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Abstract — Marginal hardware introduces severe reliability 

threats throughout the life cycle of a system. Although 

marginalities may not affect the functionality of a circuit 

immediately after manufacturing, they can degrade into hard 

failures and must be screened out during manufacturing test to 

prevent early life failures. Furthermore, their evolution in the 

field must be proactively monitored by periodic tests before 

actual failures occur. In recent years small delay faults have 

gained increasing attention as possible indicators of marginal 

hardware. However, small delay faults on short paths may be 

undetectable even with advanced timing aware ATPG. Faster-

than-at-speed test (FAST) can detect such hidden delay faults, 

but so far FAST has mainly been restricted to manufacturing 

test.  

This paper presents a fully autonomous built-in self-test 

(BIST) approach for FAST, which supports in-field testing by 

appropriate strategies for test generation and response compac-

tion. In particular, the required test frequencies for hidden delay 

fault detection are selected, such that hardware overhead and test 

time are minimized. Furthermore, test response compaction 

handles the large number of unknowns (X-values) on long paths 

by storing intermediate MISR-signatures in a small on-chip 

memory for later analysis using X-canceling transformations. A 

comprehensive experimental study demonstrates the effectiveness 

of the presented approach. In particular, the impact of the 

considered fault size is studied in detail. 

Key words—Faster-than-at-Speed-Test, BIST, in-field test, 

reliability 

I. INTRODUCTION 

Advanced CMOS technologies have found their way into 
safety-critical applications. Self-driving cars are a prominent 
example, where nano-scale design enables the integration of 
complex control systems such as advanced driver assistance 
systems, but also introduces severe reliability threats. Besides 
new defect mechanisms and parameter variations, marginal 
circuit structures pose a particular problem. Immediately after 
manufacturing, marginal hardware may not affect the function-
ality of a circuit, however, it may gradually evolve into a hard 
failure and cause an Early Life Failure (ELF). Similarly, in the 
field, originally fault free hardware may degrade into marginal 
hardware before it finally fails. In the first case, a major goal is 
to replace costly and time-consuming burn-in tests by ELF pre-
diction during manufacturing test [1]. To handle the second 

                                                             
  This paper combines and extends preliminary work  

published at ITC14 and ATS15. 

case, the hardware must be monitored with periodic in-field 
tests [2], [3], [4], [5], [6]. Here, the challenge is twofold: On 
the one hand, in-field test must cope with limited resources, 
and on the other hand, the test must be proactive, i.e. marginal-
ities must be identified before the circuit functionality is 
affected. 

As shown in the Stanford ELF-Project, Small Delay Faults 
(SDF) can point to marginal hardware [7]. For example, gate-
oxide defects can result in small delays before actual hard 
failures occur. Testing for small delay faults thus helps to pre-
dict potential circuit failures and has therefore gained increas-
ing attention in recent years [8]. However, depending on the 
slack of the propagation path, a small delay fault may not be 
detectable by a standard transition test. Timing aware ATPG 
tries to ensure that propagation paths are long enough [9], [10], 
supports hazard-free fault propagation or selects paths with 
switching times in certain clock intervals [11], [12], [13]. 
Nevertheless, some small delay faults can be propagated along 
short paths only, such that they are undetectable even by 
advanced timing aware ATPG. Faster-than-at-speed Test 
(FAST) targets these Hidden Delay Faults (HDFs) by 
overclocking the circuit, typically using several frequencies up 
to three times higher than the nominal frequency [14], [15], 
[16], [17]. Silicon experiments have already demonstrated the 
effectiveness of this strategy [18], [19]. 

So far, research on FAST has mainly focused on manufac-
turing test, where an ATE is available for storing (encoded) test 
patterns and responses and taking over test control. To alleviate 
the need for costly high speed ATEs, programmable schemes 
for on-chip clock generation have been developed [20], [21], 
[22], [23], [24], [25]. These clock generators can also be used 
as basic building blocks for in-field testing. However, to 
achieve a fully autonomous built-in FAST, additional 
challenges must be addressed. 

Firstly, FAST frequencies are tuned to make delays visible 
on short paths. However, this may lead to unpredictable values 
(X-values) at the end of long paths and prevent the computa-
tion of a unique expected “signature” after test response com-
paction. Despite comprehensive research on X-handling in 
built-in self-test (BIST) or embedded test [26], [27], [28], [29], 
[30], [31], [32], there is still a gap to fill. The distribution of X-
values depends on the distribution of long paths and changes 
with the test frequencies. Even for a fixed frequency the 
distribution may vary due to parameter variations. 
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Furthermore, the X-values will be clustered at outputs driven 
by many long paths, and only a few schemes take into account 
specific clustering of X-values [33]. With the targeted size of 
small delays, the test patterns may also change. The applied X-
handling scheme must therefore be flexible and independent of 
the test set. 

Secondly, hardware overhead and test time depend on the 
number of FAST frequencies. While during manufacturing test, 
simply repeating the test for a larger number of frequencies 
may still be affordable [14], [17], the limited resources during 
in-field test transform frequency selection into a complex 
optimization problem. Again, the targeted fault sizes will 
impact the detection profiles and the achievable solutions.  

This paper presents a BIST scheme for FAST, which is 
suitable for autonomous in-field testing. The scheme is based 
on the preliminary results published in [34], [35]. It is 
compatible with the widely used STUMPS architecture [36] 
and can be deployed with state of the art approaches for built-in 
deterministic or mixed mode test pattern generation, e.g. [37]. 
Test response compaction relies on the X-canceling MISR 
[31], however, to keep the hardware simple, there is no X-
canceling logic on-chip. Instead, in case of necessary resets, the 
intermediate signatures are stored in a small additional memory 
for later analysis. The scheme is supported by respective 
algorithms for optimal frequency selection and for minimizing 
the number of intermediate signatures. Furthermore, a 
comprehensive experimental study evaluates the presented 
approach. In particular, impact of the fault size is studied in 
detail. 

The rest of the paper is organized as follows. In Section II 
the necessary background on small delay faults as well as on 
X-handling is related to the specific goals of this work, and the 
proposed BIST architecture is introduced. Subsequently, the 
problem of optimal frequency selection is formally defined in 
Section III. It is proven that this problem is NP-complete and 
the developed algorithms are explained. Section IV focuses on 
X-handling and describes an approach for minimizing the 
intermediate signatures. Finally, the experimental results pre-
sented in Section V demonstrate that FAST can be effectively 
employed also for in-field test.  

II. PRELIMINARIES  

A. Detection Ranges 

Small delay defects have become the focus of intensive 
research in recent years. As a complete introduction into the 
topic is beyond the scope of this paper, the reader is referred to 
[8] for a more detailed overview. Within the framework of this 
paper, a small delay defect is modeled as gate delay fault and 
characterized by a fault location and a fault size. To keep the 
model simple, only primary inputs and gate outputs are con-
sidered as possible fault locations, and the fault effect is treated 
as a lumped delay added to the gate output. The model can 
easily be generalized, for example taking into account specific 
pin-to-pin delays, too.  

Definition 1: A small delay fault is a pair ϕ = (v, δ), where 
v is a primary input or a gate output and δ is the delay added to 
the nominal gate delay. 

The additional delay is often measured in terms of the 
standard deviation σ of the nominal gate delay. In this work, a 
gate is assumed faulty, if it has an additional delay exceeding 
6σ.  

As illustrated in Figure 1, fault detection requires a pair of 
test patterns propagating a delayed transition to the outputs as 
well as the selection of a proper observation time. To simplify 
the description, the term test pattern will always refer to a pair 
of test patterns in the following. For a standard delay test the 
observation time is set to tnom = 1/fnom, where fnom denotes the 
nominal frequency of the circuit. However, the small delay 
fault ϕ in Figure 1 can only be propagated to outputs x and y, 
and the propagation paths have a slack larger than the fault 
size. Therefore, ϕ cannot be detected at time tnom. Choosing a 
smaller observation time can make the fault visible at outputs x 
and y, but there is no contiguous interval of suitable observa-
tion times. For the given input transition from p1 to p2, the fault 
leads to a slow-to-fall fault in the output waveform of x and to 
a glitch in the output waveform of y. The fault can only be 
detected, if the observation time is selected within the interval 
I1 or I2. If the considered fault size is increased, the intervals I1 
and I2 will also increase in this example. 

 

 

Fig. 1. Small delay fault – example. 

However, in general, varying the fault size may completely 
change the detectability of a small delay fault. Consider the 
small example in Figure 2 for illustration. Assume that the first 
AND gate has a delay increasing from δ1 to δ2. In the first case, 
the fault ϕ1 = (d, δ1) leads to a glitch at the output e. It is 
detectable at any observation time in I1, but it is hidden at the 
nominal observation time. In the second case, the fault ϕ2 = (d, 
δ2) has a larger fault size but cannot be detected at all, because 
it is masked by input c. 

In practice, it also depends on the available test set whether 
a fault remains hidden or not.  

Definition 2: Let ϕ be a small delay fault, P a set of test 
patterns, and let f be a frequency. If ϕ is not detected by P at 
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frequency f, then ϕ is called a hidden delay fault with respect to 
P and f. The set of all hidden delay faults with respect to a test 
set P and a set of frequencies F is denoted by ΦHDF(P, F). If 
only faults of a given size δ are considered, this is denoted by 
ΦHDF(δ, P, F). 

 

Fig. 2. Impact of the fault size. 

The observation times for FAST can be selected within an 
interval [tmin, tnom), where tmin = 1/fmax is determined by the 
maximum possible frequency fmax during test. 

Definition 3: Let ϕ be a small delay fault, P a set of test 
patterns, and let t ∈ [tmin, tnom) be an observation time. Then t is 
called a detecting observation time, if ϕ is detected by captur-
ing the test responses for P at time t. The set I(ϕ, P) of all 
detecting observation times is called the detection range of ϕ 
with respect to P. 

I(ϕ, P) is the union of the intervals in which the fault free 
and faulty waveform differ. For each observation time in a 
detection range I(ϕ, P), there is at least one circuit output and at 
least one test pattern in P, such that the fault free and faulty test 
responses are different. As demonstrated by the example of 
Figure 2, the detection range also depends on the fault size, and 
the detection ranges for two faults at the same fault site can be 
completely different. 

To reflect pulse filtering in CMOS technology, a pessimis-
tic approach as shown in Figure 3 is followed in this work. If a 
fault can be detected due to a small glitch below a given thresh-
old, the respective interval is not added to the detection range. 
In the example this applies to the small glitch between interval 
I1 and I2. If a fault is masked by a small glitch, then the inter-
vals next to the glitch are kept as disjoint intervals, as I2 and I3 
in the example. The figure also illustrates that differences 
before the minimum observation time tmin are neglected. 

In general, several different observation times will be re-
quired to hit the detection ranges of all targeted small delay 
faults. The problem of finding the best observation times will 
be discussed in detail in Section III.   

 

Fig. 3. Detection range of a fault ϕ. 

B. Handling Unknowns 

If the frequency is increased, computations on long paths 
may not have finished at the end of the clock period. In the 
example of Figure 1, the output z stabilizes shortly before tnom. 
If an observation time in I1 or I2 is selected, the output still 
carries different intermediate values. In general, several smaller 
glitches can make the analysis very complex. To take this into 
account, in this work an X-value is assigned pessimistically, if 
the stable value is reached after the sampling time. As already 
pointed out, X-values will be clustered at the endpoints of long 
paths, and the distribution will vary with the test frequencies.  

So far, only little research has been done on response com-
paction in the context of FAST. In [38] a special MUX-based 
compaction scheme has been proposed, which, however, 
requires a significant amount of control data during test appli-
cation and discards a large fraction of response data by the 
multiplexers. Because of the specific requirements, standard X-
handling schemes for BIST or embedded test cannot simply be 
re-used. Nevertheless, they can be the basis for handling un-
knowns in built-in FAST. Some typical examples for different 
X-handling strategies can be found in [26], [27], [28], [29], 
[30], [31], [32]. X-masking schemes mask out the X-values 
before they can enter the compactor [27], [30], [32] while X-
filtering or X-canceling strategies can extract uncorrupted 
information after compaction [29], [31]. X-tolerant compaction 
schemes like X-compact or convolutional compactors can 
tolerate a certain amount of X-values without additional 
measures [26], [28], [39].  

As test response compaction for FAST must be extremely 
flexible and adaptable to changing X-distributions, a program-
mable solution combined with post-processing has been chosen 
in this work. Among the known X-handling compaction 
schemes, the X-canceling MISR has been identified as the most 
suitable base scheme [31], [40]. The main idea of the X-can-
celing MISR is to analyze the MISR states by symbolic simu-
lation and derive X-free information by linear combinations of 
MISR bits.  

For a better understanding, this is briefly summarized for 
the small example of Figure 4. The X-bits represent unknown 
values, and the D-bits are deterministic bits necessary for de-
tecting specific faults. The other bits in the test response do not 
contribute to fault detection. After shifting the first scan slice 
into the MISR, the MISR bits are m0 = X0, m1 = 0, and m2 = 0.  
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Fig. 4. Example for X-canceling MISR 

With the next scan slice entering the MISR, the following 
equations are obtained for the state bits: 

 m0 = 0, 
 m1 = X0 ⊕ D0, 
 m2 = X0. 

Appropriate EXOR combinations of the MISR state bits 
provide: 

 m0 = 0, 
 m1 ⊕ m2= X0 ⊕ D0 ⊕ X0= D0, 
 m2 = X0. 

This allows observing two X-free combinations of MISR 
bits, and in particular, the deterministic response bit D0 can be 
observed as required. However, with three scan slices com-
pacted in the MISR, the equations 

 m0 = X0 ⊕ D0 ⊕ D1, 
 m1 = X0 ⊕ X1, 
 m2 = X2 

cannot be converted into a representation with X-free combi-
nations of MISR bits. Thus, the intermediate signature obtained 
after the second scan slice must be analyzed, and the MISR 
must be reset. For the general case, this analysis can be effi-
ciently implemented with the help of matrix representations 
and Gauss-Jordan elimination [31]. A deeper analysis of the D-
bits can help to reduce the number of intermediate signatures to 
be stored [40]. If for example, the faults covered by D0 are also 
covered by another D-bit in one of the following intermediate 
signatures, then there is no need to store the current signature. 
The problem of reducing the signature storage while 
maintaining the fault coverage is addressed in Section IV. 

C. Architecture for Built-in FAST  

This section gives an overview of the developed BIST 
scheme. The architecture shown in Figure 5 is compatible with 
a standard STUMPS architecture [36]. The test pattern 
generator and the MISR can be used both for a standard 
manufacturing or in-field test and for FAST. The hardware 
supports static and delay test. The test pattern generator can be 
configured as a pseudo-random pattern generator for LBIST 
and also as a decompressor for mixed-mode BIST or embedded 
test [41]. For delay test generation in launch-on-capture (LoC) 
or launch-on-shift (LoS) mode, any state of the art mixed-mode 
or deterministic pattern generator (TPG) can be used to provide 

the first pattern of a test pair (e.g. [37]). The second pattern is 
then obtained as the test response or as a single shift of the first 
pattern. 

 

Fig. 5. BIST architecture for FAST. 

Test response compaction is performed by a MISR, using 
X-canceling to extract fault information from possibly cor-
rupted signatures [31]. As explained in Section II.B, the X-
canceling MISR can only handle a limited number of X-values 
and must be reset once the limit is reached. To keep the scheme 
flexible, the X-canceling operations are not implemented in 
hardware as suggested in [31], but in case of a reset the 
intermediate signatures are stored in a small on-chip memory 
for later analysis. The technique does not impose any 
restrictions on the MISR, such that the same MISR can be used 
for standard test and FAST. As the experimental data in 
Section V.B show, shorter MISRs in general provide better 
trade-offs than longer MISRs. 

The clock generator is the only specific add-on for FAST. It 
can be designed following the respective proposals in the 
literature [20], [22], [23], [24], [25]. For example, special clock 
chopping registers can be added to exploit an on-chip PLL for 
at-speed and even faster-than-at-speed test [20]. However, the 
test frequencies are then restricted to multiples of the PLL 
output frequency. In contrast to that, using phase interpolation 
to manipulate both rising and falling edges of the clock signal 
can achieve a desired frequency within a wide range of output 
frequencies, based on a single input signal [22]. Alternatively, 
delaying a reference clock signal by a programmable buffer 
line and combining the delayed signal with the reference clock 
supports a flexible generation of faster-than-at-speed clock 
pulses [23], [24]. The advantage of this scheme is that the 
frequency can be directly encoded into the test pattern. 
Furthermore, no time for switching the frequency is required, 
as both schemes do not rely on PLLs, which need to be locked 
to a frequency before they can be used. Further refinements 
even take into account the effects of process variations [25]. 

Besides standard tasks, the test control unit also interfaces 
the clock generator and takes care of resetting the MISR. It is 
programmable with the FAST parameters (test frequencies, 
reset times of the MISR), such that the hardware imple-
mentation of the BIST scheme remains independent of the 
optimization results achieved by the algorithms described in 
this paper. 
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For a specific circuit under test, the test time depends on the 
number of different frequencies and their associated patterns. 
The control data depend on the selected frequencies and the 
necessary resets of the MISR, which also determine the size of 
the memory for intermediate signatures. To ensure in-field 
testing with minimal resources, two problems have to be 
solved, namely optimal pattern and frequency selection and 
reduction of intermediate signatures. In practice, the size of the 
memory for intermediate signatures can also be decided 
upfront based on resource constraints. Again the number of 
intermediate signatures must be minimized to fit as much 
information as possible in the available memory and optimize 
the hidden delay fault coverage this way.     

III. PATTERN AND FREQUENCY SELECTION  

This section describes the selection of frequencies and their 
associated test patterns in more detail.  So far, most approaches 
for FAST rely on preselected equidistant frequencies between 
the nominal frequency fnom and the maximum frequency fmax. 
Here, basic schemes sample each pattern at multiple frequen-
cies [14], [17]. More sophisticated approaches select or 
generate patterns specifically for each frequency [16], [42], 
[43], [44]. However, as indicated by the examples in Section 
II.A, some faults can only be detected within a small range of 
observation times, which may not be covered by the 
preselected frequencies. To guarantee complete coverage, the 
frequencies must be specifically adapted to the detection ranges 
of the targeted faults. Of course, for an in-field test with limited 
resources, the number of different frequencies should be mini-
mized.  

A. Problem Statement and Complexity 

Frequency selection for FAST can be formulated as the 
following optimization problem [34], [35]. 

Optimum Frequency Selection (OFS): Given a set Φ of 
hidden delay faults and their detection ranges I(ϕ) for all ϕ ∈ 
Φ. Find a minimum set of observation times T = {t1, ..., tn}, 
such that for each ϕ ∈ Φ the intersection I(ϕ) ∩ T is not empty.  

The observation times ti define the test frequencies fi = 1/ti. 
If two or more solutions of problem OFS exist, then the one 
with larger observation times should be selected to avoid noise 
and unnecessary X-values on long paths. Once a solution is 
selected, some faults may be detectable at several observation 
times depending on the applied test patterns. For such faults, 
the patterns detecting the faults at the largest possible 
observation times are selected for the same reason. More 
precisely, the set of hidden delay faults Φ is partitioned into 
groups Φi = {ϕ | ti is the largest observation time in I(ϕ)}. 
During test, for each frequency fi, only the patterns detecting 
the faults in Φi at time ti have to be applied. 

Before the developed algorithm for frequency selection is 
presented in Section III.B, the complexity of OFS is analyzed 
in the following. OFS is similar to the known NP-complete 
problem of finding a minimum hitting set

1
 [45], [46]. 

                                                             
1
 For simplicity we do not distinguish between optimization problems 

and their related decision problems. 

Minimum Hitting Set (MHS): Let S be a finite set, and let 
C be a collection of subsets of S. Find a minimum subset H  ⊂ 
S, such that H  ∩ C  ≠ ∅ for each C ∈ C. 

However, for MHS the subsets in C are discrete sets while 
for OFS the subsets to be hit consist of continuous intervals. 
Nevertheless, the problem MHS can be transformed into OFS 
in polynomial time, which proves that OFS is NP-complete.  

Theorem: OFS is NP-complete. 

Proof: (i) OFS is in NP, because for any given set of ob-
servation times, it can be checked in polynomial time whether 
it hits all detections ranges. 

(ii) The problem MHS can be transformed into OFS as 
follows: Let S = {s1, …, sm} be a finite set and C a collection of 
subsets. For each si  ∈ S define an interval I(si) := (i, i+1) and 
for each C ∈ C define a range I(C) as 

I(C) = I(s
i
)

s
i
∈C∪  

Solving OFS for Φ = C and the detection ranges I(C) provides 
a minimum set of observation times T, such that for each C ∈ C 
the intersection I(C) ∩ T is not empty. The set 

H := {s
i
∈ S : I(s

i
)∩T ≠∅}  

then provides a solution for MHS. n 

It should be noted that OFS is also similar to the one-
dimensional geometric hitting set problem, which is solvable in 
polynomial time [47]. However, in this problem, S is a line and 
C is a collection of intervals while in OFS the elements of C 
are unions of intervals, which explains the gap in complexity.  

B. An Algorithm for Optimum Frequency Selection 

Having shown the NP-completeness of problem OFS, an 
exact solution in polynomial time cannot be expected. But OFS 
can be mapped to MHS in order to benefit from the intensive 
research on this problem. The mapping, however, should en-
sure that the solutions are robust against small timing variations 
and also against small clock variations. Consider Figure 6 for 
an illustration of this issue. The diagram in Figure 6 shows the 
detection ranges of seven small delay faults.  

 

Fig. 6. Non-robust solution for OFS. 
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The selected observation times t1, t2, and t3 hit all detection 
ranges, but for ϕ2, ϕ3, ϕ5, and ϕ6 only an endpoint of the 
detection range is hit. In case of small timing or clock 
variations, these faults may not be detected anymore. Although 
a fully variation-aware analysis is outside the scope of this 
work, the developed algorithms derive robust solutions in the 
sense of Figure 7, where the selected observation points hit 
inner points of all detection ranges. 

 

Fig. 7. Robust solution for OFS. 

To guarantee robust solutions as in Figure 7, the intervals 
constituting the detection ranges are considered as open inter-
vals. With this model, intersections of detection ranges cannot 
degenerate into a single point. This ensures a mapping of OFS 
to MHS, such that the observation times in the solution can be 
moved as far away from the interval borders as possible. The 
mapping is based on atomic intervals as defined in the 
following. 

Definition 4: Let I be a set of detection ranges. An interval 
I is considered as an atomic interval of I, if it can be obtained 
as an intersection of intervals in the detection ranges and it is 
minimal with this property, i.e. if there is an interval J in the 
detection ranges with I ∩ J ⊂ I, then I ∩ J = I. 

 As illustrated in Figure 8, the atomic intervals are obtained 
by intersecting the time axis with the start and end points of all 
intervals in all detection ranges.  

 

Fig. 8. Mapping detection ranges to atomic intervals. 

Once the atomic intervals I1, …, In have been computed for 
an instance of OFS, the corresponding instance of MHS is 
constructed starting with S := {I1, …, In}. For each fault ϕ a 
subset C(ϕ) with all atomic intervals in the detection range I(ϕ) 
is added to C. To extract the observation points for the original 
problem from a solution H of MHS, an arbitrary point can be 
selected from each atomic interval in H. Robustness is ensured 
by selecting the center points of the atomic intervals as obser-
vation times.  

The mapping based on atomic intervals also allows for 
adjusting the frequencies, if the clock generator supports only a 
limited accuracy. In such a case, frequencies on the respective 
grid are selected in the atomic intervals. If an atomic interval is 
too small and does not contain a suitable frequency, it can be 
dropped from the detection range as illustrated in Figure 3 to 
ensure a solution supported by the clock generator.  

In this work the hypergraph algorithm in [48] is applied to 
solve the minimum hitting set problem. This algorithm is based 
on a search tree and uses several intelligent reduction rules to 
achieve an overall runtime of O(1.23801

|S|) [48].  

C. Hybrid Approach and Overall Workflow 

Although the deployed hypergraph algorithm is very effi-
cient for small and midsize circuits, the runtimes for larger 
circuits with many hidden delay faults may still grow beyond 
acceptable limits. Therefore, the problem size must be reduced 
as much as possible before optimum frequency selection is 
started. Similar as in mixed-mode BIST, where pseudo-random 
patterns are combined with deterministic patterns for the hard 
faults, a hybrid strategy for frequency selection is followed in 
this work. In the first phase, the test is performed with a set of 
predefined equidistant frequencies and standard transition test 
patterns. In the second phase, the set of remaining hard faults is 
further reduced by additional timing-aware test patterns before 
the problem OFS is solved. The detailed overall workflow is 
described in the following. 

The flowchart of Figure 9 summarizes the procedure. Its 
inputs are a set of test patterns Pinit for transition faults, the 
nominal test frequency fnom with observation time tnom, the 
maximum possible frequency fmax with observation time tmin, 
the targeted fault size δ, and a parameter k specifying the 
number of equidistant frequencies.  

 

Fig. 9. Workflow for hybrid frequency selection. 

The procedure starts with an initial fault set Φ containing 
all possible small delay faults of size δ. Through a quick topo-
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logical analysis faults are removed from Φ based on the fol-
lowing two criteria: If the longest topological path is too short 
to detect a fault ϕ at fmax, then ϕ is undetectable for all available 
frequencies.  If the shortest topological path is large enough to 
detect a fault ϕ at fnom, then ϕ is either not detectable at all or 
fnom is sufficient for fault detection. The remaining faults in Φ 
are the relevant SDFs to be processed further. 

In the next step accurate timing simulation is performed for 
all relevant small delay faults to determine the set of hidden 
delay faults ΦHDF( δ, Pinit, fnom) as well as their detection ranges. 
This exhaustive fault simulation is computationally very ex-
pensive and requires a high throughput simulator, which fully 
exploits data and structural parallelism inherent in patterns, 
gates, and faults. Furthermore, for accurate fault propagation, 
individual rising and falling pin-to-pin delays as well as glitch 
filtering at gates and fault activation and propagation by 
glitches along reconvergent signals should be supported. In this 
work the simulator described in [49] is used, which maps the 
simulation tasks to a graphics processor (GPU).  

Then the set Finit of k equidistant frequencies for the first 
phase is determined by constructing the respective set of ob-
servation times Tinit := {t0, ..., tk-1} by t0 = tmin , and ti = tmin + i · 
(tnom – tmin)/k for all i < k. The faults in ΦHDF(δ, Pinit, fnom), 
which are not detectable at any of the observation times in Tinit 
constitute the set ΦHDF(δ, Pinit, Finit ∪ { fnom}) of hard-to-detect 
hidden delay faults. As these faults have only been addressed 
by transition test patterns so far, some of them may be 
detectable over longer propagation paths. To reduce the need 
for additional frequencies, additional test patterns are therefore 
generated in the next step. Since the set of hard-to-detect faults 
is typically much smaller than the initial fault set Φ, timing-
aware ATPG is now computationally feasible [9], [10], [11], 
[12], [13]. The presented workflow relies on the timing-aware 
option of commercial ATPG tool. As an alternative, n-detect 
ATPG may be used, because it also tries to propagate faults 
over several different paths [50]. 

This yields an additional set of test patterns Padd, which can 
detect some of the hard faults at the nominal test frequency fnom 
or at the initial equidistant frequencies Finit. The remaining 
faults are hidden delay faults with respect to Ptotal := Pinit ∪ Padd 
and Finit ∪ {fnom} constituting the set ΦHDF(δ, Pinit, Finit ∪ 
{fnom}). Timing accurate simulation is performed again to ex-
actly determine ΦHDF(δ, Pinit, Finit ∪ {fnom}) and update the 
detection ranges. Finally, optimum frequency selection as de-
scribed in Section III.B is started. The solution provides a set of 
optimal frequencies Fopt, as well as the set Ftotal = Finit  ∪ Fopt.  

IV. TEST RESPONSE COMPACTION 

As explained in Section III.C the BIST architecture for 
FAST relies on X-canceling and stores intermediate signatures 
in a memory for later processing. The size of the memory de-
pends on the number of intermediate signatures to be stored, 
and thus on the number and distribution of X-values, as well as 
on the number and distribution of D-bits. While the X-values 
can be limited to a certain extent by a proper selection of 
frequencies, the impact of D-bits is in the focus of this section. 

For a given set Φ of hidden delay faults detectable at a 
given test frequency f, let D(Φ, f) denote the set of determinis-

tic response bits. Each bit D ∈ D(Φ, f) detects a subset of 
hidden delay faults Φ(D). A first approach to minimize the 
required information for fault detection is solving the following 
set covering problem. 

Problem D-Bit Cover: Given a set Φ of hidden delay faults 
detectable at a given test frequency f and the associated set of 
deterministic response bits D(Φ, f). Find a subset D ⊂ D(Φ, f) 
of response bits, such that Φ = ∪D∈D Φ(D). 

Consider for example Φ = {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6}, D(Φ, f) 
= {D0, D1, D2, D3, D4, D5}, Φ(D0) = {ϕ1, ϕ2, ϕ5}, Φ(D1) = 
{ϕ1, ϕ4, ϕ5, ϕ6}, Φ(D2) = {ϕ3, ϕ4, ϕ6}, Φ(D3) = {ϕ2, ϕ3}, Φ(D4) 
= {ϕ3, ϕ4}, Φ(D5) = {ϕ6}. Then both D = {D1, D3} and D* = 
{D0, D2} are valid solutions for the set covering problem. 

However, the problem D-Bit Cover only reflects the situa-
tion before the test responses enter the MISR. To check 
whether the selection of D-bits actually reduces the required 
number of intermediate signatures, a symbolic analysis of the 
MISR state sequence is necessary. Figure 10 sketches the situ-
ation for the same example as before. 

 

Fig. 10. Example for D-bit selection. 

Combining the first scan slice with the MISR state provides 
m0 = X0, m1 = D0, and m2 = D1. With the next scan slice enter-
ing the MISR the state bits are: 

 m0 = D0 ⊕ D2, 
 m1 = X0 ⊕ D1 ⊕ D3, 

 m2 = X0 ⊕ D4.  

After X-canceling row operations this results in 

 m0 = D0 ⊕ D2, 
 m1 ⊕ m2= D1 ⊕ D3 ⊕ D4, 

 m2 = X0 ⊕ D4.  

At this stage both D = {D1, D3} and D* = {D0, D2} would 
ensure the observation of all faults in Φ with a minimum num-
ber of D-bits. Yet, executing one more compaction step yields 

 m0 = X0 ⊕ X1 ⊕ D1 ⊕ D3, 
 m1 = X0 ⊕ X2 ⊕ D0 ⊕ D2 ⊕ D4, 
 m2 = D0 ⊕ D2 ⊕ D5. 

Now only D* = {D0, D2} still ensures fault detection. Selecting 
D = {D1, D3} would require to store the second MISR-state as 
an intermediate signature. Thus only D* = {D0, D2} minimizes 
the signature storage. The problem D-Bit Cover must be ex-
tended accordingly.   

T
P
G
/D
e
co
m
p
re
ss
o
r

m0

m1

m2

…		X1 D2 X0

…	X2 D3 D0

…	D5 D4 D1

Circuit



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2864255, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

Problem Extended D-Bit Cover: Given a set of Φ of hid-
den delay faults detectable at a given test frequency f and the 
associated set of deterministic response bits D(Φ, f). Find a 
subset D ⊂ D(Φ, f) of response bits, such that Φ = ∪D∈DΦ(D) 
and the number of intermediate signatures is minimal. 

To avoid complex symbolic simulation for all considered 
candidate solutions, in this work only the simpler problem D-
Bit Cover is solved as a first approximation of Extended D-Bit 
Cover. Even the solution of D-Bit Cover is very complex, since 
the underlying set covering problem is known to be NP-
complete [45, 46]. Standard solutions for the set covering 
problem work with covering tables and exploit row and column 
dominance to reduce the problem size before actually building 
the solution. As the problem instances for D-Bit Cover can 
grow very large, building and storing complete covering tables 
would require too much memory.  Therefore, a greedy heuristic 
has been implemented, which is interleaved with fault 
simulation. The heuristic starts with an empty set D and 
simulates all test patterns. Whenever a new fault ϕ ∈ Φ is 
detected at an additional output bit D not yet contained in D, 
then D is updated to D ∪ {D}. Then the necessary resets are 
determined by symbolic simulation of the MISR. The 
respective time steps provide the control data for the BIST 
scheme described in Section II.C. 

It should be noted that aliasing is possible, if the fault sets 
Φ(D) for the deterministic bits are not disjoint. Then a fault 
effect visible at an even number of deterministic bits could be 
canceled out, if all bits appear in the observed combination of 
MISR bits. 

V. EXPERIMENTAL RESULTS 

To evaluate the presented concepts and algorithms, an 
experimental study was conducted for the full scan versions of 
the ITC’99 [51] and some industrial benchmark circuits. The 
circuit characteristics are summarized in Table I.  

TABLE I. CIRCUIT CHARACTERISTICS 

Circuit # Gates #PI + 

PPI 

# PO + 

PPO 

tnom 

[ps] 

# SDF # Pinit FCTF 

b14_1 12438 260 214 4171 66984 1344 66.05% 

b15_1 6533 572 418 8826 37526 640 98.03% 

b17_1 12858 1827 1348 3588 123880 1024 99.38% 

b18_1 75618 4116 3085 4533 423216 2048 92.88% 

b20_1 25547 533 450 4326 137774 1920 79.47% 

b21_1 25561 534 450 4333 137646 1856 78.95% 

b22_1 38568 786 664 4497 207448 2240 84.00% 

p45k 22414 3739 2550 3191 127344 5568 99.96% 

p78k 46504 3148 3484 1511 269024 128 99.99% 

p81k 78665 4029 3952 1604 434998 640 99.92% 

p89k 56662 4627 4557 2240 314776 1600 99.82% 

p100k 53836 5902 5829 3040 301848 5312 99.81% 

p141k 105347 11290 10502 2655 577266 1664 99.76% 

 
Columns 2 to 4 show the number of gates, the number of 

primary and pseudo-primary inputs, as well as the number of 
primary and pseudo-primary outputs. Subsequently, the 

nominal clock period tnom obtained with the SYNOPSYS 
SAED 90 nm library is reported in the 5

th
 column. The number 

of all possible fault locations for small delay faults is listed in 
column 6, and column 7 reports the number of patterns in the 
initial pattern set Pinit. Here a transition fault (TF) test set 
without any specific optimization was generated using a 
commercial ATPG tool. The transition fault coverage FCTF 
reported by the tool is shown in the last column. The values for 
FCTF range from 66.05 % to 99.99 % and can be viewed as an 
estimate of the maximum achievable coverage of small delay 
faults. Therefore all further experiments were restricted to fault 
locations with detected transition faults. 

Both the hybrid workflow for pattern and frequency 
selection from Section III and the D-bit Selection from Section 
IV were analyzed using decreasing fault sizes δ = 18σ, δ = 
12σ, and δ = 6σ, where σ denotes the standard deviation of the 
nominal gate delay. 

A. Pattern and Frequency Selection 

Table II summarizes the major results obtained with the 
hybrid workflow from section III.C for the three different fault 
sizes δ = 18σ, δ = 12σ, and δ = 6σ. In all experiments the mini-
mum observation time was set to tmin = 0.3·tnom, and k = 6 
equidistant observation times were selected in the interval [tmin, 
tnom) to obtain the initial set of frequencies, i.e. Finit = {1/t0, …, 
1/t5} with t0 = 0.3·tnom, t1 = 0.42·tnom, t2 = 0.53·tnom, t3 = 
0.65·tnom, t4 = 0.77·tnom, and t5 = 0.88·tnom. Depending on the 
circuit, the minimum observation time tmin thus ranges from 
around 450 ps to 2640 ps, which corresponds to frequencies in 
the range of several hundred MHz up to around 2 GHz. 

TABLE II. FINAL COVERAGE OF HIDDEN DELAY FAULTS  

Circuit δ  = 18σ δ  = 12σ δ  = 6σ 

# HDF FCHDF # HDF FCHDF # HDF FCHDF 

b14_1 37122 83.42% 37297 81.91% 37503 79.94% 

b15_1 18585 55.98% 18611 56.30% 18543 55.50% 

b17_1 67582 82.07% 62769 81.56% 58998 81.12% 

b18_1 231602 84.46% 223499 83.02% 214908 80.78% 

b20_1 90883 86.69% 91437 85.01% 92008 83.52% 

b21_1 90359 86.94% 91152 85.53% 92028 83.91% 

b22_1 150184 87.02% 150536 85.77% 150365 84.01% 

p45k 64656 84.74% 55517 76.82% 42495 84.08% 

p78k 224573 95.37% 219058 95.41% 208870 95.94% 

p81k 357911 93.06% 339236 92.40% 315086 91.85% 

p89k 181099 81.16% 161448 79.83% 148393 78.77% 

p100k 138855 83.75% 124718 84.50% 113198 85.07% 

p141k 306029 88.32% 291403 87.80% 276565 86.61% 

 
As explained above, only fault locations with detected 

transition faults were considered for further analysis. For each 
fault size, Table II shows the number of hidden delay faults 
identified by the workflow as well as the percentage FCHDF of 
hidden delay faults that can finally be detected with the 
enlarged test set Ptotal and all frequencies Ftotal. Please note that 
hidden delay faults are only considered at locations with 
detectable transition faults, and that the coverage measured by 
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FCHDF is relative to the number of hidden delay faults but not 
to the total number of fault locations. 

The results in Table II demonstrate that the hybrid work-
flow of section III.C ensures a very high coverage of hidden 
delay faults, which decreases only slightly with the fault size. 
The small portion of undetected hidden delay faults would 
require frequencies higher than fmax or additional test patterns.  
At this point it is also important to note that FAST is applied on 
top of a standard delay test, such that even the smaller hidden 
delay fault coverage for circuit b15_1 still contributes to a con-
siderable increase in product quality. 

The necessary effort, however, increases with shrinking 
fault sizes as indicated by Table III. For each fault size the 
number of additional test frequencies determined by optimal 
frequency selection as well as the overall test time are 
recorded. The test time is measured as the actual number of test 
patterns used during test. Please note that this number is not 
necessarily equal to the number of patterns in Ptotal, as during 
pattern and frequency selection some patterns may be used at 
several frequencies for different hidden delay faults while 
others may not detect any hidden delay faults and are discarded 
therefore. 

TABLE III. NUMBER OF FREQUENCIES AND TEST TIME  

Circuit δ  = 18σ δ  = 12σ δ  = 6σ 

# Freq. Test 

time 

# Freq. Test 

time 

# Freq. Test 

time 

b14_1 42 1673 48 1944 53 2213 

b15_1 14 395 16 457 24 579 

b17_1 22 1761 26 1872 34 2343 

b18_1 55 5105 62 5773 79 7228 

b20_1 48 3450 53 4017 68 5142 

b21_1 46 3515 54 4065 67 5246 

b22_1 62 5520 65 6540 86 8393 

p45k 11 1707 12 1468 16 1092 

p78k 8 284 8 435 12 756 

p81k 29 3912 29 4382 33 6131 

p89k 34 5620 36 6051 39 7980 

p100k 16 2106 22 2217 33 2767 

p141k 27 5569 32 6775 40 9371 

 
As expected, for smaller fault sizes more frequencies and 

longer test times are needed to maintain a comparable detection 
level. Finally, Figures 11 through 13 illustrate the ramp up of 
the hidden delay fault coverage in the three phases of the 
workflow. In each figure, the blue bars represent the hidden 
delay fault coverage FCHDF,1 achievable with the initial test set 
Pinit and the 6 equidistant frequencies in Finit. The red bars show 
the additional hidden delay fault coverage FCHDF,2 obtained by 
adding timing-aware patterns Padd for the hard faults, and the 
green bars correspond to the additional hidden delay fault 
coverage FCHDF,3 after optimal frequency selection. In all 
figures, it can be observed, that both the additional patterns and 
the additional frequencies actually ramp up the hidden delay 
fault coverage. Interestingly, the more difficult the detection of 
hidden delay faults gets with decreasing fault sizes, the higher 

is the gain achieved in the second and third step of the 
workflow. 

The results in Figures 11 through 13 also show that a more 
naïve approach for FAST based on a fixed number of 
equidistant frequencies and a simple transition fault set (initial 
set up) can already detect a considerable amount of hidden 
delay faults. However, some faults remain undetectable and 
require specifically selected frequencies.  

 

Fig. 11. Evolution of hidden delay fault coverage for 18σ. 

 

Fig. 12. Evolution of hidden delay fault coverage for 12σ. 

 

Fig. 13. Evolution of hidden delay fault coverage for 6σ. 
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In practice, the number of additional frequencies for 
maximum coverage may not always be acceptable. It might 
therefore be an option to trade-off hidden delay fault coverage 
against the overhead for additional frequencies. This is 
illustrated in Figure 14 for circuit b22_1 and a fault size of 6 σ. 
The curve shows the evolution of fault efficiency, which is 
measured as the hidden delay fault coverage normalized to the 
final coverage reported in Table II, for 5 of the 6 initial and 86 
additional frequencies. The sixth initial frequency is omitted, 
because it covers only faults also detected by the additional 
frequencies. A fault efficiency of 95 % can be reached already 
with 25 frequencies. The high effort for the remaining 5 % 
shows that some hidden delay faults in the circuit can only be 
detected with individually adjusted frequencies.  

 

Fig. 14.  Hidden delay fault coverage versus additional frequencies. 

B. D-Bit Selection 

To evaluate the approach for D-bit selection presented in 
Section IV, the selected test frequencies and patterns reported 
in the previous subsection were used. The observed X-rates 
confirm the importance of a flexible X-handling strategy. 
Figure 15 illustrates the evolution of X-rates during FAST for 
one example circuit. The curve shows the average number of 
X-values per scan slice as a function of the observation time. 
The observation times are normalized to the nominal 
observation time and range from 88 % down to 30 %, which 
corresponds to tmin.  It can be clearly seen that the X-rates 
considerably increase with decreasing observation times. 
Similar trends can be observed for all other circuits. 

 

Fig. 15. X-rates per scan slice as a function of the observation time for circuit 
p141k. 

The hidden delay fault coverage after compaction was 
determined by full symbolic simulation of all faults and all D-

bits. As the results for the three different fault sizes δ = 18σ, 
δ = 12σ, and δ = 6σ are very similar, only the results for the 
most difficult case δ = 6σ are summarized in Table IV.  

TABLE IV. D-BIT SELECTION 

Circuit # D-Bits MISR # Selected 

D-Bits  

# Sign. Memory 

[kB] 

FE 

b14_1 9645 16 51.57% 3317 6.48 98.82% 

b15_1 5137 16 35.22% 1221 2.38 97.43% 

b17_1 19878 32 40.14% 5470 21.37 99.40% 

b18_1 89272 64 27.77% 12708 99.28 99.89% 

b20_1 30177 64 42.29% 6241 48.76 99.85% 

b21_1 31418 64 41.69% 6402 50.02 99.90% 

b22_1 53401 64 39.77% 11659 91.09 100.00% 

p45k 175253 64 3.30% 2440 19.06 99.92% 

p78k 123714 64 18.38% 13116 102.47 99.96% 

p81k 200081 64 19.05% 39093 305.41 99.81% 

p89k 147235 64 13.36% 15069 117.73 99.34% 

p100k 165992 128 6.69% 4091 63.92 99.99% 

p141k 394313 256 10.10% 23797 743.66 100.00% 

 

The second column in Table IV lists the number of D-bits 
carrying hidden delay fault information, and the third column 
indicates the MISR size, which corresponds to the number of 
scan chains in this experiment. The remaining columns report 
the results obtained using a greedy algorithm for the problem 
D-Bit Cover. The percentage of selected D-bits is listed in 
column 4, before the number of signatures to be stored, the 
resulting memory requirements in kB and the fault efficiency 
FE are presented in columns 5 to 7. Here, fault efficiency is 
defined as the following ratio 

FE =
# HDFs observable after X-canceling

# HDFs observable in the uncompacted test response
. 

Analyzing the results shows that in all cases a relatively 
small percentage of D-bits is sufficient to ensure a very high or 
even complete fault efficiency with feasible storage require-
ments. To complete the evaluation, the experiments were rerun 
for a fixed MISR size of 512. The obtained trade-offs are 
illustrated in Figures 16 and 17. As expected the fault 
efficiency slightly increases for the larger MISR. However, the 
overall storage requirements also increase considerably. 

 

Fig. 16. Impact of the MISR size on fault efficiency. 
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Fig. 17.  Impact of the MISR size on signature storage. 

It is interesting to note that for almost all circuits a smaller 
MISR size clearly provides a better trade-off between fault 
efficiency and signature storage, as the number of intermediate 
signatures is comparable for both small and large MISR sizes.  

C. Runtimes 

The algorithms described above have been executed on an 
Intel Xeon 5 processor with 12 cores and 128 GB RAM. For 
the GPU-based simulator, a GeForce 980 TI has been used. As 
the runtimes for the different fault sizes are very similar, only 
the breakdown for the smallest fault size δ = 6σ is shown in 
Table V.  

TABLE V. RUNTIMES FOR 6σ IN SECONDS 

CUT Simulation Selection algorithms Total 

First Second Freq. Pattern D-Bit 

b14_1 511 446 1 44 10 1012 

b15_1 524 239 1 13 2 780 

b17_1 381 326 2 149 19 877 

b18_1 9228 6636 11 738 251 16864 

b20_1 1823 1790 3 189 45 3850 

b21_1 1899 1933 3 210 44 4089 

b22_1 3303 4422 5 362 106 8198 

p45k 2413 283 1 241 17 2955 

p78k 5812 191 4 112 102 6221 

p81k 10647 8547 13 1498 387 21092 

p89k 4687 20194 4 570 244 25701 

p100k 11355 735 3 786 147 13026 

p141k 22476 33688 12 2560 1385 60121 

 
The second column shows the runtime for the exhaustive 

fault simulation using the initial pattern set Pinit. The runtimes 
in the third column correspond to the second simulation run, 
which is performed for the hard faults that cannot be detected 
by Pinit and Finit. For the second simulation run the timing-
aware patterns in Padd are used. This can lead to high 
simulation times for some circuits despite the reduced sizes of 
the underlying fault sets. The fourth column shows the runtime 
for the hypergraph-based frequency selection, followed in 
column five by the runtime for selecting the respective patterns 
for each frequency.Finally, columns six and seven show the 
runtimes for the selection of D-bits and calculation of the 
intermediate signatures. The last column shows the overall 

runtime, which ranges from approximately 13 minutes for 
b15_1 to around 17 hours for the largest circuit p141k. For all 
circuits, the overall runtime is clearly dominated by the fault 
simulation times listed in columns 2 and 3. 

VI. CONCLUSIONS AND FUTURE WORK 

Small delay faults can be indicators of marginal hardware 
and should be monitored throughout the life cycle of a system. 
Hidden delay faults are particularly challenging, because they 
can only be propagated along short paths and require faster-
than-at-speed test frequencies. The BIST approach in this paper 
enables periodic in-field testing for hidden delay faults, and 
thus a proactive detection of potential reliability problems 
before they cause actual failures. Nevertheless, there is a 
problem of false alarms, when small delay faults are detected 
which are actually caused by uncritical delay variations. To 
quantify and solve this problem a more comprehensive 
approach on variations is required, which is in the focus of 
ongoing research. Future research will also target more 
complex clock schemes and multi-cycle testing. 
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