
Variation-Aware Small Delay Fault Diagnosis

on Compressed Test Responses

Holst, Stefan; Schneider, Eric; Kochte, Michael A.; Wen, Xiaoqing;

Wunderlich, Hans Joachim

Proceedings of the IEEE International Test Conference (ITC’19), Washington DC, USA,

11-15 November 2019

doi: https://doi.org/10.1109/ITC44170.2019.9000143

Abstract: With today’s tight timing margins, increasing manufacturing variations, and new defect behaviors
in FinFETs, effective yield learning requires detailed information on the population of small delay defects in
fabricated chips. Small delay fault diagnosis for yield learning faces two main challenges: (1) production test
responses are usually highly compressed reducing the amount of available failure data, and (2) failure signatures
not only depend on the actual defect but also on omnipresent and unknown delay variations. This work
presents the very first diagnosis algorithm specifically designed to diagnose timing issues on compressed test
responses and under process variations. An innovative combination of variation-invariant structural analysis,
GPU-accelerated time-simulation, and variation-tolerant syndrome matching for compressed test responses
allows the proposed algorithm to cope with both challenges. Experiments on large benchmark circuits clearly
demonstrate the scalability and superior accuracy of the new diagnosis approach.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic
reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form
to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

https://doi.org/10.1109/ITC44170.2019.9000143

Variation-Aware Small Delay Fault Diagnosis on

Compressed Test Responses

Stefan Holst∗, Eric Schneider‡, Michael A. Kochte§, Xiaoqing Wen∗, Hans-Joachim Wunderlich‡

∗Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Japan

{holst, wen}@cse.kyutech.ac.jp
‡University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany

schneiec@iti.uni-stuttgart.de, wu@informatik.uni-stuttgart.de
§michael.kochte@gmx.net

Abstract—With today’s tight timing margins, increasing man-
ufacturing variations, and new defect behaviors in FinFETs,
effective yield learning requires detailed information on the
population of small delay defects in fabricated chips. Small delay
fault diagnosis for yield learning faces two main challenges: (1)
production test responses are usually highly compressed reducing
the amount of available failure data, and (2) failure signatures
not only depend on the actual defect but also on omnipresent
and unknown delay variations. This work presents the very first
diagnosis algorithm specifically designed to diagnose timing issues
on compressed test responses and under process variations. An
innovative combination of variation-invariant structural anal-
ysis, GPU-accelerated time-simulation, and variation-tolerant
syndrome matching for compressed test responses allows the
proposed algorithm to cope with both challenges. Experiments
on large benchmark circuits clearly demonstrate the scalability
and superior accuracy of the new diagnosis approach.

Keywords—small delay defect; logic diagnosis; test compres-
sion; process variation; GP-GPU

I. INTRODUCTION

In modern nanometer technologies, timing-related faults

have become a major concern in any high-performance or

low-power device and their diagnosis is crucial for effec-

tive yield learning during production [1]. Modern multi-gate

devices, such as FinFETs, are especially prone to timing-

related faults as production defects that affect only some of

their gates can reduce their driving strength [2]. Small delay

defects (SDDs) [3] are a popular model to describe such

additional delays and considerable amount of research has

been conducted on simulation [4–6], test generation [7], and

diagnosis [8–11] of SDDs. The additional delay introduced by

an SDD is called its size. In contrast to transition or gross delay

faults [12, 13], this additional delay is usually smaller than the

cycle time of their clock domain. SDDs at the same location

but with different sizes may lead to different test responses as

the fault effects are only observable over sufficiently long paths

[14, 15]. This dramatically increases the number of possible

faults in the search space for a corresponding logic diagnosis

algorithm. Further complications arise when the same SDD of

the same size lead to different results in different chips due to

manufacturing variations [16, 17]. All of the aforementioned

aspects combined render logic diagnosis of SDDs an extremely

challenging task.

The fault syndromes obtained through production test are

usually highly compressed so as to reduce tester memory

demands and test time [1]. For efficient yield learning, a

diagnosis algorithm has to operate on compressed signatures

only. The trade-off between compression ratios and diagnostic

resolutions has been investigated previously [18] and some

diagnosis approaches can cope with very high compression

ratios [19]. Compressing syndromes from SDDs leads to

several complications for logic diagnosis. Fig. 1 illustrates

these challenges on a simple design with two scan chains

of length three. The effects of the SDD is only observable

at pseudo-primary outputs (PPOs) of sufficiently long paths.

Even when the propagation path is long enough, the fault effect

may still be masked due to reconvergency-induced hazards.

The six PPOs are compressed into three signature bits, one

for each scan slice. This compression can lead to additional

masking as shown in the first (top) signature bit. A diagnosis

algorithm has to model the activation and propagation of

SDDs accurately enough in order to predict compressed fault

signatures from fault candidates under the impact of hazards

and process variations [4].

PPO

C
om

p
ression

0

1
1/0

Signature

Small-Delay

Defect

=1

C
h

a
in

 1
C

h
a
in

 2

Hazard

Passing and Faulty

path values at capture time:

short path

long paths

Masked by

Compression

Fig. 1. Space-compacted test response of a SDD syndrome.

Approaches to diagnosing SDDs are mainly based on two

distinct principles: inject-and-validate and backtracing [10].

1

Inject-and-validate based methods inject candidate faults and

use multi-valued logic simulation [8, 20], timing-analysis

combined with transition-fault simulation [11] or statistical

reasoning [21] to estimate their signatures, which are then

compared with the observed responses. Diagnosis approaches

that work well with response compression usually focus on

stuck-at or transition faults that do not require exact timing

models [19]. These approaches usually do not model the

precise timing of a circuit due to its computational complexity.

Simpler timing models, however, easily lead to a large percent-

age of mismatching signature bits as shown in Fig. 2a). While

only one out of six PPOs differ between the shown transition

fault candidate and the SDD in Fig. 1, 33% of signature bits

show a mismatch. The reason is that response compactors are

designed for high observability and each change in a response

bit is reflected in at least one bit of the signature.

0

1/0

1/0

Transition

Fault

=1

a) Inject-and-Validate

Diagnosis:

Signature

Mismatch

0

1

1/0

b) Backtracing-based

Diagnosis:

Failing PPO

Mismatch

?
Fig. 2. Common SDD diagnosis techniques are ineffective on compressed
syndromes.

Backtracing-based methods [22–25] are designed to trace

back sensitized paths from failing PPOs to find candidate SDD

locations. Their effectiveness is usually lost when they are

directly applied to compressed signatures. This is because a

single faulty signature bit can originate from numerous PPOs

and a correct signature bit does not imply that all associated

PPOs are correct. Fig. 2b) shows a backtracing attempt on

the SDD signature from Fig. 1. It can identify only one out

of three failing PPOs since the other two failing values are

masked by response compression. In addition, another PPO is

assumed as possibly faulty, which is totally unrelated to the

original SDD.

This paper proposes a novel diagnosis algorithm that can

diagnose single SDDs in the circuit under test directly from

highly compressed fault signatures which are also influenced

by timing variations. The primary purpose of this diagnosis

algorithm is to provide additional and better fault candidate

data for statistical analysis in volume diagnosis. The diagnosis

system is not intended for precision diagnosis, which needs to

be fault model agnostic and able to handle multiple faults. In a

precision diagnosis context, access to uncompressed response

data is usually available and many sophisticated precision

diagnosis methods can be found in the literature [8–11].

Here, we focus on finding small delay defects that might be

responsible for failing signatures. Our system can easily be

used in parallel with other diagnosis approaches to generate

more valuable data for volume diagnosis.

The overall diagnosis system is illustrated in Fig. 3. It com-

prises of two phases. The first phase generates a set of initial

SDD candidates using a novel variation-invariant backtracing

approach that is based on a fast 6-valued logic simulation.

In the second phase, the candidates are scored using graphics

processing unit (GPU) accelerated timing-accurate small delay

fault simulation [5] combined with innovative variation-aware

signature matching.

Variation-Invariant Backtracing
Using 6-Valued Logic Simulation

Spatial Pruning

Delay

Test Set

Fault

Signatures

Initial SDD

Candidates

Temporal Pruning

SDD Candidate Timing Simulation
Using GPU-Accelerated Waveform-

Accurate Delay Fault Simulation

Tester-Fail Scoring

Final SDD Scoring

Ranked

Candidates

Fig. 3. Proposed SDD diagnosis flow.

The remainder of this paper is organized as follows: Sec-

tion II discusses test response compression and its implications

on SDD diagnosis. Section III introduces the new variation-

invariant backtracing-based pruning approach used to focus

the diagnosis on the most suspicious parts of the circuit.

Section IV proposes a new method for efficiently scoring

SDD candidates using GPU-accelerated timing simulation, and

the experimental results in Section V show the diagnostic

resolution and runtime efficiency of the proposed method.

II. TEST RESPONSE COMPACTION AND DIAGNOSIS

A. Linear Space Compactors

Linear space compactors, such as parity trees [26] or X-

Compact [27], are popular hardware structures to compress test

responses. The proposed diagnosis approach works with any

linear space compactor. A space compactor computes a few

signature bits from each test response separately and there are

no dependencies among test responses. In a linear compactor,

each signature bit is always a linear combination (i.e., the

parity or XOR-sum) of a certain subset test response bits.

Let o1, . . . , on ∈ O be the PPOs of the circuit under

diagnosis (CUD). Let s1, . . . , sm ∈ S be the signature bits,

i.e. the output of the linear space compactor. The compactor is

completely defined by providing for each signature bit si ∈ S

the set of PPOs in its fan-in: O[si] ⊆ O. Let t ∈ T be a

2

delay test and o1(t), . . . , on(t) its response captured in the

PPOs. Its signature bits are then simply: si(t) = ⊕o∈O[si]o(t)
(1 ≤ i ≤ m).

B. Direct vs. Indirect Diagnosis

In indirect diagnosis, first the original test responses (the

state of the PPOs) are reconstructed from the signatures,

and then, logic diagnosis is performed on the reconstructed

data. It is easily combined with any common SDD diagnosis

technique. However, test response reconstruction requires the

use of error-correcting compactors [27], whose signatures are

quite large. Moreover, reconstruction may still fail if the PPOs

contain too many failing bits, resulting in invalid information

given to the logic diagnosis algorithm.

Direct diagnosis, which is used in this work, resolves the

above issues by directly working on compressed signatures

[18]. In the inject-and-validate approach, the simulated test

responses of each fault candidate are first compressed and

then compared with the observed signatures to find a match.

Backtracing-based techniques also work on compressed signa-

tures in principle, although at reduced resolution (see Fig. 2b)).

C. Model for Direct SDD Diagnosis

The proposed diagnosis algorithm uses both backtracing

and timing simulation. The circuit model consists of the

combinational part of the CUD with all scan cells replaced by

pseudo-primary inputs (PPIs) and PPOs. The nominal delays

of all combinational logic gates and interconnects are obtained

from synthesis in standard delay format.

All test infrastructure including the compactor is usually

tested separately (e.g., using scan flush tests) and is assumed

to be defect-free. During simulations, the diagnosis algorithm

calculates the compressed signatures directly from the re-

sponse at PPOs. Backtracing follows every faulty signature

bit si back to its corresponding PPOs in O[si]. Obviously, no

timing information is necessary for the compactor structure

itself since it is not part of the delay test.

The proposed diagnosis algorithm analyzes responses for

two-pattern delay tests that are applied by using launch-

on-shift (LoS) or launch-on-capture (LoC) schemes. Each

delay test consists of a test pattern pair with an initialization

pattern and a propagation pattern. The LoS scheme loads the

initialization patten, applies a single shift clock to generate the

propagation pattern and loads the possibly erroneous result

by a single system clock. The LoC scheme generates the

propagation pattern by a system clock, and loads the result

by a second system clock. Since this paper deals with SDDs,

we can assume that the first system clock is applied slow

enough to generate an error-free propagation pattern, and

the second system clock is applied fast enough to load a

possibly erroneous values. For diagnosing permanent faults or

transition faults, other techniques can be found in the literature

[1, 28, 29].

III. VARIATION-INVARIANT BACKTRACING

The analysis of a faulty signature begins with a variation-

invariant backtracing approach shown in the upper part of

Fig. 3. Its goal is to prune the vast search space of all

possible SDDs down to an initial set of SDD candidates for

further evaluation by diagnostic fault simulation. It is robust

against any additional influence on the fault signature caused

by timing variations under the assumption that there is only a

single SDD in the CUD and the circuit without the SDD but

with the same timing variations would have passed the test.

This backtracing approach is conservative in nature so as to

guarantee that the generated set of SDD candidates includes

all circuit structures and fault sizes that could possibly lead to

the observed signatures. It exploits the following facts on the

defective behavior of the CUD:

• If a signature bit si(t) is faulty, then at least one PPO

in O[si] is faulty and the culprit is located on a structure

with a possibly-sensitized path (defined below) to any

PPO in O[si].
• A failing signature cannot be explained by an SDD

candidate that is located in an internal cell showing a

stable signal in fault-free simulation of that delay test.

• The size of an SDD candidate must be sufficient to reach

all faulty signature bits.

Variation-invariant backtracing consists of two phases: spa-

tial pruning and temporal pruning. In spatial pruning, all

failing signature bits are traced back along possibly-sensitized

paths (similar to [23, 25]) to mark all possible SDD locations

in the circuit. For each possible SDD location, temporal

pruning is used to calculate upper and lower bounds on its

fault size.

A. Six-Valued Logic Simulation

Both spatial and temporal pruning rely on a fault-free

logic simulation to determine possible SDD activation and

propagation paths. This logic simulation uses a 6-valued H6

algebra [30] to pessimistically analyze signal transitions and

static hazards. This algebra is defined over the set H6 =
{S0, S1,T0,T1,H0,H1}, where the symbols S0 and S1 repre-

sent static signals, T0 and T1 represent non-static signals with

transitions or dynamic hazards, H0 and H1 represent non-static

signals with possible hazards. When there is a path of non-

static signal values between an internal signal a and a PPO o,

we call it a possibly-sensitized path. Possibly-sensitized paths

can serve as SDD propagation paths and lead to erroneous

PPOs in the CUD. Figure 4 shows an example of a 6-valued

simulation of one test pattern pair identifying two possibly-

sensitized paths.

Fig. 4. Fault-free 6-valued logic simulation of a pattern pair and two identified
possibly-sensitized paths.

3

Again, the simulation is pessimistic, meaning that the set

of possibly-sensitized paths always includes all the actually

sensitized paths in the defective CUD. This is also true in

particular for defective CUD under timing variations. Timing

variations may change non-robustly [31] sensitized paths as the

arrival times of off-path values differ. Still, all possible non-

robust sensitizations are marked appropriately as non-static

signals during 6-valued simulation.

B. Spatial Pruning

In spatial pruning, all erroneous signatures are analyzed to

determine which circuit structures (i.e., cells or signals) may

be responsible for the erroneous bits in the signatures.

Every signal in the combinational circuit model is associated

with a hit-counter value whose initial value is set to 0. The

tester fails are analyzed one by one and the counter of a signal

a is increased whenever both of the following two conditions

become true:

1) There is a possibly-sensitized path between the signal

a and a PPO that may be responsible for an erroneous

signature bit.

2) There is possibly at least one transition on the signal a

itself.

Let t be a failing delay test and Sf (t) = {s ∈ S|sCUD(t) 6=
sgood(t)} the set of erroneous signature bits. The set of all

possibly-erroneous PPOs is then: Of (t) = ∪s∈Sf (t)O[s].
The delay test t is simulated to obtain the H6 value for each

internal signal in the fault-free circuit. Each non-static signal

at a PPO in Of (t) is flagged as suspicious. These flags are

now back-propagated in reverse topological order towards the

PPIs. For each cell with a flagged output signal all non-static

input signals are flagged suspicious as any of them might carry

the delayed transition that caused the erroneous signature in

the CUD. After back-propagation is completed, the hit-counter

of each flagged signal is incremented, the flags are reset and

the next test with erroneous signature is analyzed.

Figure 5 shows an example structural pruning performed on

a small circuit and with two tests. The outputs of the fault-

free 6-valued logic simulation are compared to the observed

responses. Starting from each mismatching output, all driving

signals showing a value of T0,T1,H0, or H1 are flagged.

Fig. 5. Back-propagation of possibly-sensitized paths from failing outputs.

By design, the pessimistic 6-valued fault-free simulation

combined with the described variation-invariant backtracing

approach guarantees that the signal with the real culprit is

always flagged suspicious for every failing test. As the set of

possibly-sensitized paths determined by 6-valued simulation is

always a superset of the paths actually sensitized in the CUD,

there cannot be a SDD in the CUD that fails a test but is not

flagged by backtracing. Therefore, the SDD will be located on

a signal with its hit-counter matching the number of failing

tests. These signals are called spatial candidates. The right-

hand side of figure 5 shows the two spatial candidates obtained

by structural pruning.

The complexity of this approach is O(|Tf | · #nets) with

Tf being the set of failing tests. The computational effort is

equivalent to a simple logic simulation of Tf .

C. Temporal Pruning

Temporal pruning determines the upper bound sizemax and

the lower bound sizemin on the fault size of each spatial

candidate. If the size of an SDD is less than its lower bound

sizemin, the additional delay will be insufficient to reach all

observed erroneous signature bits. If the size of an SDD is

larger than its upper bound sizemax, it will result in exactly

the same responses as an SDD of the size sizemax. Therefore,

sizes outside these bounds do not need to be simulated in the

following inject-and-validate phase.

The bounds are calculated based on nominal timing infor-

mation without considering variations directly. This is a delib-

erate choice, because the SDD candidates will later be fault-

simulated with nominal timing as well. The variation-aware

scoring approach described in the next section compensates

for the discrepancies between simulated signatures and real

observations.

The lower bound sizemin is based on the latest stabilization

times (LSTs) [32] at each possibly-erroneous PPO Of (t), t ∈
T . After the 6-valued simulation of a failing test t, the circuit

is traversed in topological order from the PPIs to the PPOs.

The LST at each PPI is set to 0. The LST at the output of

a cell is calculated based on the LSTs at its inputs, the cell

delays, and the H6 values of the corresponding signals. For

each input pin of a cell that carries a non-static signal, a LST

candidate is obtained by adding the pin-delay to the input-LST.

If the output is non-static, its LST is the maximum of the LST

candidates; otherwise, if the output of the cell is static, its LST

is set to 0.

After this propagation, LST(t, o) gives for a test t and a

PPO o the point in time after which the signal is guaranteed

to remain static in the fault-free circuit. The slack at the PPO

o for the test t is the difference between its LST(t, o) and the

capture time C: slack(t, o) = C − LST(t, o). The slack of a

signature bit s ∈ S equals the minimum slack of its PPOs:

slack(t, s) = min{slack(t, o)|o ∈ O[s]}. For a signature bit

s ∈ Sf (t) to be erroneous, there must be a SDD f in the circuit

with a size larger than the slack at s (size(f) ≥ slack(t, s)).
The lower bound sizemin is the maximum slack at a failing

signature bit of the whole test:

sizemin = max{slack(s, t)|t ∈ T, s ∈ Sf (t)}.

4

This lower bound does not depend on fault location and is

therefore the same for all spatial candidates. Figure 6 shows

an example of computing the lower bound based on two tests.

To compute the lower bound, the circuit has to be traversed

one time for each failing test. Therefore, its complexity is

again equivalent to a simple logic simulation of all failing

tests: O(|Tf | ·#nets).

Fig. 6. Example of computing the lower bound with two tests.

The upper bound sizemax of a SDD candidate is based on

the earliest arrival times (EATs) at all of its reachable PPOs.

The earliest arrival time EAT(t, o) at a PPO o for a test t

is an estimated point in time before which the signal at o

is guaranteed to be stable. These EATs are calculated in the

same way as the LSTs. The only difference is that at each cell

the smallest EAT candidate is propagated to the cell’s output

signal. If a SDD is large enough to push the EAT of a PPO

beyond the capture time C, it leads to the same captured value

as any larger fault at the same location. Therefore, the upper

bound sizemax(f) of a fault candidate f is the minimum delay

required to push the EATs of all potentially observing PPOs

beyond C. Let O(t, f) be the set of PPOs with a possibly-

sensitized path originating at f under test t. The upper bound

for the candidate f is:

sizemax(f) = C −min{EAT(t, o)|t ∈ T, o ∈ O(t, f)}

Figure 7 shows an example of computing the upper bound of

a spatial candidate with two tests.

Fig. 7. Example of computing the upper bound of a spatial candidate with
two tests.

A few timing-aware diagnosis techniques also use passing

responses of a CUD to estimate sizemax(f) [8, 9, 11, 24]. This

is not applicable here because a passing signature bit s does

not imply that all PPOs in O[s] are correct. If sizemax(f)
would be estimated using the passing bits in a compressed

signature, the result might be too low since the possible

masking within the compactor is not considered. Furthermore,

the role of sizemax(f) in our approach is not to estimate the

size of the real culprit but to determine the size where the

behavior of a SDD candidate transitions to a gross delay fault.

The upper bounds are unique to each spatial candidate

because each of them can propagate to different PPOs. They

are, however, independent of the failing signature bits Sf and

can therefore be pre-computed for all possible SDD candidate

locations using only the design information and the used test

set. During diagnosis itself, the upper bound for a spatial

candidate is then simply selected from the pre-computed

information without any impact on runtime.

The size of each spatial candidate SDD f must fall within

the calculated bounds: sizemin < size(f) ≤ sizemax(f). If

size(f) is smaller than sizemin, it cannot reach all failed

signature bits. Any fault with size(f) larger than sizemax(f)
leads to the same test response as the fault with size(f) =
sizemax(f). This spatially and temporally constrained set of

SDD candidates are called the initial candidates.

IV. SDD CANDIDATE TIMING SIMULATION

The initial SDD candidates are now explicitly simulated

using the GPU-accelerated waveform-accurate small delay

fault simulation engine in [5]. To correctly simulate all hazards

and race conditions that might be caused by the SDD, each

candidate is simulated with a concrete size and polarity.

The fault sizes at each candidate fault location are chosen

based on the bounds determined in temporal pruning and the

characteristics of the timing variations of the CUD.

First, we will briefly present the simulation engine itself

(Subsection IV-A), followed by our new simulation result

confidence estimation (Subsection IV-B) and our variation-

aware SDD candidate scoring approach (Subsection IV-C). In

the final Subsection IV-D we will explain, how the search

space defined by the initial candidates is explored by carefully

selecting concrete SDD candidates for scoring.

A. GPU-Accelerated Timing Simulation

Our diagnosis approach requires an extremely high per-

formance timing simulator that is able to efficiently process

thousands of SDD candidates per diagnosis case. A traditional

timing simulator is insufficient here as it would lead to

prohibitively long diagnosis run-time. Recently, a waveform-

accurate small delay fault simulation engine was proposed [5]

that offers 3-4 orders of magnitude speedup over event-based

simulation. This is the first work that applies this simulation

engine to logic diagnosis.

The basic unit of computation is a waveform [33] that

contains all transitions of a specific signal in a circuit. The

waveforms for the PPIs are initialized with the test data and

the remaining waveforms in the combinational circuit are

calculated in topological order and using the nominal pin-to-

pin and interconnect delays. As this computation progresses,

5

the waveforms store all occurring transitions and hazards

which are then available at the PPOs. During propagation, the

simulator exploits two dimensions of parallelism as shown in

Fig. 8. Multiple test stimuli are processed in parallel and all

data-independent gates are calculated in parallel as well. One

gate for one stimulus is handled by a single thread in the GPU.

The two dimensions of parallelism then produce the massive

number of threads required to saturate the compute resources

and enable the aforementioned speedups.

...
......

...

...

st
ru

ct
ur

al
 p

ar
al

le
lis

m

da
ta

-
pa

ra
lle

lis
m

waveform

evaluation

Fig. 8. Two-dimensional waveform processing.

Before the first simulation, the design data, nominal timing

information and the test set is transferred to the global memory

(on-board G-RAM) of the GPU. This information stays in

GPU memory and does not need to be transferred again. To

simulate a SDD candidate, the appropriate pin or interconnect

delay is modified in GPU memory, the whole test set is

propagated to the PPOs as described before, and the modified

delay is restored to its original value.

For each test and PPO, the simulation delivers the full

switching history over time including all glitches. This in-

formation is used in two ways. First, a predicted signature is

calculated by directly computing the parity bits corresponding

to the used on-chip compactor. In the presence of circuit

variation, however, a single capture of the output responses

can be misleading and might eventually result in the wrong

candidates, especially when matching compressed signatures.

Therefore, the full switching history is also used to determine

the confidence in each PPO value by analyzing the signal

transition times surrounding the nominal capture time. If a

PPO switches close to the capture time during nominal-time

simulation, chances are high that a different value has been

captured in the CUD due to process variations. Therefore, the

confidence in this simulated value is lower. Finally, a ranked

list of SDD candidates is produced by matching simulated and

observed signatures as to be detailed below.

B. Confidence Estimation for Variation Tolerance

After the timing simulation of a SDD candidate f with a test

t, the full waveform with all the signal changes are analyzed

for each PPO. The waveform at a PPO o is a step-function

that alternates between 1 and 0 according to the logic values

of the signal over time. This step-function is multiplied with

a Gaussian probability density function with its mean at a

capture time C and a chosen standard deviation σ. The area

A of the resulting product gives the probability that the PPO

o in the CUD captured a logic 1. The predicted logic value at

the PPO o is of (t) = 1 if A > 0.5 and of (t) = 0 otherwise.

The confidence in the predicted logic value is given by:

c(of (t)) = |2 · (A− 0.5)|.

The confidence is c = 0.0 if A = 0.5 and c = 1.0 if A = 0.0
or 1.0.

From the predicted logic values and confidences at each

PPO, it is easy to calculate the values and confidences for

each signature bit:

sf (t) =
⊕

o∈O[s]

of (t) and c(sf (t)) =
∏

o∈O[s]

c(of (t))

The remaining question is how to choose the standard

deviation σ that determines the sensitivity of the confidence

prediction to nearby transitions. A reasonable estimate of

σ is given by the expected standard deviation of the latest

stabilization times (LST) at the PPOs of the circuit under

variation. We determine this standard deviation by simulating a

large population of circuits with random timing variations and

recording the LST for each test and each PPO. The difference

between the nominal LSTs and the LSTs under variations

are accumulated into a histogram. After this, we fit a normal

distribution to this histogram using the least-squares method

and use the fitted standard deviation for σ.

C. SDD Candidate Scoring

Each SDD candidate is assigned a score to reflect how

well its simulated signatures predict the observed ones from

the CUD. For a SDD candidate f and a test t, the score

contribution of a single signature bit s is calculated as:

score(sf (t)) :=

{

c(sf (t)) if sf (t) = sCUD(t),

−c(sf (t)) otherwise.

A score close to 1 denotes a confident match between the

CUD signature bit and the fault simulation. A score close

to 0 signifies that fault simulation is unable to predict a

reliable value. A score close to −1 shows a confident mismatch

between simulation and observed behaviors.

The candidate score for one test t is just the sum of

the scores for all individual signature bits: score(f, t) =
∑

s∈S score(sf (t)). The candidate score for a test set is

again the sum of the scores for all tests: score(f, T) =
∑

t∈T score(f, t).
Figure 9 shows an example of computing predictions, con-

fidences and final score of an SDD candidate.

The search space exploration described in the next section

also makes use of a score variant called a tester-fail score.

The difference of the tester-fail score to the score above is

that it considers only failing signature bits Sf (t) of each

test t: tfscore(f, t) =
∑

s∈Sf (t)
score(sf (t)), tfscore(f, T) =

∑

t∈T tfscore(f, t). The tester-fail score is used in the early

phases where the size of the simulated SDD candidates are

larger than the size of the culprit and likely to produce more

failing signature bits during simulation. The tfscore ignores

these simulator-mispredictions.

6

Fig. 9. Example of computing predictions, confidences and final score of an
SDD candidate.

D. Candidate Simulation and Ranking

Even with efficient pruning and fast GPU-accelerated sim-

ulation, simulating all candidates with all tests would take

prohibitively long time in most cases. To explore the search

space defined by variation-aware backtracing more efficiently,

candidate simulation is divided into gross delay tester-fail

scoring and final SDD scoring.

Gross delay tester-fail scoring focuses on reducing the

number of candidate SDD locations and polarities. For each

spatial candidate, two SDD candidates are generated; one

slow-to-rise and one slow-to-fall. The size of each spatial

SDD candidate f is set to its upper bound sizemax(f), so they

behave essentially as gross delay faults. The tester-fail scoring

tfscore is used for the initial ranking to ignore simulator-

mispredictions. Using tester-fail scoring here has the additional

benefit that only failing tests have to be timing simulated for

each candidate and not the complete test set. This way, more

candidates can be scored in the same amount of time.

Spatial pruning looses effectiveness with higher compres-

sion ratios, leading to some cases where the number of spatial

candidates is too large. In this case, the candidates are ranked

in two passes. The first pass only scores SDD candidates on

fanout-stems. The fanout-stems with the highest tfscore mark

the suspicious fanout-free regions and the spatial candidates

in these regions are scored in the second pass.

The result of gross delay tester-fail scoring is a list of gross

delay fault candidates sorted by their tester-fail scores. The

real culprit location is likely near to top of this list.

For final SDD scoring, the top gross delay fault candidates

(location and polarity for each candidate) are chosen to gen-

erate the final set of SDD candidates. Let n be a cutoff count.

We select the n top-most candidates and include all remaining

candidates with tfscore equal to the top-nth candidate. This

increases the probability that the real culprit is among the

candidates even if tester-fail scoring was unable to distinguish

them.

For each gross delay fault candidate f , we know its size

interval [sizemin, sizemax(f)] from temporal pruning. The in-

terval is sampled in steps of 3σ to generate the concrete fault

sizes for final scoring. The choice of 3σ provides a good

trade-off where the Gaussian weights during scoring are still

somewhat overlapping. A finer sampling may lead to more

candidates and longer simulation times with no benefit as the

delay differences are indistinguishable from timing variations.

A coarser sampling may reduce diagnostic success as the real

culprit’s delay may be in between two samples and scoring is

less effective.

All final SDD candidates are now scored with all passing

and failing tests. The final ranking is obtained by sorting these

final SDD candidates by their scores.

V. EXPERIMENTAL RESULTS

The goals of our experiments were to show the diagnostic

performance in terms of resolution and runtime, as well

as the robustness against process variations and response

compression of the proposed diagnosis algorithm. They were

conducted on large ITC’99 benchmark circuits that were

synthesized using the SAED 90nm technology library and a

standard commercial tool flow. For each circuit, a transition-

fault LoC delay test set was generated using a commercial

ATPG. The response compactor was not considered during

ATPG as its impact on fault coverage is negligible.

First, we describe how we obtained and characterized

benchmark circuits with random timing variations that will

serve as circuits under diagnosis. After that, we compare the

performance of our diagnosis algorithm with the state-of-the-

art.

A. Benchmarks with Timing Variations

On the basis of the nominal timing information of each

cell and wire, we generated variants for a benchmark circuit

by randomly changing the cell and wire delays according to

a normal (Gaussian) distribution. For each nominal cell and

wire delay d, a random value d′ was picked from a normal

distribution with standard deviation σ = 0.2 · d and mean

µ = d. To avoid unreasonable short or negative delays, the

minimum of each randomly picked delay d′ was set to 50%
of the original delay d, so that d′ ≥ 0.5 · d for all cases.

These parameters were chosen as typical examples for the

experiments here because actual variation data is not available

for the benchmark circuits.

All benchmark circuit variants were simulated with full

timing using the transition-fault test set and the latest stabi-

lization time was measured at each PPO and for each test.

This information was used in two ways. First, the capture

time C was set so that 95% of all generated variants pass

the transition-fault test. Second, the variations of all latest

transition times were analyzed to determine the standard

deviation σ used in our scoring method as detailed in section

IV-B.

The basic statistics on circuit netlists, test sets, and timing

variations are shown in Table I. Column #nets gives the

number of signal nets, i.e. the number of possible SDD

locations, in the circuit. |T | shows the number of transition-

fault tests generated by ATPG, and |O| shows the number of

PPOs. Over 100 variants were generated and simulated for

each benchmark circuit to determine capture time and LST

standard deviation. Column C shows the capture time that

7

pass 95% of all variants, and column σ shows the standard

deviation of all LST at the PPOs.

TABLE I
STATISTICS OF BENCHMARKS AND TEST SETS.

#nets |T | |O| C σ

b14 15839 814 270 7.076 0.195
b15 20854 1217 488 6.016 0.189
b17 58794 1413 1415 8.985 0.223
b18 154289 1764 2823 16.202 0.237
b20 33581 986 453 8.697 0.200
b21 33157 1077 453 7.572 0.199
b22 49872 1124 636 9.233 0.204

In our diagnosis experiments, the defects were injected into

a randomly selected variant that had passed the transition-fault

test in the fault-free case. The specific timing variation was of

course unknown to the diagnosis system and all analyses and

simulations were carried out with nominal timing.

B. Small Delay Fault Diagnosis

For measuring the diagnostic performance, a set of small de-

lay defects are required that can be injected into the simulated

CUD. In our experiments, we used only small delay defects

that could produce different signatures from gross delay faults.

To find such defects, randomly selected SDDs were simulated

and the properties of the test responses were checked. If

an SDD was detected by the test set and its behavior was

different from a gross delay fault at the same location, it would

be considered as a culprit. From all the randomly selected

SDD candidates, on average, 55.5% were not detected by

the test set, 28.1% showed gross delay behavior, and 16.4%

showed unique SDD behavior. The diagnosis experiments were

conducted only on the 16.4% of faults with SDD behaviors.

This was done to highlight the improvement over the state-of-

the-art specifically for these hard-to-diagnose cases. If there

are SDD candidates with gross delay behavior that fit the

syndromes, our algorithm will report them in the same way as

transition fault diagnosis. For each circuit, 100 of such culprits

were generated and subsequently diagnosed by our method.

A culprit is considered ”found”, if its location is among the

top 10 in the final ranking of candidates. The average rank

”avg.rank” is the average number of picks from the ranked

list of candidates until the position of the real culprit is found

or the the set number of maximum tries is exceeded. For a

successful diagnosis, the culprit’s position in the ranking is

considered for the average, for an unsuccessful diagnosis, the

10 unsuccessful picks is added to the average. For avg.rank,

1.00 is the best and 10.00 is the worst possible value.

As there are no SDD diagnosis approaches available that are

designed to work with compressed failure data, we will com-

pare our method with a transition fault diagnosis approach that

supports highly compressed test responses [19] representing

the state-of-the-art. Table II compares the base-line diagnostic

success rate and resolution on the full response without any

test compression.

TABLE II
DIAGNOSTIC RESULTS FOR 100 TEST CASES FOR EACH CIRCUIT.

TF Diagnosis [19] Proposed

found avg.rank found avg.rank avg.RT

b14 85 4.16 87 3.29 67s
b15 75 5.40 91 3.17 60s
b17 75 4.96 91 3.17 132s
b18 75 5.03 88 3.04 589s
b20 78 4.58 89 3.13 82s
b21 74 4.83 88 3.10 116s
b22 79 4.80 88 3.25 131s

avg. 77.4 4.82 88.8 3.16

We observe that the average success rate of our approach is

more than 88.8% while transition fault diagnosis can only find

about 77.4% of the culprits. This is due to the fact that the

responses of transition faults do not always match well with

the culprit’s responses especially when the CUD is affected

by random timing variations. The use of small delay fault

simulation together with variation-aware scoring clearly leads

to a much higher diagnosis success rate. Still, 11.2% of culprits

were not found by our method. In the vast majority of these

cases, the number of failing PPOs were extremely low (i.e.

less than 10 failing response bits for the whole test) and the

diagnosis algorithm is not able to distinguish between SDD

candidates sufficiently for a good ranking. This behavior is

common to all diagnosis approaches and typically remedied

by improving the test using diagnostic ATPG approaches.

Column ”avg.RT” shows the average runtime of merely a

few minutes for the diagnosis of one culprit measured on

an Intel Xeon CPU (single-threaded implementation for the

parts running on the CPU) and an nVidia Titan V GPU for

accelerated timing simulation. The required memory never

exceeded 8GB.

Again, we used only culprits with small delay fault be-

haviors. The same experiment with gross delay faults would

yield the same results for the proposed algorithm and the

traditional transition fault diagnosis. As the diagnosis results

would always be the same, we chose to exclude gross delay

defects from the comparison.

C. Impact of Response Compression

We also conducted experiments to explore the relation be-

tween response compression ratios and diagnostic success. We

explored a scenario where each benchmark circuit contained

n parallel scan chains and a parity-tree space compactor [26].

The space compactor computes for each scan slice a single

signature bit, leading to a compression ratio of 1 : n. The

compression ratios in our experiments ranged from n = 10
to n = 100. The small delay behavior of the culprits were

checked on the their uncompressed response. In a few cases,

response compression led to the same signatures as their gross

delay fault counterparts. These culprits were still included in

the following results.

The experimental results are shown in Table III. As ex-

pected, average run-times slightly increase and diagnostic

8

TABLE III
DIAGNOSTIC RESULTS FOR 100 TEST CASES FOR EACH CIRCUIT UNDER

1:n RESPONSE COMPRESSION.

TF Diagnosis [19] Proposed

n found avg.rank found avg.rank avg.RT

b14 10 77 4.88 83 3.64 78s
20 71 5.20 81 3.70 98s
30 66 5.53 80 4.10 101s
50 59 6.02 79 4.18 115s

100 37 7.50 68 4.86 129s

b15 10 60 6.18 92 3.36 83s
20 56 6.28 92 3.42 62s
30 51 6.79 89 3.54 68s
50 46 7.12 87 3.63 78s

100 31 8.07 77 4.38 96s

b17 10 65 5.64 91 3.03 96s
20 62 5.84 88 3.20 115s
30 56 6.09 89 3.27 119s
50 56 6.21 88 3.19 115s

100 48 6.61 85 3.61 145s

b18 10 70 5.67 88 3.13 350s
20 64 5.77 86 3.25 390s
30 64 5.90 86 3.25 429s
50 64 6.04 86 3.35 410s

100 57 6.45 87 3.32 477s

b20 10 75 4.98 87 3.30 125s
20 69 5.25 87 3.35 143s
30 66 5.51 82 3.57 144s
50 60 5.94 80 3.92 174s

100 51 6.50 71 4.31 249s

b21 10 70 5.32 87 3.33 134s
20 64 5.58 85 3.49 141s
30 61 5.71 83 3.52 160s
50 58 5.96 78 4.03 175s

100 50 6.51 72 4.48 234s

b22 10 72 5.21 86 3.55 135s
20 69 5.51 82 3.73 185s
30 68 5.44 81 3.89 205s
50 61 6.06 76 4.14 240s

100 53 6.58 73 4.51 336s

avg. 10 69.8 5.41 87.7 3.33
20 65.1 5.63 85.7 3.45
30 61.7 5.85 84.2 3.59
50 57.8 6.19 81.9 3.78

100 46.7 6.89 76.2 4.21

successes decrease with higher compression ratios. However,

while the success rate with traditional transition fault diagno-

sis decreases rapidly with increased compression ratios, our

proposed method can maintain fairly high success rates. The

average success rates from Table III are plotted in Fig. 10.

It can be clearly seen that the advantage of our proposed

diagnosis approach increases with higher compression ratios.

While the success rate is about 10% higher on uncompressed

responses, it is almost 30% higher under 1 : 100 response

compression. It is evident that our advanced, variation-aware

scoring approach copes much better with highly compressed

variation-affected failure data than previous approaches.

0 20 40 60 80 100
Compaction Ratio n

50%

60%

70%

80%

90%

Su
cc

es
sf

ul
 D

ia
gn

os
es

Proposed SDF Diagnosis

Transition Fault Diagnosis

+11.5%

+29.5%

Fig. 10. Relation between compression ratio and diagnosis success rate.

VI. CONCLUSIONS

This paper has proposed an innovative and effective method

for the direct diagnosis of single small delay faults with

compressed test responses. The proposed method combines

conservative structural and temporal pruning techniques with

a high-throughput high-precision GPU accelerated timing

simulator for analyzing the precise behaviors of individual

SDD candidates. The proposed method is the first that can

correctly locate small delay faults from highly compressed

responses with a high success rate. Furthermore, the proposed

method is robust against process variations through the unique

consideration of the prediction confidences during fault simu-

lation. In future works, we intend to extend our approach to

layout-aware diagnosis, cell-aware diagnosis and diagnosis of

multiple SDDs by supporting additional fault models in the

accelerated timing simulator.

ACKNOWLEDGMENT

This work has been funded by the German Research Foun-

dation (DFG) under contract WU 245/19-1 as well as the

Japan Society for the Promotion of Science (JSPS) under

JSPS Grant-in-Aid for Young Scientists #18K18026 and JSPS

Grant-in-Aid for Scientific Research (B) #17H01716.

REFERENCES

[1] L. Wang, C. Wu, and X. Wen, VLSI Test Principles and
Architectures: Design for Testability. Morgan Kaufmann, 2006.

[2] Y. Liu and Q. Xu, “On modeling faults in FinFET logic circuits,”
in Proc. IEEE Int. Test Conf. (ITC), Nov. 2012, pp. 1–9.

[3] A. K. Pramanick and S. M. Reddy, “On the fault coverage of
gate delay fault detecting tests,” IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems (TCAD),
vol. 16, no. 1, pp. 78–94, Jan. 1997.

[4] E. Schneider, S. Holst, M. A. Kochte, X. Wen, and H.-J.
Wunderlich, “GPU-accelerated small delay fault simulation,” in
Proc. ACM/IEEE Conf. on Design, Automation Test in Europe
(DATE), Mar. 2015, pp. 1174–1179.

[5] E. Schneider, M. A. Kochte, S. Holst, X. Wen, and H.-J. Wun-
derlich, “GPU-accelerated simulation of small delay faults,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 36, pp. 829–841, May 2017.

9

[6] A. Czutro, N. Houarche, P. Engelke, I. Polian, M. Comte,
M. Renovell, and B. Becker, “A simulator of small-delay faults
caused by resistive-open defects,” in Proc. IEEE European Test
Symp. (ETS), May 2008, pp. 113–118.

[7] M. Sauer, A. Czutro, I. Polian, and B. Becker, “Small-delay-
fault ATPG with waveform accuracy,” in Proc. IEEE/ACM Int.
Conf. on Computer-Aided Design (ICCAD), Nov. 2012, pp. 30–
36.

[8] T. Aikyo, H. Takahashi, Y. Higami, J. Ootsu, K. Ono, and
Y. Takamatsu, “Timing-aware diagnosis for small delay de-
fects,” in Proc. IEEE Int. Defect and Fault-Tolerance in VLSI
Systems Symp. (DFT), 2007, pp. 223–234.

[9] V. J. Mehta, M. Marek-Sadowska, K.-H. Tsai, and J. Rajski,
“Timing-aware multiple-delay-fault diagnosis,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems
(TCAD), vol. 28, no. 2, pp. 245–258, Feb. 2009.

[10] M. Tehranipoor, K. Peng, and K. Chakrabarty, Test and Diag-
nosis for Small-Delay Defects. Springer New York, 2011.

[11] P.-J. Chen, W.-L. Hsu, J.-M. Li, N.-H. Tseng, K.-Y. Chen, W.-P.
Changchien, and C. Liu, “An accurate timing-aware diagnosis
algorithm for multiple small delay defects,” in Proc. IEEE Asian
Test Symp. (ATS), 2011, pp. 291–296.

[12] A. Krstic and K.-T. Cheng, Delay Fault Testing for VLSI
Circuits. Springer, 1998.

[13] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic
Testing for Digital, Memory, and Mixed-Signal VLSI Circuits.
Springer, Nov. 2000.

[14] G. L. Smith, “Model for delay faults based upon paths,” in Proc.
IEEE Int. Test Conf. (ITC), 1985, pp. 342–351.

[15] A. K. Pramanick and S. M. Reddy, “On the computation of
the ranges of detected delay fault sizes,” in IEEE Int. Conf.
on Computer-Aided Design. Digest of Technical Papers, Nov.
1989, pp. 126–129.

[16] A. Srivastava, D. Sylvester, and D. Blaauw, Statistical Analysis
and Optimization for VLSI: Timing and Power. Springer, 2005.

[17] M. Sauer, I. Polian, M. E. Imhof, A. Mumtaz, E. Schneider,
A. Czutro, H.-J. Wunderlich, and B. Becker, “Variation-aware
deterministic ATPG,” in Proc. IEEE European Test Symp. (ETS),
May 2014, pp. 1–6.

[18] W.-T. Cheng, K.-H. Tsai, Y. Huang, N. Tamarapalli, and J. Ra-
jski, “Compactor independent direct diagnosis,” in Proc. IEEE
Asian Test Symp. (ATS), Nov. 2004, pp. 204–209.

[19] S. Holst and H.-J. Wunderlich, “A diagnosis algorithm for ex-
treme space compaction,” in Proc. ACM/IEEE Conf. on Design,
Automation Test in Europe (DATE), 2009, pp. 1355–1360.

[20] H.-B. Wang, S.-Y. Huang, and J.-R. Huang, “Gate-delay fault
diagnosis using the inject-and-evaluate paradigm,” in Proc.
IEEE Int. Defect and Fault-Tolerance in VLSI Systems Symp.
(DFT), 2002, pp. 117–125.

[21] A. Krstic, L.-C. Wang, K.-T. Cheng, and J.-J. Liou, “Diagnosis
of delay defects using statistical timing models,” in Proc. VLSI
Test Symposium (VTS), 2003, pp. 339–344.

[22] J. A. Waicukauski and E. Lindbloom, “Failure diagnosis of
structured VLSI,” IEEE Design and Test of Computers, vol. 6,
no. 4, pp. 49–60, Aug. 1989.

[23] M. Abramovici, P. R. Menon, and D. T. Miller, “Critical path
tracing: An alternative to fault simulation,” IEEE Design and
Test of Computers, vol. 1, no. 1, pp. 83–93, Feb. 1984.

[24] K. Yang and K.-T. Cheng, “Timing-reasoning-based delay fault
diagnosis,” in Proc. ACM/IEEE Conf. on Design, Automation
Test in Europe (DATE), Mar. 2006, pp. 418–423.

[25] P. Girard, C. Landrault, and S. Pravossoudovitch, “Delay fault
diagnosis by critical-path tracing,” IEEE Design and Test of
Computers, vol. 9, no. 4, pp. 27–32, Dec. 1992.

[26] H. P. E. Vranken, S. K. Goel, A. Glowatz, J. Schlöffel, and
F. Hapke, “Fault detection and diagnosis with parity trees for
space compaction of test responses,” in Proc. ACM/IEEE Design
Automation Conf. (DAC), 2006, pp. 1095–1098.

[27] S. Mitra and K. S. Kim, “X-compact: An efficient response
compaction technique,” IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), vol. 23, no. 3, pp.
421–432, Mar. 2004.

[28] L. M. Huisman, “Diagnosing arbitrary defects in logic designs
using single location at a time (SLAT),” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems
(TCAD), vol. 23, no. 1, pp. 91–101, Jan. 2004.

[29] S. Holst and H.-J. Wunderlich, “Adaptive debug and diagnosis
without fault dictionaries,” Journal of Electronic Testing –
Theory and Applications (JETTA), vol. 25, no. 4-5, pp. 259–
268, Aug. 2009.

[30] J. P. Hayes, “Digital simulation with multiple logic values,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 5, no. 2, pp. 274–283, Apr. 1986.

[31] C. J. Lin and S. M. Reddy, “On delay fault testing in logic
circuits,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 6, no. 5, pp. 694–703,
Sep. 1987.

[32] V. S. Iyengar, B. K. Rosen, and J. A. Waicukauski, “On
computing the sizes of detected delay faults,” IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), vol. 9, no. 3, pp. 299–312, Mar. 1990.

[33] S. Holst, M. E. Imhof, and H.-J. Wunderlich, “High-throughput
logic timing simulation on GPGPUs,” ACM Trans. on Design
Automation of Electronic Systems (TODAES), vol. 20, no. 3, pp.
1–22, Article 37, Jun. 2015.

10

