
Built-in Test for Hidden Delay Faults

Kampmann, Matthias; Kochte, Michael A.; Liu, Chang;

Schneider, Eric; Hellebrand, Sybille; Wunderlich,

Hans-Joachim

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems (TCAD), Volume: 38 , Issue: 10 , Oct. 2019, Page(s): 1956 - 1968

doi: https://doi.org/10.1109/TCAD.2018.2864255

Abstract: Marginal hardware introduces severe reliability threats throughout the life cycle of
a system. Although marginalities may not affect the functionality of a circuit immediately after
manufacturing, they can degrade into hard failures and must be screened out during manufacturing
test to prevent early life failures. Furthermore, their evolution in the field must be proactively
monitored by periodic tests before actual failures occur. In recent years, small delay faults (SDFs)
have gained increasing attention as possible indicators of marginal hardware. However, SDFs
on short paths may be undetectable even with advanced timing aware ATPG. Faster-than-at-
speed test (FAST) can detect such hidden delay faults (HDFs), but so far FAST has mainly been
restricted to manufacturing test. This paper presents a fully autonomous built-in self-test approach
for FAST, which supports in-field testing by appropriate strategies for test generation and response
compaction. In particular, the required test frequencies for HDF detection are selected, such that
hardware overhead and test time are minimized. Furthermore, test response compaction handles
the large number of unknowns (X-values) on long paths by storing intermediate MISR-signatures
in a small on-chip memory for later analysis using X-canceling transformations. A comprehensive
experimental study demonstrates the effectiveness of the presented approach. In particular, the
impact of the considered fault size is studied in detail.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

This is the author’s ”personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

https://doi.org/10.1109/TCAD.2018.2864255

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2864255, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

Built-in Test for Hidden Delay Faults

Matthias Kampmann
1
, Michael A. Kochte

2
, Chang Liu

2
, Eric Schneider

2

Sybille Hellebrand
1
, Hans-Joachim Wunderlich

2

1
University of Paderborn, Warburger Str. 100, 33098 Paderborn, Germany

2
University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany

Abstract — Marginal hardware introduces severe reliability

threats throughout the life cycle of a system. Although

marginalities may not affect the functionality of a circuit

immediately after manufacturing, they can degrade into hard

failures and must be screened out during manufacturing test to

prevent early life failures. Furthermore, their evolution in the

field must be proactively monitored by periodic tests before

actual failures occur. In recent years small delay faults have

gained increasing attention as possible indicators of marginal

hardware. However, small delay faults on short paths may be

undetectable even with advanced timing aware ATPG. Faster-

than-at-speed test (FAST) can detect such hidden delay faults,

but so far FAST has mainly been restricted to manufacturing

test.

This paper presents a fully autonomous built-in self-test

(BIST) approach for FAST, which supports in-field testing by

appropriate strategies for test generation and response compac-

tion. In particular, the required test frequencies for hidden delay

fault detection are selected, such that hardware overhead and test

time are minimized. Furthermore, test response compaction

handles the large number of unknowns (X-values) on long paths

by storing intermediate MISR-signatures in a small on-chip

memory for later analysis using X-canceling transformations. A

comprehensive experimental study demonstrates the effectiveness

of the presented approach. In particular, the impact of the

considered fault size is studied in detail.

Key words—Faster-than-at-Speed-Test, BIST, in-field test,

reliability

I. INTRODUCTION

Advanced CMOS technologies have found their way into
safety-critical applications. Self-driving cars are a prominent
example, where nano-scale design enables the integration of
complex control systems such as advanced driver assistance
systems, but also introduces severe reliability threats. Besides
new defect mechanisms and parameter variations, marginal
circuit structures pose a particular problem. Immediately after
manufacturing, marginal hardware may not affect the function-
ality of a circuit, however, it may gradually evolve into a hard
failure and cause an Early Life Failure (ELF). Similarly, in the
field, originally fault free hardware may degrade into marginal
hardware before it finally fails. In the first case, a major goal is
to replace costly and time-consuming burn-in tests by ELF pre-
diction during manufacturing test [1]. To handle the second

 This paper combines and extends preliminary work

published at ITC14 and ATS15.

case, the hardware must be monitored with periodic in-field
tests [2], [3], [4], [5], [6]. Here, the challenge is twofold: On
the one hand, in-field test must cope with limited resources,
and on the other hand, the test must be proactive, i.e. marginal-
ities must be identified before the circuit functionality is
affected.

As shown in the Stanford ELF-Project, Small Delay Faults
(SDF) can point to marginal hardware [7]. For example, gate-
oxide defects can result in small delays before actual hard
failures occur. Testing for small delay faults thus helps to pre-
dict potential circuit failures and has therefore gained increas-
ing attention in recent years [8]. However, depending on the
slack of the propagation path, a small delay fault may not be
detectable by a standard transition test. Timing aware ATPG
tries to ensure that propagation paths are long enough [9], [10],
supports hazard-free fault propagation or selects paths with
switching times in certain clock intervals [11], [12], [13].
Nevertheless, some small delay faults can be propagated along
short paths only, such that they are undetectable even by
advanced timing aware ATPG. Faster-than-at-speed Test
(FAST) targets these Hidden Delay Faults (HDFs) by
overclocking the circuit, typically using several frequencies up
to three times higher than the nominal frequency [14], [15],
[16], [17]. Silicon experiments have already demonstrated the
effectiveness of this strategy [18], [19].

So far, research on FAST has mainly focused on manufac-
turing test, where an ATE is available for storing (encoded) test
patterns and responses and taking over test control. To alleviate
the need for costly high speed ATEs, programmable schemes
for on-chip clock generation have been developed [20], [21],
[22], [23], [24], [25]. These clock generators can also be used
as basic building blocks for in-field testing. However, to
achieve a fully autonomous built-in FAST, additional
challenges must be addressed.

Firstly, FAST frequencies are tuned to make delays visible
on short paths. However, this may lead to unpredictable values
(X-values) at the end of long paths and prevent the computa-
tion of a unique expected “signature” after test response com-
paction. Despite comprehensive research on X-handling in
built-in self-test (BIST) or embedded test [26], [27], [28], [29],
[30], [31], [32], there is still a gap to fill. The distribution of X-
values depends on the distribution of long paths and changes
with the test frequencies. Even for a fixed frequency the
distribution may vary due to parameter variations.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2864255, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

Furthermore, the X-values will be clustered at outputs driven
by many long paths, and only a few schemes take into account
specific clustering of X-values [33]. With the targeted size of
small delays, the test patterns may also change. The applied X-
handling scheme must therefore be flexible and independent of
the test set.

Secondly, hardware overhead and test time depend on the
number of FAST frequencies. While during manufacturing test,
simply repeating the test for a larger number of frequencies
may still be affordable [14], [17], the limited resources during
in-field test transform frequency selection into a complex
optimization problem. Again, the targeted fault sizes will
impact the detection profiles and the achievable solutions.

This paper presents a BIST scheme for FAST, which is
suitable for autonomous in-field testing. The scheme is based
on the preliminary results published in [34], [35]. It is
compatible with the widely used STUMPS architecture [36]
and can be deployed with state of the art approaches for built-in
deterministic or mixed mode test pattern generation, e.g. [37].
Test response compaction relies on the X-canceling MISR
[31], however, to keep the hardware simple, there is no X-
canceling logic on-chip. Instead, in case of necessary resets, the
intermediate signatures are stored in a small additional memory
for later analysis. The scheme is supported by respective
algorithms for optimal frequency selection and for minimizing
the number of intermediate signatures. Furthermore, a
comprehensive experimental study evaluates the presented
approach. In particular, impact of the fault size is studied in
detail.

The rest of the paper is organized as follows. In Section II
the necessary background on small delay faults as well as on
X-handling is related to the specific goals of this work, and the
proposed BIST architecture is introduced. Subsequently, the
problem of optimal frequency selection is formally defined in
Section III. It is proven that this problem is NP-complete and
the developed algorithms are explained. Section IV focuses on
X-handling and describes an approach for minimizing the
intermediate signatures. Finally, the experimental results pre-
sented in Section V demonstrate that FAST can be effectively
employed also for in-field test.

II. PRELIMINARIES

A. Detection Ranges

Small delay defects have become the focus of intensive
research in recent years. As a complete introduction into the
topic is beyond the scope of this paper, the reader is referred to
[8] for a more detailed overview. Within the framework of this
paper, a small delay defect is modeled as gate delay fault and
characterized by a fault location and a fault size. To keep the
model simple, only primary inputs and gate outputs are con-
sidered as possible fault locations, and the fault effect is treated
as a lumped delay added to the gate output. The model can
easily be generalized, for example taking into account specific
pin-to-pin delays, too.

Definition 1: A small delay fault is a pair ϕ = (v, δ), where
v is a primary input or a gate output and δ is the delay added to
the nominal gate delay.

The additional delay is often measured in terms of the
standard deviation σ of the nominal gate delay. In this work, a
gate is assumed faulty, if it has an additional delay exceeding
6σ.

As illustrated in Figure 1, fault detection requires a pair of
test patterns propagating a delayed transition to the outputs as
well as the selection of a proper observation time. To simplify
the description, the term test pattern will always refer to a pair
of test patterns in the following. For a standard delay test the
observation time is set to tnom = 1/fnom, where fnom denotes the
nominal frequency of the circuit. However, the small delay
fault ϕ in Figure 1 can only be propagated to outputs x and y,
and the propagation paths have a slack larger than the fault
size. Therefore, ϕ cannot be detected at time tnom. Choosing a
smaller observation time can make the fault visible at outputs x
and y, but there is no contiguous interval of suitable observa-
tion times. For the given input transition from p1 to p2, the fault
leads to a slow-to-fall fault in the output waveform of x and to
a glitch in the output waveform of y. The fault can only be
detected, if the observation time is selected within the interval
I1 or I2. If the considered fault size is increased, the intervals I1
and I2 will also increase in this example.

Fig. 1. Small delay fault – example.

However, in general, varying the fault size may completely
change the detectability of a small delay fault. Consider the
small example in Figure 2 for illustration. Assume that the first
AND gate has a delay increasing from δ1 to δ2. In the first case,
the fault ϕ1 = (d, δ1) leads to a glitch at the output e. It is
detectable at any observation time in I1, but it is hidden at the
nominal observation time. In the second case, the fault ϕ2 = (d,
δ2) has a larger fault size but cannot be detected at all, because
it is masked by input c.

In practice, it also depends on the available test set whether
a fault remains hidden or not.

Definition 2: Let ϕ be a small delay fault, P a set of test
patterns, and let f be a frequency. If ϕ is not detected by P at

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2864255, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

frequency f, then ϕ is called a hidden delay fault with respect to
P and f. The set of all hidden delay faults with respect to a test
set P and a set of frequencies F is denoted by ΦHDF(P, F). If
only faults of a given size δ are considered, this is denoted by
ΦHDF(δ, P, F).

Fig. 2. Impact of the fault size.

The observation times for FAST can be selected within an
interval [tmin, tnom), where tmin = 1/fmax is determined by the
maximum possible frequency fmax during test.

Definition 3: Let ϕ be a small delay fault, P a set of test
patterns, and let t ∈ [tmin, tnom) be an observation time. Then t is
called a detecting observation time, if ϕ is detected by captur-
ing the test responses for P at time t. The set I(ϕ, P) of all
detecting observation times is called the detection range of ϕ
with respect to P.

I(ϕ, P) is the union of the intervals in which the fault free
and faulty waveform differ. For each observation time in a
detection range I(ϕ, P), there is at least one circuit output and at
least one test pattern in P, such that the fault free and faulty test
responses are different. As demonstrated by the example of
Figure 2, the detection range also depends on the fault size, and
the detection ranges for two faults at the same fault site can be
completely different.

To reflect pulse filtering in CMOS technology, a pessimis-
tic approach as shown in Figure 3 is followed in this work. If a
fault can be detected due to a small glitch below a given thresh-
old, the respective interval is not added to the detection range.
In the example this applies to the small glitch between interval
I1 and I2. If a fault is masked by a small glitch, then the inter-
vals next to the glitch are kept as disjoint intervals, as I2 and I3
in the example. The figure also illustrates that differences
before the minimum observation time tmin are neglected.

In general, several different observation times will be re-
quired to hit the detection ranges of all targeted small delay
faults. The problem of finding the best observation times will
be discussed in detail in Section III.

Fig. 3. Detection range of a fault ϕ.

B. Handling Unknowns

If the frequency is increased, computations on long paths
may not have finished at the end of the clock period. In the
example of Figure 1, the output z stabilizes shortly before tnom.
If an observation time in I1 or I2 is selected, the output still
carries different intermediate values. In general, several smaller
glitches can make the analysis very complex. To take this into
account, in this work an X-value is assigned pessimistically, if
the stable value is reached after the sampling time. As already
pointed out, X-values will be clustered at the endpoints of long
paths, and the distribution will vary with the test frequencies.

So far, only little research has been done on response com-
paction in the context of FAST. In [38] a special MUX-based
compaction scheme has been proposed, which, however,
requires a significant amount of control data during test appli-
cation and discards a large fraction of response data by the
multiplexers. Because of the specific requirements, standard X-
handling schemes for BIST or embedded test cannot simply be
re-used. Nevertheless, they can be the basis for handling un-
knowns in built-in FAST. Some typical examples for different
X-handling strategies can be found in [26], [27], [28], [29],
[30], [31], [32]. X-masking schemes mask out the X-values
before they can enter the compactor [27], [30], [32] while X-
filtering or X-canceling strategies can extract uncorrupted
information after compaction [29], [31]. X-tolerant compaction
schemes like X-compact or convolutional compactors can
tolerate a certain amount of X-values without additional
measures [26], [28], [39].

As test response compaction for FAST must be extremely
flexible and adaptable to changing X-distributions, a program-
mable solution combined with post-processing has been chosen
in this work. Among the known X-handling compaction
schemes, the X-canceling MISR has been identified as the most
suitable base scheme [31], [40]. The main idea of the X-can-
celing MISR is to analyze the MISR states by symbolic simu-
lation and derive X-free information by linear combinations of
MISR bits.

For a better understanding, this is briefly summarized for
the small example of Figure 4. The X-bits represent unknown
values, and the D-bits are deterministic bits necessary for de-
tecting specific faults. The other bits in the test response do not
contribute to fault detection. After shifting the first scan slice
into the MISR, the MISR bits are m0 = X0, m1 = 0, and m2 = 0.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2864255, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

Fig. 4. Example for X-canceling MISR

With the next scan slice entering the MISR, the following
equations are obtained for the state bits:

 m0 = 0,
 m1 = X0 ⊕ D0,
 m2 = X0.

Appropriate EXOR combinations of the MISR state bits
provide:

 m0 = 0,
 m1 ⊕ m2= X0 ⊕ D0 ⊕ X0= D0,
 m2 = X0.

This allows observing two X-free combinations of MISR
bits, and in particular, the deterministic response bit D0 can be
observed as required. However, with three scan slices com-
pacted in the MISR, the equations

 m0 = X0 ⊕ D0 ⊕ D1,
 m1 = X0 ⊕ X1,
 m2 = X2

cannot be converted into a representation with X-free combi-
nations of MISR bits. Thus, the intermediate signature obtained
after the second scan slice must be analyzed, and the MISR
must be reset. For the general case, this analysis can be effi-
ciently implemented with the help of matrix representations
and Gauss-Jordan elimination [31]. A deeper analysis of the D-
bits can help to reduce the number of intermediate signatures to
be stored [40]. If for example, the faults covered by D0 are also
covered by another D-bit in one of the following intermediate
signatures, then there is no need to store the current signature.
The problem of reducing the signature storage while
maintaining the fault coverage is addressed in Section IV.

C. Architecture for Built-in FAST

This section gives an overview of the developed BIST
scheme. The architecture shown in Figure 5 is compatible with
a standard STUMPS architecture [36]. The test pattern
generator and the MISR can be used both for a standard
manufacturing or in-field test and for FAST. The hardware
supports static and delay test. The test pattern generator can be
configured as a pseudo-random pattern generator for LBIST
and also as a decompressor for mixed-mode BIST or embedded
test [41]. For delay test generation in launch-on-capture (LoC)
or launch-on-shift (LoS) mode, any state of the art mixed-mode
or deterministic pattern generator (TPG) can be used to provide

the first pattern of a test pair (e.g. [37]). The second pattern is
then obtained as the test response or as a single shift of the first
pattern.

Fig. 5. BIST architecture for FAST.

Test response compaction is performed by a MISR, using
X-canceling to extract fault information from possibly cor-
rupted signatures [31]. As explained in Section II.B, the X-
canceling MISR can only handle a limited number of X-values
and must be reset once the limit is reached. To keep the scheme
flexible, the X-canceling operations are not implemented in
hardware as suggested in [31], but in case of a reset the
intermediate signatures are stored in a small on-chip memory
for later analysis. The technique does not impose any
restrictions on the MISR, such that the same MISR can be used
for standard test and FAST. As the experimental data in
Section V.B show, shorter MISRs in general provide better
trade-offs than longer MISRs.

The clock generator is the only specific add-on for FAST. It
can be designed following the respective proposals in the
literature [20], [22], [23], [24], [25]. For example, special clock
chopping registers can be added to exploit an on-chip PLL for
at-speed and even faster-than-at-speed test [20]. However, the
test frequencies are then restricted to multiples of the PLL
output frequency. In contrast to that, using phase interpolation
to manipulate both rising and falling edges of the clock signal
can achieve a desired frequency within a wide range of output
frequencies, based on a single input signal [22]. Alternatively,
delaying a reference clock signal by a programmable buffer
line and combining the delayed signal with the reference clock
supports a flexible generation of faster-than-at-speed clock
pulses [23], [24]. The advantage of this scheme is that the
frequency can be directly encoded into the test pattern.
Furthermore, no time for switching the frequency is required,
as both schemes do not rely on PLLs, which need to be locked
to a frequency before they can be used. Further refinements
even take into account the effects of process variations [25].

Besides standard tasks, the test control unit also interfaces
the clock generator and takes care of resetting the MISR. It is
programmable with the FAST parameters (test frequencies,
reset times of the MISR), such that the hardware imple-
mentation of the BIST scheme remains independent of the
optimization results achieved by the algorithms described in
this paper.

T
P
G
/D
e
co
m
p
re
ss
o
r

m0

m1

m2

...D1			0			X0

... X1		D0		 0	

... X2 0				0	

Circuit

Scan	chain Scan	slice

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2864255, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

For a specific circuit under test, the test time depends on the
number of different frequencies and their associated patterns.
The control data depend on the selected frequencies and the
necessary resets of the MISR, which also determine the size of
the memory for intermediate signatures. To ensure in-field
testing with minimal resources, two problems have to be
solved, namely optimal pattern and frequency selection and
reduction of intermediate signatures. In practice, the size of the
memory for intermediate signatures can also be decided
upfront based on resource constraints. Again the number of
intermediate signatures must be minimized to fit as much
information as possible in the available memory and optimize
the hidden delay fault coverage this way.

III. PATTERN AND FREQUENCY SELECTION

This section describes the selection of frequencies and their
associated test patterns in more detail. So far, most approaches
for FAST rely on preselected equidistant frequencies between
the nominal frequency fnom and the maximum frequency fmax.
Here, basic schemes sample each pattern at multiple frequen-
cies [14], [17]. More sophisticated approaches select or
generate patterns specifically for each frequency [16], [42],
[43], [44]. However, as indicated by the examples in Section
II.A, some faults can only be detected within a small range of
observation times, which may not be covered by the
preselected frequencies. To guarantee complete coverage, the
frequencies must be specifically adapted to the detection ranges
of the targeted faults. Of course, for an in-field test with limited
resources, the number of different frequencies should be mini-
mized.

A. Problem Statement and Complexity

Frequency selection for FAST can be formulated as the
following optimization problem [34], [35].

Optimum Frequency Selection (OFS): Given a set Φ of
hidden delay faults and their detection ranges I(ϕ) for all ϕ ∈
Φ. Find a minimum set of observation times T = {t1, ..., tn},
such that for each ϕ ∈ Φ the intersection I(ϕ) ∩ T is not empty.

The observation times ti define the test frequencies fi = 1/ti.
If two or more solutions of problem OFS exist, then the one
with larger observation times should be selected to avoid noise
and unnecessary X-values on long paths. Once a solution is
selected, some faults may be detectable at several observation
times depending on the applied test patterns. For such faults,
the patterns detecting the faults at the largest possible
observation times are selected for the same reason. More
precisely, the set of hidden delay faults Φ is partitioned into
groups Φi = {ϕ | ti is the largest observation time in I(ϕ)}.
During test, for each frequency fi, only the patterns detecting
the faults in Φi at time ti have to be applied.

Before the developed algorithm for frequency selection is
presented in Section III.B, the complexity of OFS is analyzed
in the following. OFS is similar to the known NP-complete
problem of finding a minimum hitting set

1
 [45], [46].

1
 For simplicity we do not distinguish between optimization problems

and their related decision problems.

Minimum Hitting Set (MHS): Let S be a finite set, and let
C be a collection of subsets of S. Find a minimum subset H ⊂
S, such that H ∩ C ≠ ∅ for each C ∈ C.

However, for MHS the subsets in C are discrete sets while
for OFS the subsets to be hit consist of continuous intervals.
Nevertheless, the problem MHS can be transformed into OFS
in polynomial time, which proves that OFS is NP-complete.

Theorem: OFS is NP-complete.

Proof: (i) OFS is in NP, because for any given set of ob-
servation times, it can be checked in polynomial time whether
it hits all detections ranges.

(ii) The problem MHS can be transformed into OFS as
follows: Let S = {s1, …, sm} be a finite set and C a collection of
subsets. For each si ∈ S define an interval I(si) := (i, i+1) and
for each C ∈ C define a range I(C) as

I(C) = I(s
i
)

s
i
∈C∪

Solving OFS for Φ = C and the detection ranges I(C) provides
a minimum set of observation times T, such that for each C ∈ C
the intersection I(C) ∩ T is not empty. The set

H := {s
i
∈ S : I(s

i
)∩T ≠∅}

then provides a solution for MHS. n

It should be noted that OFS is also similar to the one-
dimensional geometric hitting set problem, which is solvable in
polynomial time [47]. However, in this problem, S is a line and
C is a collection of intervals while in OFS the elements of C
are unions of intervals, which explains the gap in complexity.

B. An Algorithm for Optimum Frequency Selection

Having shown the NP-completeness of problem OFS, an
exact solution in polynomial time cannot be expected. But OFS
can be mapped to MHS in order to benefit from the intensive
research on this problem. The mapping, however, should en-
sure that the solutions are robust against small timing variations
and also against small clock variations. Consider Figure 6 for
an illustration of this issue. The diagram in Figure 6 shows the
detection ranges of seven small delay faults.

Fig. 6. Non-robust solution for OFS.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2864255, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

The selected observation times t1, t2, and t3 hit all detection
ranges, but for ϕ2, ϕ3, ϕ5, and ϕ6 only an endpoint of the
detection range is hit. In case of small timing or clock
variations, these faults may not be detected anymore. Although
a fully variation-aware analysis is outside the scope of this
work, the developed algorithms derive robust solutions in the
sense of Figure 7, where the selected observation points hit
inner points of all detection ranges.

Fig. 7. Robust solution for OFS.

To guarantee robust solutions as in Figure 7, the intervals
constituting the detection ranges are considered as open inter-
vals. With this model, intersections of detection ranges cannot
degenerate into a single point. This ensures a mapping of OFS
to MHS, such that the observation times in the solution can be
moved as far away from the interval borders as possible. The
mapping is based on atomic intervals as defined in the
following.

Definition 4: Let I be a set of detection ranges. An interval
I is considered as an atomic interval of I, if it can be obtained
as an intersection of intervals in the detection ranges and it is
minimal with this property, i.e. if there is an interval J in the
detection ranges with I ∩ J ⊂ I, then I ∩ J = I.

 As illustrated in Figure 8, the atomic intervals are obtained
by intersecting the time axis with the start and end points of all
intervals in all detection ranges.

Fig. 8. Mapping detection ranges to atomic intervals.

Once the atomic intervals I1, …, In have been computed for
an instance of OFS, the corresponding instance of MHS is
constructed starting with S := {I1, …, In}. For each fault ϕ a
subset C(ϕ) with all atomic intervals in the detection range I(ϕ)
is added to C. To extract the observation points for the original
problem from a solution H of MHS, an arbitrary point can be
selected from each atomic interval in H. Robustness is ensured
by selecting the center points of the atomic intervals as obser-
vation times.

The mapping based on atomic intervals also allows for
adjusting the frequencies, if the clock generator supports only a
limited accuracy. In such a case, frequencies on the respective
grid are selected in the atomic intervals. If an atomic interval is
too small and does not contain a suitable frequency, it can be
dropped from the detection range as illustrated in Figure 3 to
ensure a solution supported by the clock generator.

In this work the hypergraph algorithm in [48] is applied to
solve the minimum hitting set problem. This algorithm is based
on a search tree and uses several intelligent reduction rules to
achieve an overall runtime of O(1.23801

|S|) [48].

C. Hybrid Approach and Overall Workflow

Although the deployed hypergraph algorithm is very effi-
cient for small and midsize circuits, the runtimes for larger
circuits with many hidden delay faults may still grow beyond
acceptable limits. Therefore, the problem size must be reduced
as much as possible before optimum frequency selection is
started. Similar as in mixed-mode BIST, where pseudo-random
patterns are combined with deterministic patterns for the hard
faults, a hybrid strategy for frequency selection is followed in
this work. In the first phase, the test is performed with a set of
predefined equidistant frequencies and standard transition test
patterns. In the second phase, the set of remaining hard faults is
further reduced by additional timing-aware test patterns before
the problem OFS is solved. The detailed overall workflow is
described in the following.

The flowchart of Figure 9 summarizes the procedure. Its
inputs are a set of test patterns Pinit for transition faults, the
nominal test frequency fnom with observation time tnom, the
maximum possible frequency fmax with observation time tmin,
the targeted fault size δ, and a parameter k specifying the
number of equidistant frequencies.

Fig. 9. Workflow for hybrid frequency selection.

The procedure starts with an initial fault set Φ containing
all possible small delay faults of size δ. Through a quick topo-

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2864255, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

logical analysis faults are removed from Φ based on the fol-
lowing two criteria: If the longest topological path is too short
to detect a fault ϕ at fmax, then ϕ is undetectable for all available
frequencies. If the shortest topological path is large enough to
detect a fault ϕ at fnom, then ϕ is either not detectable at all or
fnom is sufficient for fault detection. The remaining faults in Φ
are the relevant SDFs to be processed further.

In the next step accurate timing simulation is performed for
all relevant small delay faults to determine the set of hidden
delay faults ΦHDF(δ, Pinit, fnom) as well as their detection ranges.
This exhaustive fault simulation is computationally very ex-
pensive and requires a high throughput simulator, which fully
exploits data and structural parallelism inherent in patterns,
gates, and faults. Furthermore, for accurate fault propagation,
individual rising and falling pin-to-pin delays as well as glitch
filtering at gates and fault activation and propagation by
glitches along reconvergent signals should be supported. In this
work the simulator described in [49] is used, which maps the
simulation tasks to a graphics processor (GPU).

Then the set Finit of k equidistant frequencies for the first
phase is determined by constructing the respective set of ob-
servation times Tinit := {t0, ..., tk-1} by t0 = tmin , and ti = tmin + i ·
(tnom – tmin)/k for all i < k. The faults in ΦHDF(δ, Pinit, fnom),
which are not detectable at any of the observation times in Tinit
constitute the set ΦHDF(δ, Pinit, Finit ∪ { fnom}) of hard-to-detect
hidden delay faults. As these faults have only been addressed
by transition test patterns so far, some of them may be
detectable over longer propagation paths. To reduce the need
for additional frequencies, additional test patterns are therefore
generated in the next step. Since the set of hard-to-detect faults
is typically much smaller than the initial fault set Φ, timing-
aware ATPG is now computationally feasible [9], [10], [11],
[12], [13]. The presented workflow relies on the timing-aware
option of commercial ATPG tool. As an alternative, n-detect
ATPG may be used, because it also tries to propagate faults
over several different paths [50].

This yields an additional set of test patterns Padd, which can
detect some of the hard faults at the nominal test frequency fnom
or at the initial equidistant frequencies Finit. The remaining
faults are hidden delay faults with respect to Ptotal := Pinit ∪ Padd
and Finit ∪ {fnom} constituting the set ΦHDF(δ, Pinit, Finit ∪
{fnom}). Timing accurate simulation is performed again to ex-
actly determine ΦHDF(δ, Pinit, Finit ∪ {fnom}) and update the
detection ranges. Finally, optimum frequency selection as de-
scribed in Section III.B is started. The solution provides a set of
optimal frequencies Fopt, as well as the set Ftotal = Finit ∪ Fopt.

IV. TEST RESPONSE COMPACTION

As explained in Section III.C the BIST architecture for
FAST relies on X-canceling and stores intermediate signatures
in a memory for later processing. The size of the memory de-
pends on the number of intermediate signatures to be stored,
and thus on the number and distribution of X-values, as well as
on the number and distribution of D-bits. While the X-values
can be limited to a certain extent by a proper selection of
frequencies, the impact of D-bits is in the focus of this section.

For a given set Φ of hidden delay faults detectable at a
given test frequency f, let D(Φ, f) denote the set of determinis-

tic response bits. Each bit D ∈ D(Φ, f) detects a subset of
hidden delay faults Φ(D). A first approach to minimize the
required information for fault detection is solving the following
set covering problem.

Problem D-Bit Cover: Given a set Φ of hidden delay faults
detectable at a given test frequency f and the associated set of
deterministic response bits D(Φ, f). Find a subset D ⊂ D(Φ, f)
of response bits, such that Φ = ∪D∈D Φ(D).

Consider for example Φ = {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6}, D(Φ, f)
= {D0, D1, D2, D3, D4, D5}, Φ(D0) = {ϕ1, ϕ2, ϕ5}, Φ(D1) =
{ϕ1, ϕ4, ϕ5, ϕ6}, Φ(D2) = {ϕ3, ϕ4, ϕ6}, Φ(D3) = {ϕ2, ϕ3}, Φ(D4)
= {ϕ3, ϕ4}, Φ(D5) = {ϕ6}. Then both D = {D1, D3} and D* =
{D0, D2} are valid solutions for the set covering problem.

However, the problem D-Bit Cover only reflects the situa-
tion before the test responses enter the MISR. To check
whether the selection of D-bits actually reduces the required
number of intermediate signatures, a symbolic analysis of the
MISR state sequence is necessary. Figure 10 sketches the situ-
ation for the same example as before.

Fig. 10. Example for D-bit selection.

Combining the first scan slice with the MISR state provides
m0 = X0, m1 = D0, and m2 = D1. With the next scan slice enter-
ing the MISR the state bits are:

 m0 = D0 ⊕ D2,
 m1 = X0 ⊕ D1 ⊕ D3,

 m2 = X0 ⊕ D4.

After X-canceling row operations this results in

 m0 = D0 ⊕ D2,
 m1 ⊕ m2= D1 ⊕ D3 ⊕ D4,

 m2 = X0 ⊕ D4.

At this stage both D = {D1, D3} and D* = {D0, D2} would
ensure the observation of all faults in Φ with a minimum num-
ber of D-bits. Yet, executing one more compaction step yields

 m0 = X0 ⊕ X1 ⊕ D1 ⊕ D3,
 m1 = X0 ⊕ X2 ⊕ D0 ⊕ D2 ⊕ D4,
 m2 = D0 ⊕ D2 ⊕ D5.

Now only D* = {D0, D2} still ensures fault detection. Selecting
D = {D1, D3} would require to store the second MISR-state as
an intermediate signature. Thus only D* = {D0, D2} minimizes
the signature storage. The problem D-Bit Cover must be ex-
tended accordingly.

T
P
G
/D
e
co
m
p
re
ss
o
r

m0

m1

m2

…		X1 D2 X0

…	X2 D3 D0

…	D5 D4 D1

Circuit

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2864255, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

Problem Extended D-Bit Cover: Given a set of Φ of hid-
den delay faults detectable at a given test frequency f and the
associated set of deterministic response bits D(Φ, f). Find a
subset D ⊂ D(Φ, f) of response bits, such that Φ = ∪D∈DΦ(D)
and the number of intermediate signatures is minimal.

To avoid complex symbolic simulation for all considered
candidate solutions, in this work only the simpler problem D-
Bit Cover is solved as a first approximation of Extended D-Bit
Cover. Even the solution of D-Bit Cover is very complex, since
the underlying set covering problem is known to be NP-
complete [45, 46]. Standard solutions for the set covering
problem work with covering tables and exploit row and column
dominance to reduce the problem size before actually building
the solution. As the problem instances for D-Bit Cover can
grow very large, building and storing complete covering tables
would require too much memory. Therefore, a greedy heuristic
has been implemented, which is interleaved with fault
simulation. The heuristic starts with an empty set D and
simulates all test patterns. Whenever a new fault ϕ ∈ Φ is
detected at an additional output bit D not yet contained in D,
then D is updated to D ∪ {D}. Then the necessary resets are
determined by symbolic simulation of the MISR. The
respective time steps provide the control data for the BIST
scheme described in Section II.C.

It should be noted that aliasing is possible, if the fault sets
Φ(D) for the deterministic bits are not disjoint. Then a fault
effect visible at an even number of deterministic bits could be
canceled out, if all bits appear in the observed combination of
MISR bits.

V. EXPERIMENTAL RESULTS

To evaluate the presented concepts and algorithms, an
experimental study was conducted for the full scan versions of
the ITC’99 [51] and some industrial benchmark circuits. The
circuit characteristics are summarized in Table I.

TABLE I. CIRCUIT CHARACTERISTICS

Circuit # Gates #PI +

PPI

PO +

PPO

tnom

[ps]

SDF # Pinit FCTF

b14_1 12438 260 214 4171 66984 1344 66.05%

b15_1 6533 572 418 8826 37526 640 98.03%

b17_1 12858 1827 1348 3588 123880 1024 99.38%

b18_1 75618 4116 3085 4533 423216 2048 92.88%

b20_1 25547 533 450 4326 137774 1920 79.47%

b21_1 25561 534 450 4333 137646 1856 78.95%

b22_1 38568 786 664 4497 207448 2240 84.00%

p45k 22414 3739 2550 3191 127344 5568 99.96%

p78k 46504 3148 3484 1511 269024 128 99.99%

p81k 78665 4029 3952 1604 434998 640 99.92%

p89k 56662 4627 4557 2240 314776 1600 99.82%

p100k 53836 5902 5829 3040 301848 5312 99.81%

p141k 105347 11290 10502 2655 577266 1664 99.76%

Columns 2 to 4 show the number of gates, the number of

primary and pseudo-primary inputs, as well as the number of
primary and pseudo-primary outputs. Subsequently, the

nominal clock period tnom obtained with the SYNOPSYS
SAED 90 nm library is reported in the 5

th
 column. The number

of all possible fault locations for small delay faults is listed in
column 6, and column 7 reports the number of patterns in the
initial pattern set Pinit. Here a transition fault (TF) test set
without any specific optimization was generated using a
commercial ATPG tool. The transition fault coverage FCTF
reported by the tool is shown in the last column. The values for
FCTF range from 66.05 % to 99.99 % and can be viewed as an
estimate of the maximum achievable coverage of small delay
faults. Therefore all further experiments were restricted to fault
locations with detected transition faults.

Both the hybrid workflow for pattern and frequency
selection from Section III and the D-bit Selection from Section
IV were analyzed using decreasing fault sizes δ = 18σ, δ =
12σ, and δ = 6σ, where σ denotes the standard deviation of the
nominal gate delay.

A. Pattern and Frequency Selection

Table II summarizes the major results obtained with the
hybrid workflow from section III.C for the three different fault
sizes δ = 18σ, δ = 12σ, and δ = 6σ. In all experiments the mini-
mum observation time was set to tmin = 0.3·tnom, and k = 6
equidistant observation times were selected in the interval [tmin,
tnom) to obtain the initial set of frequencies, i.e. Finit = {1/t0, …,
1/t5} with t0 = 0.3·tnom, t1 = 0.42·tnom, t2 = 0.53·tnom, t3 =
0.65·tnom, t4 = 0.77·tnom, and t5 = 0.88·tnom. Depending on the
circuit, the minimum observation time tmin thus ranges from
around 450 ps to 2640 ps, which corresponds to frequencies in
the range of several hundred MHz up to around 2 GHz.

TABLE II. FINAL COVERAGE OF HIDDEN DELAY FAULTS

Circuit δ = 18σ δ = 12σ δ = 6σ

HDF FCHDF # HDF FCHDF # HDF FCHDF

b14_1 37122 83.42% 37297 81.91% 37503 79.94%

b15_1 18585 55.98% 18611 56.30% 18543 55.50%

b17_1 67582 82.07% 62769 81.56% 58998 81.12%

b18_1 231602 84.46% 223499 83.02% 214908 80.78%

b20_1 90883 86.69% 91437 85.01% 92008 83.52%

b21_1 90359 86.94% 91152 85.53% 92028 83.91%

b22_1 150184 87.02% 150536 85.77% 150365 84.01%

p45k 64656 84.74% 55517 76.82% 42495 84.08%

p78k 224573 95.37% 219058 95.41% 208870 95.94%

p81k 357911 93.06% 339236 92.40% 315086 91.85%

p89k 181099 81.16% 161448 79.83% 148393 78.77%

p100k 138855 83.75% 124718 84.50% 113198 85.07%

p141k 306029 88.32% 291403 87.80% 276565 86.61%

As explained above, only fault locations with detected

transition faults were considered for further analysis. For each
fault size, Table II shows the number of hidden delay faults
identified by the workflow as well as the percentage FCHDF of
hidden delay faults that can finally be detected with the
enlarged test set Ptotal and all frequencies Ftotal. Please note that
hidden delay faults are only considered at locations with
detectable transition faults, and that the coverage measured by

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2864255, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

FCHDF is relative to the number of hidden delay faults but not
to the total number of fault locations.

The results in Table II demonstrate that the hybrid work-
flow of section III.C ensures a very high coverage of hidden
delay faults, which decreases only slightly with the fault size.
The small portion of undetected hidden delay faults would
require frequencies higher than fmax or additional test patterns.
At this point it is also important to note that FAST is applied on
top of a standard delay test, such that even the smaller hidden
delay fault coverage for circuit b15_1 still contributes to a con-
siderable increase in product quality.

The necessary effort, however, increases with shrinking
fault sizes as indicated by Table III. For each fault size the
number of additional test frequencies determined by optimal
frequency selection as well as the overall test time are
recorded. The test time is measured as the actual number of test
patterns used during test. Please note that this number is not
necessarily equal to the number of patterns in Ptotal, as during
pattern and frequency selection some patterns may be used at
several frequencies for different hidden delay faults while
others may not detect any hidden delay faults and are discarded
therefore.

TABLE III. NUMBER OF FREQUENCIES AND TEST TIME

Circuit δ = 18σ δ = 12σ δ = 6σ

Freq. Test

time

Freq. Test

time

Freq. Test

time

b14_1 42 1673 48 1944 53 2213

b15_1 14 395 16 457 24 579

b17_1 22 1761 26 1872 34 2343

b18_1 55 5105 62 5773 79 7228

b20_1 48 3450 53 4017 68 5142

b21_1 46 3515 54 4065 67 5246

b22_1 62 5520 65 6540 86 8393

p45k 11 1707 12 1468 16 1092

p78k 8 284 8 435 12 756

p81k 29 3912 29 4382 33 6131

p89k 34 5620 36 6051 39 7980

p100k 16 2106 22 2217 33 2767

p141k 27 5569 32 6775 40 9371

As expected, for smaller fault sizes more frequencies and

longer test times are needed to maintain a comparable detection
level. Finally, Figures 11 through 13 illustrate the ramp up of
the hidden delay fault coverage in the three phases of the
workflow. In each figure, the blue bars represent the hidden
delay fault coverage FCHDF,1 achievable with the initial test set
Pinit and the 6 equidistant frequencies in Finit. The red bars show
the additional hidden delay fault coverage FCHDF,2 obtained by
adding timing-aware patterns Padd for the hard faults, and the
green bars correspond to the additional hidden delay fault
coverage FCHDF,3 after optimal frequency selection. In all
figures, it can be observed, that both the additional patterns and
the additional frequencies actually ramp up the hidden delay
fault coverage. Interestingly, the more difficult the detection of
hidden delay faults gets with decreasing fault sizes, the higher

is the gain achieved in the second and third step of the
workflow.

The results in Figures 11 through 13 also show that a more
naïve approach for FAST based on a fixed number of
equidistant frequencies and a simple transition fault set (initial
set up) can already detect a considerable amount of hidden
delay faults. However, some faults remain undetectable and
require specifically selected frequencies.

Fig. 11. Evolution of hidden delay fault coverage for 18σ.

Fig. 12. Evolution of hidden delay fault coverage for 12σ.

Fig. 13. Evolution of hidden delay fault coverage for 6σ.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2864255, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

In practice, the number of additional frequencies for
maximum coverage may not always be acceptable. It might
therefore be an option to trade-off hidden delay fault coverage
against the overhead for additional frequencies. This is
illustrated in Figure 14 for circuit b22_1 and a fault size of 6 σ.
The curve shows the evolution of fault efficiency, which is
measured as the hidden delay fault coverage normalized to the
final coverage reported in Table II, for 5 of the 6 initial and 86
additional frequencies. The sixth initial frequency is omitted,
because it covers only faults also detected by the additional
frequencies. A fault efficiency of 95 % can be reached already
with 25 frequencies. The high effort for the remaining 5 %
shows that some hidden delay faults in the circuit can only be
detected with individually adjusted frequencies.

Fig. 14. Hidden delay fault coverage versus additional frequencies.

B. D-Bit Selection

To evaluate the approach for D-bit selection presented in
Section IV, the selected test frequencies and patterns reported
in the previous subsection were used. The observed X-rates
confirm the importance of a flexible X-handling strategy.
Figure 15 illustrates the evolution of X-rates during FAST for
one example circuit. The curve shows the average number of
X-values per scan slice as a function of the observation time.
The observation times are normalized to the nominal
observation time and range from 88 % down to 30 %, which
corresponds to tmin. It can be clearly seen that the X-rates
considerably increase with decreasing observation times.
Similar trends can be observed for all other circuits.

Fig. 15. X-rates per scan slice as a function of the observation time for circuit
p141k.

The hidden delay fault coverage after compaction was
determined by full symbolic simulation of all faults and all D-

bits. As the results for the three different fault sizes δ = 18σ,
δ = 12σ, and δ = 6σ are very similar, only the results for the
most difficult case δ = 6σ are summarized in Table IV.

TABLE IV. D-BIT SELECTION

Circuit # D-Bits MISR # Selected

D-Bits

Sign. Memory

[kB]

FE

b14_1 9645 16 51.57% 3317 6.48 98.82%

b15_1 5137 16 35.22% 1221 2.38 97.43%

b17_1 19878 32 40.14% 5470 21.37 99.40%

b18_1 89272 64 27.77% 12708 99.28 99.89%

b20_1 30177 64 42.29% 6241 48.76 99.85%

b21_1 31418 64 41.69% 6402 50.02 99.90%

b22_1 53401 64 39.77% 11659 91.09 100.00%

p45k 175253 64 3.30% 2440 19.06 99.92%

p78k 123714 64 18.38% 13116 102.47 99.96%

p81k 200081 64 19.05% 39093 305.41 99.81%

p89k 147235 64 13.36% 15069 117.73 99.34%

p100k 165992 128 6.69% 4091 63.92 99.99%

p141k 394313 256 10.10% 23797 743.66 100.00%

The second column in Table IV lists the number of D-bits
carrying hidden delay fault information, and the third column
indicates the MISR size, which corresponds to the number of
scan chains in this experiment. The remaining columns report
the results obtained using a greedy algorithm for the problem
D-Bit Cover. The percentage of selected D-bits is listed in
column 4, before the number of signatures to be stored, the
resulting memory requirements in kB and the fault efficiency
FE are presented in columns 5 to 7. Here, fault efficiency is
defined as the following ratio

FE =
HDFs observable after X-canceling

HDFs observable in the uncompacted test response
.

Analyzing the results shows that in all cases a relatively
small percentage of D-bits is sufficient to ensure a very high or
even complete fault efficiency with feasible storage require-
ments. To complete the evaluation, the experiments were rerun
for a fixed MISR size of 512. The obtained trade-offs are
illustrated in Figures 16 and 17. As expected the fault
efficiency slightly increases for the larger MISR. However, the
overall storage requirements also increase considerably.

Fig. 16. Impact of the MISR size on fault efficiency.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2864255, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

Fig. 17. Impact of the MISR size on signature storage.

It is interesting to note that for almost all circuits a smaller
MISR size clearly provides a better trade-off between fault
efficiency and signature storage, as the number of intermediate
signatures is comparable for both small and large MISR sizes.

C. Runtimes

The algorithms described above have been executed on an
Intel Xeon 5 processor with 12 cores and 128 GB RAM. For
the GPU-based simulator, a GeForce 980 TI has been used. As
the runtimes for the different fault sizes are very similar, only
the breakdown for the smallest fault size δ = 6σ is shown in
Table V.

TABLE V. RUNTIMES FOR 6σ IN SECONDS

CUT Simulation Selection algorithms Total

First Second Freq. Pattern D-Bit

b14_1 511 446 1 44 10 1012

b15_1 524 239 1 13 2 780

b17_1 381 326 2 149 19 877

b18_1 9228 6636 11 738 251 16864

b20_1 1823 1790 3 189 45 3850

b21_1 1899 1933 3 210 44 4089

b22_1 3303 4422 5 362 106 8198

p45k 2413 283 1 241 17 2955

p78k 5812 191 4 112 102 6221

p81k 10647 8547 13 1498 387 21092

p89k 4687 20194 4 570 244 25701

p100k 11355 735 3 786 147 13026

p141k 22476 33688 12 2560 1385 60121

The second column shows the runtime for the exhaustive

fault simulation using the initial pattern set Pinit. The runtimes
in the third column correspond to the second simulation run,
which is performed for the hard faults that cannot be detected
by Pinit and Finit. For the second simulation run the timing-
aware patterns in Padd are used. This can lead to high
simulation times for some circuits despite the reduced sizes of
the underlying fault sets. The fourth column shows the runtime
for the hypergraph-based frequency selection, followed in
column five by the runtime for selecting the respective patterns
for each frequency.Finally, columns six and seven show the
runtimes for the selection of D-bits and calculation of the
intermediate signatures. The last column shows the overall

runtime, which ranges from approximately 13 minutes for
b15_1 to around 17 hours for the largest circuit p141k. For all
circuits, the overall runtime is clearly dominated by the fault
simulation times listed in columns 2 and 3.

VI. CONCLUSIONS AND FUTURE WORK

Small delay faults can be indicators of marginal hardware
and should be monitored throughout the life cycle of a system.
Hidden delay faults are particularly challenging, because they
can only be propagated along short paths and require faster-
than-at-speed test frequencies. The BIST approach in this paper
enables periodic in-field testing for hidden delay faults, and
thus a proactive detection of potential reliability problems
before they cause actual failures. Nevertheless, there is a
problem of false alarms, when small delay faults are detected
which are actually caused by uncritical delay variations. To
quantify and solve this problem a more comprehensive
approach on variations is required, which is in the focus of
ongoing research. Future research will also target more
complex clock schemes and multi-cycle testing.

VII. ACKNOWLEDGEMENTS

Parts of this work have been supported by the German
Research Foundation (DFG) under grants WU 245/19-1 and
HE1686/4-1, FAST.

VIII. REFERENCES

[1] V. Malandruccolo, et al., “Design and Experimental Characterization of
a New Built-In Defect-Based Testing Technique to Achieve Zero

Defects in the Automotive Environment”, IEEE Transactions on
Device and Materials Reliability, Vol. 11, No. 2, June 2011, pp. 349-

357.

[2] Y. Sato et al., “DART: Dependable VLSI test architecture and its
implementation,” Proceedings IEEE International Test Conference

(ITC’12), Anaheim, CA, USA, 2012, pp. 1-10.

[3] U. Abelein et al., “Non-intrusive integration of advanced diagnosis
features in automotive E/E-architectures,” Proceedings Design,

Automation & Test in Europe Conference & Exhibition (DATE’14),
Dresden, Germany, 2014, pp. 1-6.

[4] J. A. Abraham et al., “Special session 8B — Panel: In-field testing of

SoC devices: Which solutions by which players?,” Proceedings IEEE
VLSI Test Symposium (VTS’14), Napa, CA, USA, 2014, pp. 1-2.

[5] C. Eychenne and Y. Zorian, “From manufacturing to functional safety

use, how infield built-in self-test architecture must evolve to support
real time system constraints,” 1

st
 IEEE International Workshop on

Automotive Reliability and Test (ART’16), Forth Worth, TX, USA,
Nov. 2017.

[6] T. McLaurin, “Online LBIST for Automotive on a Multicore
Processor,” 1

st
 IEEE International Workshop on Automotive Reliability

and Test (ART’16), Forth Worth, TX, USA, Nov. 2017

[7] Y. M. Kim, et al., “Low-cost gate-oxide early-life failure detection in
robust systems,” Proceedings IEEE Symposium on VLSI Circuits

(VLSIC’10), Honolulu, HI, USA, June 2010, pp.125-126.

[8] M. Tehranipoor, K. Peng, K. Chakrabarty, “Test and Diagnosis of
Small-Delay Defects,” Springer, 2012, ISBN 978-1-4419-8296-4

[9] X. Lin, et al., “Timing-Aware ATPG for High Quality At-speed Testing

of Small Delay Defects,” Proceedings 15th Asian Test Symposium
(ATS’06), Fukuoka, Japan, Nov. 2006, pp.139-146.

[10] M. Yilmaz, K. Chakrabarty, and M. Tehranipoor, “Test-pattern

selection for screening small-delay defects in very-deep submicron
integrated circuits,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Vol. 29, No. 5, May 2010, pp. 760-
773.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2864255, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

[11] V. Zolotov, et al., “Statistical Path Selection for At-Speed Test,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 29, No. 5, May 2010, pp. 749-759.

[12] S. Eggersglüss, R. Drechsler, “As-Robust-As-Possible Test Generation
in the Presence of Small Delay Defects using Pseudo-Boolean

Optimization,” Proceedings Design, Automation and Test in Europe
(DATE’11), Grenoble, France, April 2011, pp. 1291-1296.

[13] M. Sauer, et al., “Early-life-failure detection using SAT-based ATPG,”

Proceedings IEEE International Test Conference (ITC’13), Anaheim,
CA, USA, Sep. 2013, pp. 1-10.

[14] H. Yan, A. D. Singh; “Experiments at Detecting Delay Faults using

Multiple Higher Frequency Clocks and Results from Neighboring Die”,
Proceedings IEEE International Test Conference (ITC’03), Charlotte,

NC, USA, Sep. – Oct. 2003, pp. 105-111.

[15] M. Amodeo and B. Cory, “Defining faster-than-at-speed delay tests,”
Cadence Nanometer Test Quarterly eNewsletter, Vol. 2, No. 2, May

2005.

[16] N. Ahmed, M. Tehranipoor, and V. Jayaram, “A Novel Framework for
Faster-than-at-Speed Delay Test Considering IR-drop Effects,”

Proceedings IEEE/ACM International Conference on Computer Aided
Design (ICCAD’06), San Jose, CA, USA, Nov. 2006, pp. 198–203.

[17] J. Lee and E. J. McCluskey, “Failing Frequency Signature Analysis,”

Proceedings IEEE International Test Conference (ITC’08), Santa Clara,
CA, USA, Oct. 2008, pp. 1–8.

[18] R. Turakhia, W. Daasch, M. Ward, and J. Van Slyke, “Silicon
evaluation of longest path avoidance testing for small delay defects,”

Proceedings IEEE International Test Conference (ITC’07), Santa Clara,
CA, USA, Oct. 2007, pp. 1–10.

[19] S. Chakravarty, N. Devta-Prasanna, A. Gunda, J. Ma, F. Yang, H. Guo,

R. Lai, and D. Li, “Silicon evaluation of faster than at-speed transition
delay tests,” Proceedings IEEE VLSI Test Symposium (VTS’12), Hyatt

Maui, HI, USA, Apr. 2012, pp. 80-85.

[20] T. L. McLaurin and F. Frederick, “The Testability Features of the
MCF5407 Containing the 4th Generation ColdFire® Microprocessor

Core,” Proceedings IEEE International Test Conference (ITC’00),
Atlantic City, NJ, USA, Oct. 2000, pp. 151-159.

[21] R. Press and J. Boyer, “Easily Implement PLL Clock Switching for At-

Speed Test,” Chip Design Magazine, Feb./March 2006.

[22] S. Kaeriyama, M. Kajita and M. Mizuno, “A 1-to-2GHz 4-Phase On-
Chip Clock Generator with Timing-Margin Test Capability,” Digest of

Technical Papers of the IEEE International 2007 Solid-State Circuits
Conference (ISSCC), San Francisco, USA, 2007, pp. 174-175 ctd. on

594.

[23] R. Tayade and J. A. Abraham, “On-chip Programmable Capture for
Accurate Path Delay Test and Characterization,” Proceedings IEEE

International Test Conference, Santa Clara, CA, USA, Oct. 2008, pp. 1-
10.

[24] S. Pei, H. Li, and X. Li, “An On-Chip Clock Generation Scheme for
Faster-than-at-Speed Delay Testing,” Proceedings Design and Test in

Europe (DATE’10), Dresden, Germany, March 2010, pp. 1353-1356.

[25] S. Pei, Y. Geng, H. Li, J. Liu und S. Jin, “Enhanced LCCG: A Novel
Test Clock Generation Scheme for Faster-than-at-Speed Delay

Testing,” Proceedings 20th Asia and Sout Pacific Design Automation
Conference (ASP-DAC), Chiba, Japan, 2015, pp. 514-519.

[26] S. Mitra and K. S. Kim, “X-Compact: An efficient response

compaction technique for test cost reduction,” Proceedings IEEE
International Test Conference (ITC’02), Baltimore, MD, USA, Oct.

2002, pp. 311-320.

[27] M. Naruse, et al., “On-chip compression of output responses with
unknown values using LFSR reseeding,” Proceedings IEEE

International Test Conference (ITC’03), Charlotte, NC, USA, Sep. –
Oct. 2003, pp. 1060-1068.

[28] J. Rajski, et al., “Convolutional compaction of test responses,”

Proceedings IEEE International Test Conference (ITC’03), Charlotte,
NC, USA, Sep. – Oct. 2003, pp. 745-754.

[29] M. Sharma and W.-T. Cheng, “X-Filter: Filtering Unknowns from

Compacted Test Responses,” Proceedings IEEE International Test
Conference (ITC’05), Austin, TX, USA, Nov. 2005, pp. 1-9.

[30] Y. Tang et al., “X-Masking During Logic BIST and its Impact on

Defect Coverage,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Vol. 14, No. 2, Feb. 2006, pp. 193-202

[31] N. A. Touba, “X-canceling MISR - An X-tolerant Methodology for
Compacting Output Responses with Unknowns Using a MISR,”

Proceedings IEEE International Test Conference (ITC’07), Santa Clara,
CA, USA, Oct. 2007, pp. 1-10.

[32] P. Wohl, J. A. Waicukauski, and S. Ramnath, “Fully X-Tolerant

Combinational Scan Compression,” Proceedings IEEE International
Test Conference (ITC’07), Santa Clara, CA, USA, Oct. 2007, pp. 1-10.

[33] D. Czysz, et al., “On compaction utilizing inter and intra-correlation of

unknown states,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 29, No. 1, Jan. 2010, pp. 117-

126.

[34] S. Hellebrand, et al., “FAST-BIST: Faster-than-At-Speed BIST
Targeting Hidden Delay Defects,” Proceedings IEEE International Test

Conference (ITC'14), Seattle, WA, USA, October 2014, pp. 1-8.

[35] M. Kampmann et al., “Optimized Selection of Frequencies for Faster-
than-at-Speed Test,” Proceedings Asian Test Symposium (ATS’15),

Mumbai, India, November 2015, pp. 109-114.

[36] P. H. Bardell and W. H. McAnney, “Self-Testing of Multichip Logic
Modules,” Proceedings IEEE International Test Conference (ITC’82),

Philadelphia, PA, USA, Nov. 1982, pp. 200-204.

[37] A. W. Hakmi, S. Holst, H. J. Wunderlich, J. Schlöffel, F. Hapke and A.

Glowatz, “Restrict Encoding for Mixed-Mode BIST,” Proceedings
IEEE VLSI Test Symposium (VTS’09), Santa Cruz, CA, 2009, pp.

179-184.

[38] A. Singh, C. Han, X. Qian, “An Output Compression Scheme for
Handling X-States from Over-Clocked Delay Test,” Proceedings 28th

IEEE VLSI Test Symposium, Santa Cruz, CA, USA, April 2010, pp.
57-62.

[39] S. Mitra, S. S. Lumetta, M. Mitzenmacher, “X-tolerant signature

analysis,” Proceedings IEEE International Test Conference (ITC’04),
Charlotte, NC, USA, Oct. 2004, pp. 432-441.

[40] R. Garg, R. Putman, and N. A. Touba, “Increasing Output Compaction

in Presence of Unknowns using an X-Canceling MISR with
Deterministic Observation,” Proceedings IEEE VLSI Test Symposium

(VTS’08), San Diego, CA, USA, April – May 2008, pp. 35-42.

[41] J. Rajski, et al., “Embedded Deterministic Test,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 23,

No. 5, 2004, pp. 776-792.

[42] X. Fu, H. Li, and X. Li, “Testable path selection and grouping for faster
than at-speed testing,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, Vol. 20, No. 2, 2012, pp. 236-247.

[43] B. Kruseman, et al., “On hazard-free patterns for fine-delay fault

testing,” Proceedings IEEE International Test Conference (ITC’04),
Charlotte, NC, USA, Oct. 2004, pp. 213–222.

[44] T. Yoneda, et al., “Faster- Than-At-Speed Test for Increased Test

Quality and In-Field Reliability,” Proceedings IEEE International Test
Conference (ITC’11), Anaheim, CA, USA, Sep. 2011, pp. 1-9.

[45] R. M. Karp, “Reducibility Among Combinatorial Problems,” in R. E.

Miller and J. W. Thatcher (editors), “Complexity of Computer
Computations,” New York: Plenum, 1972, pp. 85-103.

[46] M. R. Garey, D. S. Johnson, “Computers and Intractability – A Guide

to the Theory of NP-completeness,” W. H. Freeman & Co Ltd., New
York, NY, USA, 1979

[47] P. K. Agarwal, E. Ezra, and M. Shair, “Near-linear approximation

algorithms for geometric hitting sets,” Proceedings 25th Annual
Symposium on Computational Geometry (SCG '09), Aarhus, Denmark,

June 2009, pp. 23-32.

[48] L. Shi and X. Cai, “An Exact Fast Algorithm for Minimum Hitting
Set,” Proceedings Third IEEE International Joint Conference on

Computational Science and Optimization., May 2010, pp. 64–67.

[49] E. Schneider, et al., “GPU-Accelerated Small Delay Fault Simulation,”

Proceedings Design, Automation and Test in Europe (DATE’15),
Grenoble, France, March 2015, pp. 1174–1179.

[50] I. Pomeranz and S. M. Reddy, “On n-Detection Test Sets and Variable

n-Detection Test Sets for Transition Faults,” IEEE Transactions on

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2864255, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

Computer-Aided Design of Integrated Circuits and Systems, Vol. 19,

No. 3, March 2000, pp. 372-383.

[51] F. Corno, M. Sonza Reorda and G. Squillero, “RT-Level ITC'99

Benchmarks and First ATPG Results,” IEEE Design & Test of

Computers, Vol. 17, No. 3, pp. 44-53, Jul. 2000. Benchmarks available

at https://github.com/squillero/itc99-poli, last visited on 2018-06-12

