed to approximate the delay

deviation of a cell under different voltages in P with small

error:

@Pi P P : fpPiq «
di

dnom
´ 1. (3)

In this work, the surface functions are expressed as a multi-

variable higher-order polynomials. Polynomials are able to

approximate any continuous differentiable hypersurface within

constrained intervals with variable degree of accuracy, which

typically increases with the order N of each variable.

The generalized form of a two-dimensional polynomial

function with order 2 ¨ N is defined as f : P Ñ R,

fpP q :“
N
ÿ

i“0

N
ÿ

j“0

`

βi,j ¨ vicj
˘

, with P :“ pv, cq P P. (4)

Each product term consists of the powers of the predictor

variables vicj and has a corresponding coefficient βi,j P R.

C. Defining Functions by Multi-variable Linear Regression

The surface expressed by a polynomial f : P Ñ R

is completely determined by its coefficients βi,j , which are

unknown a priori. Multi-variable linear regression allows to

quickly find suitable coefficients for a surface polynomial that

fits the delay behavior of a cell. This is achieved by setting

up and solving an equation system based on the data grid

samples obtained from the SPICE simulation. Given a data

set S :“ tPi P P|i “ 1, ...,mu of m P N samples, the linear

regression model is formulated in vector-form as

y “ Xβ ` ε (5)

with

y“

¨

˚

˚

˚

˚

˚

˝

d1
d2
d3
...

dm

˛

‹

‹

‹

‹

‹

‚

,X“

¨

˚

˚

˚

˚

˚

˝

v01c
0
1 v01c

1
1 v11c

0
1 . . . vN1 c

N
1

v02c
0
2 v02c

1
2 v12c

0
2 . . . vN2 c

N
2

v03c
0
3 v03c

1
3 v13c

0
3 . . . vN3 c

N
3

...
...

...
. . .

...

v0mc
0
m v0mc

1
m v1mc

0
m . . . vNmc

N
m

˛

‹

‹

‹

‹

‹

‚

, β“

¨

˚

˚

˚

˚

˝

β0,0

β0,1

β1,0
...

βN,N

˛

‹

‹

‹

‹

‚

(6)

and ε P R
m as the residual. The entries of any row k in the

matrix X P R
mˆpN`1qpN`1q correspond to the power terms

vikc
j
k of the polynomial fpvk, ckq for the k-th sample. All

entries in a column l correspond to the l-th power term for

the different sample polynomials. The first column typically

reflects the zero-degree powers whose values are equal to 1.

All values vk, ck and dk in the equation system are

normalized prior to the regression to evenly weight the

parameters and prevent overfitting. For the normalization

φV : rVmin , Vmax s Ñ r0, 1s, φV pvq :“ v´Vmin

Vmax ´Vmin

is used

for the voltages, φC : rCmin , Cmax s Ñ r0, 1s, φCpcq :“
log

2
pcq´log

2
pCminq

log
2

pCmax q´log
2

pCminq is used for the capacitances. The propa-

gation delays are also normalized with respect to the nominal

delay dnom under the nominal operating point Pnom through

φD : R Ñ R, φDpdq :“ d
dnom

´ 1. This way, the vector y

provides the relative delay deviation with respect to Pnom .

The equation system in Eq. (5) is solved to find fitting

coefficients β̂ P R
pN`1qpN`1q for the polynomial. For this, the

ordinary least squares criterion is followed that minimizes the

sum of squared residuals in the Euclidean L2-norm || ¨ ||2 by

β̂ “ argmin
β

t||y ´ Xβ||22u. (7)

The solution of this problem is obtained by solving the

following normal equation [31]:

β̂ “
´

X
T
X

¯´1

X
Ty, (8)

which eventually provides suitable coefficients β̂i,j for the

delay polynomial. The resulting polynomial can then be rep-

resented solely by the pN ` 1q ¨ pN ` 1q coefficients.

D. Representation and Evaluation of Cell-Functions

The propagation delay behavior of a cell differs for each

input pin and output transition polarity (rising, falling). There-

fore, for each gate type a set of delay polynomial coefficient

vectors is generated, each of which covers a gate input pin for a

transition polarity. When under a given operating point P P P
with normalized parameters, a signal transition at a gate

input is propagated to the gate output, the delay deviation

is calculated by evaluating the polynomial Eq. (4) for the

respective coefficients. Since the polynomial approximation is

highly prone to deviations in the coefficients, all calculations

must be performed by floating-point operations in double-

precision. As a final step the resulting propagation delay d1

of the gate is then computed from the nominal propagation

delay dnom as follows:

d1 :“ dnom ¨ p1 ` fpP qq . (9)

IV. HIGH-THROUGHPUT TIME SIMULATION

The coefficients of the delay polynomials are stored in

a constant double-precision floating-point array structure in

the global memory, which is indexed by the cell type, input

pin and transition polarity. A delay computation kernel is

implemented that evaluates the bare delay polynomial function

efficiently on the GPU for a given operating point and provided

delay coefficients. From Eq. (4) it is obvious that for the eval-

uation of the polynomial many floating point multiplications

and additions are required. However, this complexity can be

well handled by the GPUs with their arithmetic throughput.

For this, the polynomial and normalization functions are com-

piled as device functions that are accessible by the threads. By

following Horner’s Method and reuse of previously calculated

terms, the use of fused multiply-add (FMA) instructions is en-

forced which reduces the number of arithmetic operations [32].

The general flow of the parameter-aware time simulation is

illustrated in Fig. 2. In step (1), the combinational network

of the netlist is extracted, annotated with timing data from

standard delay format files and stored on the GPU. Operating

conditions of circuit instances are assigned (2) after which

the test patterns are loaded for evaluation in the timing-

accurate simulation (3). During the simulation, the threads of

the simulation kernels independently compute modified delays

on-the-fly according to the assigned conditions of the circuit

instance. After the netlist has been processed, the waveforms

are analyzed (4) to extract the output information, such as test

responses, switching activity and transition times.

delay

kernels

output

input

stimuli

combinational network

extraction & annotation
1

parameter variation-aware

logic level time simulation
3

waveform evaluation4

online gate delay calculation

parameter assignment2

netlist
&

timing

operating

conditions

Fig. 2. Flow of the parameter-aware time simulation.

The baseline time simulation assumes a pin-to-pin gate

delay model with consideration of output transition polari-

ties [25]. Static nominal delay annotations of the cells are

extracted from standard delay format files and the load capac-

itances are obtained from detailed standard parasitics format

that are assigned to the cell descriptions. Also, inertial delay

is considered for pulse filtering of glitches and hazards. For

the sake of simplicity, the inertial delays of the cells always

equal their respective propagation delay values.

A. Online Delay Calculation

The operating points for evaluation (i.e., voltages) are

assigned in a dedicated parameter memory on the GPU-device

before the actual simulation. When a thread processes a gate g,

it performs the following tasks as part of an initialization phase

to generate the corresponding propagation delays:

1) load the gate description with the nominal delays from

the global memory to the local private registers,

2) read the assigned gate- and circuit parameters P ,

3) select delay dnom of the locally stored nominal delays,

4) fetch corresponding delay coefficients β and evaluate

polynomial fpP q to determine the delay deviation,

5) adapt the locally stored delay d1 accordingly (Eq. 9).

Steps (3) to (5) are repeated for each pin-to-pin propagation

delay specified for the gate. Afterwards, the thread continues

with the main waveform processing loop [25] to generate the

gate output. Note that the kernel that computes the polynomial

is always the same function call. Yet, depending on the

selected coefficients, different functions are computed.

B. Parallelization

The implemented parameter-aware simulation simultane-

ously utilizes multiple dimensions of parallelism from gates,

stimuli, and operating points of different circuit instances. The

threads of the simulation kernels are organized as a three-

dimensional grid of threads [32] as shown in Fig. 3.

In the vertical dimension, the threads exploit structural par-

allelism in so-called simulation slots [28] through level-wise

processing of the circuit with all gates of a level being handled

concurrently by different threads. In each horizontal plane, all

threads process the same gate, but for different input stimuli

and operating points thereby exploiting data-parallelism in two

dimensions (waveforms and circuit instances). The execution

of the threads in the horizontal plane is organized in SIMD-

thread groups which follow a uniform execution flow with

all the threads of a thread group processing the same gate

g
a
te

k

..
.

thread

(1,k,m)

thread

(2,k,m)

thread

(n,1,m)

thread

(n,2,m)

thread

(n,k,m)

stimuli 1stimuli 1 stimuli 2stimuli 2 stimuli nstimuli n......

g
a
te

k

..
.

thread

(1,k,2)

thread

(2,k,2)

thread

(n,1,2)

thread

(n,2,2)

thread

(n,k,2)

stimuli 1stimuli 1 stimuli 2stimuli 2 stimuli nstimuli n......

waveform
stimuli

in
st
an
ce
-

pa
ra
lle
lis
m

g
a
te
-p
a
ra
ll
e
li
s
m

instance
operating

points

...

inst. 1

inst. m

inst. 2

...

...

2

k

1..n

1..m

...

...

...

...

...

1

g
a
te

k

..
.

thread

(1,1,1)

thread

(1,k,1)

thread

(1,2,1)

g
a
te

1

g
a
te

2

thread

(2,1,1)

thread

(2,k,1)

thread

(2,2,1)

thread

(n,1,1)

thread

(n,2,1)

waveform-parallelism

thread

(n,k,1)

stimuli 1stimuli 1 stimuli 2stimuli 2 stimuli nstimuli n......

slot

3D-parallel kernel thread grid
(n ⨯ k ⨯ m)

3D-parallel kernel thread grid
(n ⨯ k ⨯ m)

s
tr

u
c
tu

ra
l

p
a
ra

ll
e
li
s
m

data-
parallelism

Fig. 3. Example of a three-dimensional parallel thread-grid organization for
concurrent evaluation of n stimuli waveforms under m operating points.

function and the same delay kernels. In general, each slot can

be assigned an individual input stimuli and operating point for

evaluation. This way, the overall parallelization scheme allows

to trade-off arbitrarily between simulation of multiple stimuli

or multiple operating points. This provides the flexibility to

maximize the slot utilization on the GPU and hence the

simulation throughput for higher efficiency.

The modeling allows to generate timing annotations for

many circuit instances on-the-fly and in parallel without having

to transfer or store the gate delay descriptions of the individual

instances on the GPU. Despite individually assigned operating

points, the delay calculations of threads from parallel instances

of a gate utilize the same coefficients and delay functions

calls. Therefore no additional thread divergence is caused and a

uniform execution flow among the parallel threads is sustained.

Note that although this work utilizes polynomials for the delay

calculation [20], analytical models [17, 18] and other types of

approximations [21] can be applied as well.

V. EXPERIMENTAL RESULTS

For the evaluation of the presented simulation, designs

from ISCAS’89, ITC’99 and industrial benchmarks were in-

vestigated. The designs were synthesized using the NanGate

15nm Open Cell Library [33] in a commercial synthesis tool

flow. All sequential elements were removed assuming full-

scan and only the combinational logic remained. Transition

delay test patterns were generated for each design using a

commercial ATPG-tool. These were topped of with additional

timing-aware patterns that target the 200 longest paths in each

circuit. For the regression, the supply voltage was selected

as VDD P r0.55V, 1.1Vs in steps of 0.05V (nominal 0.8V)

with output loads Cload P r0.5fF, 128fFs in powers of two

(i.e., 2i for i “ ´1, 0, ..., 7). A commercial SPICE simulation

tool was used to run the parameter sweeps which took few

minutes for each cell. The regression analysis was imple-

mented in Python. All experiments were conducted on an

NVIDIA R© TeslaTM P100 GPU (CUDA version 10.0) with

3584 cores and 16GB global device memory in a host sys-

tem composed of two Intel R©Xeon E5-2687W v2 processors

clocked at 3.4GHz with 256GB of main memory.

A. Regression Analysis

Fig. 4 summarizes the resulting approximation error of the

fitting for a subset of standard cells in the library (AND,

NAND, BUF, INV, OR and NOR for all driving strengths).

The error was measured for different polynomial orders by

comparing a grid of 64ˆ64 (4096) equidistant operating point

samples to a linear approximation of the SPICE results. The

distribution of the mean error is projected to the left axis,

while the distribution of the standard deviation (stddev) and

maximum error (max) are mapped to the right axis due to

different magnitudes. As shown, the mean error is generally

much less than a percent. Also, as expected the mean, standard

deviation and maximum error generally decrease and their

distributions narrow with increasing order of the polynomials.

For polynomial orders 2 ¨ N with N ě 3 the average

standard deviation of the errors already falls below 1% and

the average maximum error decreases below 2.7% (highest

sample was 5.35%). However, this comes at the expense of an

increased number of coefficients to store per pin-delay (4, 9,

16, 25, ...) and higher regression runtimes. Yet, the portion of

memory required for storing the coefficients of a cell library

is negligible compared to the waveforms. Also, in all cases

obtaining the coefficients β̂ by regression took between 1 and

40 milliseconds, which is considered as negligible overhead.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

1+1 2+2 3+3 4+4 5+5 6+6 7+7
 0

 2

 4

 6

 8

 10

 12

 14

A
p

p
ro

x
im

a
ti
o

n
 E

rr
o

r
[%

]
(m

e
a

n
)

A
p

p
ro

x
im

a
ti
o

n
 E

rr
o

r
[%

]
(s

td
d

e
v
,

m
a

x
)

Polynomial Order [N + N]

mean
stddev.

max.
avg.

Fig. 4. Approximation error distribution of cell delay polynomials.

In Fig. 5 the resulting polynomial approximation of the

rising propagation delay of the two-input NOR cell is com-

pared with the linearly interpolated SPICE reference results.

As shown, the contour lines of the polynomial surface closely

follows the original data set. The average absolute error of the

approximation over the 64ˆ64 sample grid was „0.38% with

a maximum deviation of 2.41%. This indicates that the delay

can be well approximated by the implemented model.

B. Simulation Performance

Table I provides circuit statistics and performance results of

the presented parallel simulation compared to a conventional

serial commercial event-driven logic level time simulator. The

delay kernel implements a polynomial of order 2 ¨ N over

supply voltage and output load capacitance with N “ 3. All

nominal timings and load parameters were read from standard

delay format and standard-parasitics exchange format files.

The size of the circuits in nodes (cells, inputs and outputs)

and the number of test pattern pairs are given in columns 2

and 3. For some designs all of the reported longest paths

targeted by the timing-aware ATPG were false paths and no

additional patterns were added to the original transition fault

 0.6
 0.7

 0.8
 0.9

 1
 1.1 0.5

 1
 2

 4
 8

 16
 32

 64
 128

0
10
20
30
40
50
60
70
80

R
is

in
g
 P

ro
p
a
g
a
ti
o
n
 D

e
la

y
 d

r [
p
s
]

Polynomial
Reference

VDD [V] Output Load [fF]

R
is

in
g
 P

ro
p
a
g
a
ti
o
n
 D

e
la

y
 d

r [
p
s
]

 0
 10
 20
 30
 40
 50
 60
 70
 80

Fig. 5. Approximation of the rising propagation delay dr of a NOR2 X2
cell by a surface polynomial of order 2 ¨N with N “ 3 compared to SPICE.

pattern set (marked by ’*’). Columns 4 and 5 summarize

the baseline simulation runtime for evaluating the respective

pattern sets and the resulting throughput performance given

in million node evaluations per second (MEPS). In column 6

the runtime of the GPU-accelerated time simulation from [25]

without parametric delay support is given for comparison. The

last three columns report the runtime (average out of 10 runs),

throughput performance and the speedup of the presented

approach over the serial event-driven solution.

As shown, the runtimes of the proposed approach ranged

from 5ms to 10.35s for the circuits with speedups from

310ˆ up to 1785ˆ over the commercial solution with static

delays. The average throughput performance was 1186 MEPS.

Compared to the execution of the baseline GPU-algorithm

with static delays [25], the runtime overhead of the gate delay

calculations showed no significant impact even for higher

degree polynomials, as the overall GPU-runtime is dominated

by the memory overhead for storing the waveforms. The

complete setup time of the proposed simulator typically took

a few seconds only (up to 70 seconds for the largest design)

without executing costly code-compilations of the netlists and

their timing annotations or performing optimizations. Thus, to

provide fair and unbiased comparisons of the performance,

only the bare simulation times were considered. Note that

the evaluation of a test stimuli under a given operating point

is viewed as an independent simulation problem. Therefore,

simulation problems could be grouped for distribution and exe-

cution on multi-GPU systems, which would provide additional

speedup and scalability.

C. Voltage-dependent Delay Simulation

Table II summarizes the timing characteristics obtained from

simulation of the previous pattern sets. Column 2 lists the

longest path delay under nominal conditions as reported from

a commercial timing analysis tool. Columns 3 through 8 show

the arrival time of the latest transition that was observed at the

outputs during simulation under different supply voltages. For

the nominal case (0.8V) the relative deviation of the latest

transition arrival time with respect to a simulation with static

(nominal) delays is given next in parentheses.

As shown the latest arrival time in the nominal case is much

lower than the pessimistic longest path delay reported by the

timing analysis tool. As expected, lower supply voltages lead

to higher delays and vice versa showing a non-linear depen-

TABLE I
CIRCUIT STATISTICS AND SIMULATION PERFORMANCE (VDD “ 0.8V).

Circuit(1) Nodes(2) Test Event-Driven [25] Proposed
Pairs(3) Time(4) MEPS(5) Time(6) Time(7) MEPS(8) X(9)

s38417 18999 173 1.93s 1.70 6ms 5ms 557.1 328
s38584 23053 194 2.85s 1.57 6ms 9ms 486.1 310
b17* 42779 818 16.31s 2.15 18ms 25ms 1351.1 630
b18* 125305 961 2:20m 0.86 64ms 78ms 1528.1 1785
b19* 250232 1916 7:44m 1.03 207ms 267ms 1792.3 1737
b22 27847 692 16.22s 1.19 13ms 16ms 1204.4 1014
p35k 47997 3298 1:16m 2.08 69ms 86ms 1825.8 878
p45k 44098 2320 45.67s 2.24 56ms 69ms 1474.2 659
p100k 96172 2211 2:22m 1.49 100ms 126ms 1684.9 1133
p141k 178063 995 2:30m 1.18 100ms 117ms 1504.0 1279
p418k 440277 1516 8:11m 1.36 503ms 502ms 1329.3 979
p500k 527006 3820 0:49h 0.68 1.68s 1.91s 1052.4 1552
p533k 676611 1940 0:29h 0.74 1.62s 2.44s 538.0 729
p951k 1090419 4080 1:08h 1.09 7.97s 7.26s 612.6 564
p1522k* 1088421 8021 2:18h 1.05 9.72s 10.35s 843.2 802

TABLE II
CIRCUIT TIMING CHARACTERISTICS UNDER VOLTAGE SWEEP.

Circuit(1) Longest Latest Transition Arrival Times [s]
Path(2) 0.55V(3) 0.6V(4) 0.7V(5) 0.8V (vs. static)(6) 0.9V(7) 1.1V(8)

s38417 145.3p 164.5p 154.5p 139.3p 129.6p (-0.15%) 123.4p 115.0p
s38584 610.9p 846.0p 772.4p 661.9p 590.1p (-0.01%) 544.7p 485.0p
b17* 571.2p 548.5p 521.0p 479.7p 452.9p (+0.03%) 436.0p 413.8p
b18* 708.7p 736.2p 709.9p 670.4p 645.3p (-0.01%) 630.5p 611.1p
b19* 744.1p 741.5p 717.8p 683.6p 659.8p (+0.02%) 645.6p 627.3p
b22 606.2p 685.2p 651.8p 601.8p 569.5p (+0.04%) 549.2p 522.9p
p35k 275.5p 359.6p 333.7p 294.6p 268.8p (-0.21%) 252.1p 228.7p
p45k 2.234n 3.095n 2.847n 2.474n 2.231n (-0.14%) 2.078n 1.878n
p100k 2.234n 3.095n 2.847n 2.474n 2.231n (-0.14%) 2.078n 1.878n
p141k 640.0p 867.9p 795.8p 687.3p 616.5p (-0.10%) 581.8p 578.3p
p418k 1.537n 1.575n 1.539n 1.486n 1.452n (-0.03%) 1.430n 1.401n
p500k 660.8p 795.1p 734.4p 643.3p 584.2p (-0.25%) 547.0p 496.9p
p533k 2.348n 2.926n 2.760n 2.510n 2.347n (-0.06%) 2.244n 2.108n
p951k 708.0p 1.012n 924.3p 793.0p 707.8p (-0.03%) 653.9p 582.3p
p1522k* 2.335n 2.579n 2.406n 2.144n 1.972n (-0.04%) 1.862n 1.721n

dency. For the nominal case the parameter-dependent delay

deviated in average by 0.1% from the static solution, which

was due to the approximation error of the delay kernel. In

comparison, the relative delay impact of the voltage deviation

is much larger and thus the initial approximation error can be

considered as uncertainty due to random process variations.

Therefore, as shown the proposed simulation provides an ef-

ficient parametrizable delay modeling to simulate and explore

AVFS-based designs.

VI. CONCLUSION

This work presented a massively parallel timing-accurate

logic level simulation with parametric delay modeling on

GPUs for large-scale validation and design space exploration

of AVFS-based systems. The dynamic delay model is based

on offline statistical learning and reflects the supply voltage

impact on the gate propagation delays in a compact and

accurate manner. Given the nominal timing specification of

the circuit, the delay calculations are performed on the GPU

during simulation with negligible memory and runtime over-

head. By exploiting multiple dimensions of parallelism from

gates, stimuli and circuit instances the simulation throughput

is maximized for a fast and efficient evaluation of different

operating conditions in AVFS-based systems. Experimental

results have shown simulation speedups of up to 1785ˆ over

a commercial logic time simulation with conventional static

delays. The average error of the gate delay approximation was

less than 1% compared to electrical level simulation in SPICE.

ACKNOWLEDGMENT

This work is part of the project grant WU 245/19-1 funded by the
German Research Foundation (DFG).

REFERENCES

[1] T. Kuroda, “CMOS Design Challenges to Power Wall,” in Proc. Int’l Micropro-
cesses and Nanotechnology Conf. Digest of Papers., Oct. 2001, pp. 6–7.

[2] M. Horowitz, E. Alon, D. Patil et al., “Scaling, Power, and the Future of CMOS,”
in Proc. IEEE Int’l Electron Devices Meeting (IEDM), Dec. 2005, pp. 7 pp.–15.

[3] S. Borkar and A. A. Chien, “The Future of Microprocessors,” Communications of
the ACM, vol. 54, no. 5, pp. 67–77, May 2011.

[4] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen, “A Dynamic Voltage
Scaled Microprocessor System,” IEEE Journ. of Solid-State Circuits, vol. 35,
no. 11, pp. 1571–1580, Nov. 2000.

[5] J. Tschanz, N. S. Kim, S. Dighe et al., “Adaptive Frequency and Biasing Techniques
for Tolerance to Dynamic Temperature-Voltage Variations and Aging,” in Proc.
IEEE Int’l Solid-State Circuits Conf. (ISSCC), Feb. 2007, pp. 292–604.

[6] S. Kiamehr, M. Ebrahimi, and M. Tahoori, “Temperature-aware Dynamic Voltage
Scaling for Near-Threshold Computing,” in Proc. Int’l Great Lakes Symp. on VLSI
(GLSVLSI), May 2016, pp. 361–364.

[7] S. Mhira, V. Huard, A. Benhassain et al., “Dynamic Adaptive Voltage Scaling in
Automotive environment,” in Proc. IEEE Int’l Reliability Physics Symp. (IRPS),
Apr. 2017, pp. 3A–4.1–3A–4.7.

[8] A. Srivastava, D. Sylvester, and D. Blaauw, Statistical Analysis and Optimization
for VLSI: Timing and Power, 1st ed. Springer, 2005.

[9] S. Soleimani, A. Afzali-Kusha, and B. Forouzandeh, “Temperature Dependence
of Propagation Delay Characteristic in FinFET Circuits,” in Proc. Int’l Conf. on
Microelectronics (ICM), Dec. 2008, pp. 276–279.

[10] E. Amat, A. Calomarde, and A. Rubio, “Reliability Study on Technology Trends
Beyond 20nm,” in Proc. 20th Int’l Conf. on Mixed Design of Integrated Circuits
and Systems (MIXDES), Jun. 2013, pp. 414–418.

[11] S. Borkar, T. Karnik, S. Narendra et al., “Parameter Variations and Impact on
Circuits and Microarchitecture,” in Proc. Design Automation Conf. (DAC), June
2003, pp. 338–342.

[12] I. Polian, B. Becker, S. Hellebrand, H. Wunderlich, and P. Maxwell, “Towards
Variation-Aware Test Methods,” in Proc. IEEE 16th European Test Symp. (ETS),
May 2011, pp. 219–225.

[13] A. Czutro, M. E. Imhof, J. Jiang et al., “Variation-Aware Fault Grading,” in Proc.
IEEE 21st Asian Test Symp. (ATS), Nov. 2012, pp. 344–349.

[14] S. Hellebrand, T. Indlekofer, M. Kampmann et al., “FAST-BIST: Faster-than-At-
Speed BIST Targeting Hidden Delay Defects,” in Proc. IEEE Int’l Test Conf. (ITC),
Oct. 2014, pp. 1–8, Paper 29.3.

[15] P. Girard, N. Nicolici, and X. Wen, Eds., Power-Aware Testing and Test Strategies
for Low Power Devices. Springer New York, 2010.

[16] T. Sakurai and A. R. Newton, “Alpha-Power Law MOSFET Model and its
Applications to CMOS Inverter Delay and Other Formulas,” IEEE Journal of Solid-
State Circuits, vol. 25, no. 2, pp. 584–594, Apr. 1990.

[17] B. Lasbouygues, R. Wilson, N. Azemard, and P. Maurine, “Temperature and voltage
aware timing analysis: Application to voltage drops,” in Proc. Conf. on Design,
Automation Test in Europe (DATE), Apr. 2007, pp. 1–6.

[18] C.-H. Wu, S.-H. Lin, and H. Chiueh, “Logical Effort Model Extension with
Temperature and Voltage Variations,” in Proc. 14th Int’l Workshop on Thermal
Inveatigation of ICs and Systems, Sept 2008, pp. 85–88.

[19] K. Shinkai, M. Hashimoto, and T. Onoye, “A gate-delay model focusing on current
fluctuation over wide range of process-voltage-temperature variations,” Integration,
the VLSI Journal, vol. 46, no. 4, pp. 345–358, 2013.

[20] H. Chang and S. S. Sapatnekar, “Statistical Timing Analysis Under Spatial
Correlations,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Syst. (TCAD), vol. 24, no. 9, pp. 1467–1482, Sep. 2005.

[21] B. P. Das, V. Janakiraman, B. Amrutur, H. S. Jamadagni, and N. V. Arvind,
“Voltage and Temperature Scalable Gate Delay and Slew Models Including Intra-
Gate Variations,” in Proc. 21st Int’l Conf. on VLSI Design (VLSID), Jan. 2008, pp.
685–691.

[22] J. Mahmod, S. Millican, U. Guin, and V. Agrawal, “Special Session: Delay Fault
Testing - Present and Future,” in Proc. IEEE 37th VLSI Test Symp. (VTS), Apr.
2019, pp. 1–10.

[23] K. Gulati, J. F. Croix, S. P. Khatri, and R. Shastry, “Fast Circuit Simulation
on Graphics Processing Units,” in Proc. 14th Asia and South Pacific Design
Automation Conf. (ASP-DAC), Jan. 2009, pp. 403–408.

[24] D. Chatterjee, A. DeOrio, and V. Bertacco, “Event-Driven Gate-Level Simulation
with GP-GPUs,” in Proc. ACM/IEEE 46th Design Automation Conf. (DAC), Jul.
2009, pp. 557–562.

[25] S. Holst, M. E. Imhof, and H.-J. Wunderlich, “High-Throughput Logic Timing
Simulation on GPGPUs,” ACM Trans. on Design Automation of Electronic Systems,
vol. 20, no. 3, pp. 1–22, Article 37, Jun. 2015.

[26] K. Gulati and S. P. Khatri, “Towards Acceleration of Fault Simulation using
Graphics Processing Units,” in Proc. ACM/IEEE 45th Design Automation Conf.
(DAC), Jun. 2008, pp. 822–827, Paper 45.1.

[27] M. Li and M. S. Hsiao, “3-D Parallel Fault Simulation With GPGPU,” IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Syst. (TCAD), vol. 30, no. 10,
pp. 1545–1555, Oct. 2011.

[28] E. Schneider, M. A. Kochte, S. Holst, X. Wen, and H. J. Wunderlich, “GPU-
Accelerated Simulation of Small Delay Faults,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Syst. (TCAD), vol. 36, no. 5, pp. 829–841, May
2017.

[29] I. Sutherland, B. Sproull, and D. Harris, Logical Effort: Designing Fast CMOS
Circuits. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999.

[30] J. Shiomi, T. Ishihara, and H. Onodera, “Variability- and Correlation-Aware Logical
Effort for Near-Threshold Circuit Design,” in Proc. 17th Int’l Symp. on Quality
Electronic Design (ISQED), Mar. 2016, pp. 18–23.

[31] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning,
2nd ed. Springer New York, 2009.

[32] NVIDIA Corporation, “CUDA C Best Practices Guide v9.1.” http://www.nvidia.
com, Mar. 2018.

[33] NanGate Inc., “NanGate15nm Open Cell Library.” http://www.nangate.com/, 2017.

http://www.nvidia.com
http://www.nvidia.com
http://www.nangate.com/

