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Abstract—Reconfigurable Scan Networks (RSNs) allow flexible
access to embedded instruments for post-silicon test, validation and
debug or diagnosis. The increased observability and controllability
of registers inside the circuit can be exploited by an attacker to leak
or corrupt critical information.

Precluding such security threats is of high importance but difficult
due to complex data flow dependencies inside the reconfigurable scan
network as well as across the underlying circuit logic.

This work proposes a method that fine-granularly computes
dependencies over circuit logic and the RSN. These dependencies
are utilized to detect security violations for a given insecure RSN,
which is then transformed into a secure RSN.

Experimental results demonstrate the applicability of the method
to large academical and industrial designs. Additionally, we report
on the required effort to mitigate found security violations which
also motivates the necessity to consider the circuit logic in addition
to pure scan paths.
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I. INTRODUCTION

Today’s complex circuits employ a great variety of on-
chip functional and non-functional instrumentation to facilitate
amongst others on-chip diagnosis, post-silicon validation, bring-
up and production test, therefore allowing test/debug access to the
circuit [1]. In order to cope with the complexity of connecting
these instruments, reconfigurable scan networks (RSNs) as stan-
dardized by e.g. IEEE Std 1149.1-2013 and IEEE Std 1687-2014
are increasingly deployed in industrial designs. Such RSNs allow
for the configuration of the active scan path and hence provide
flexible and scalable access to embedded instruments.

However, an attack might not only be performed on the underly-
ing circuit logic, but could in addition also use the flexibility and
powerful observability and controllability properties of an RSN
to potentially compromise or read out sensitive data [2]. Such an
attack must be prevented to enable secure in-field operation.

In this work, we present a method that analyzes and resolves
security violations throughout both the RSN and the underlying
logic circuit.

The potential contrariety between testability and security has
already been discussed for conventional design-for-test infras-
tructures such as standard scan chains [3]–[5]. The data flow in
conventional scan infrastructure is static and thus of much lower
complexity than in RSNs.

Approaches to defend against attacks on reconfigurable scan
infrastructure have been presented in various works. The authors
of [6], [7] utilize an authorization technique to skip certain scan
segments, unless a secret key is provided; in [8] an authorization
instrument is used for access management. Secure test wrappers
are introduced e.g. by [9], where a technique is proposed, which
functions without any hard-coded secrets in the design.

Various techniques to obfuscate the scan data have been intro-
duced: E.g. the scan chain is partitioned into sub-chains and the
access to the sub-chains is pseudo-randomized [10] or obfuscation
is achieved with the use of state-dependent flip-flops [11]. The
authors of [12] present a compaction approach where the full test
response is compacted to one bit via on-chip test comparison.

An attacker must be prevented from controlling obfuscated data
flow, as e.g. overwriting sensitive data with obfuscated data might

cause a system to show unspecified and thus potentially insecure
behavior. Therefore the technique presented in this paper prevents
any data traversal over an insecure data path.

In [13] a filter is introduced locally at the interface of the
RSN (TAP), that only allows a precomputed set of secure scan-in
access sequences. [14] introduces a filter, that prevents forbidden
accesses, by monitoring the security requirements online.

Security violations can occur for a pair of scan flip-flops or
even scan registers which cannot be separated by scan path con-
figuration, forcing a filter to make every such pair inaccessible for
debug and diagnosis. In contrast the proposed method guarantees
to include all scan flip-flops in the final secure reconfigurable scan
network.

The use of e-fuses or a wafer saw to fully deactivate the scan
path has been proposed e.g. in [15], making any in-field use of
the scan infrastructure impossible and is therefore not considered
in this work.

As already mentioned before, we present a method that analyzes
data flow throughout both the RSN and the underlying logic
circuit, in order to detect security violations and to structurally
transform a given (insecure) RSN into a secure RSN based on a
user-given security specification [16], [17]. Paths that may leak
or corrupt sensitive data, because they pass through instruments,
which do not guarantee an adequate trustworthiness, are identified
and prohibited.

The proposed technique utilizes the method for calculating
complex dependencies introduced in [18] and lifts techniques from
[17] to the challenge of complex underlying circuit logic.

The applicability of the presented method is demonstrated by
an experimental evaluation using academical and industrial RSN
benchmarks. As we will demonstrate, the computational runtime is
feasible for all considered benchmarks. Additionally, we report on
the required effort to mitigate found security violations which also
motivates the necessity to consider the circuit logic in addition to
pure scan paths.

To the best of our knowledge, this work is the first to face
the challenge of computing the functional data flow through both
the reconfigurable scan infrastructure and the whole underlying
circuit as well as to provide a solution to mitigate security threats
introduced by complex data paths leading through the circuit logic
and the scan infrastructure.

The remainder of the paper is organized as follows: Section II
summarizes the background on the underlying model. The method
to analyze complex data dependencies and to prevent given
security threats by transforming the RSN is explained in greater
detail in Section III. Section IV provides the experimental results.
Section V concludes the paper.

II. UNDERLYING MODEL

A. Reconfigurable Scan Network (Running Example)

The focus of this work lies on Reconfigurable Scan Networks
(RSNs). An example RSN is illustrated in Figure 1 (blue box). The
RSN consists of two scan multiplexers and 14 scan flip-flops (SF1
to SF14) that are combined into 5 scan registers. The illustrated
part of the functional circuit logic encompasses 10 flip-flops which
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Fig. 1: Running example: circuit (gray background) with reconfigurable scan network (blue background), where flip-flops, modules
and a fraction of the circuit logic is illustrated. Shifting confidential data (inside the flip-flop F2) from the crypto module into the

untrusted module must be prohibited. A pure scan path (dashed green line) and a hybrid scan path (dotted blue line) are illustrated.

are directly connected to the RSN (F1 to F10) and two flip-flops
which are not directly connected to the RSN, so-called internal
flip-flops (IF1 and IF2).

In an RSN different active scan paths can be configured.
Figure 1 pictures the active scan path if both scan multiplexers
are set to 1 (green dashed line).

RSNs are equipped with three global signals capture, shift and
update. These signals controlled by the TAP controller enable
either the capture-, shift- or update-phase, respectively:

• Capture-phase: Data from the underlying circuit is transferred
into scan registers.

• Shift-phase: Data is shifted along the scan infrastructure, i.e.
from the scan-in port toward the scan-out port.

• Update-phase: Data inside the scan registers is transferred
into optional so-called shadow registers or into the underly-
ing circuit.

For clarity, these signals are omitted in Figures 1, 4 and 5.

B. Security Specification

We describe access permissions and restrictions to instruments
connected to scan segments in an RSN using the security specifi-
cation from [17]. For the security specification each scan segment
is annotated with a trust category, formalizing the trustworthiness
of the scan segment (or its surrounding core), and a set of accepted
trust categories, characterizing the respective data sensitivity.

The security specification is violated if an active scan path
traverses over two segments, where the data stored in one segment
is too confidential to be on the same scan path with the other
segment. We consider an RSN as (data flow) secure, if there is no
such violation. A detailed description of the security specification
can be found in [17].

Especially for complex RSNs, it is in general not straightfor-
ward to efficiently detect such security violations as an in-depth
analysis of the RSN structure and its security specification is
required.

C. Hybrid Scan Paths

Figure 1 shows a scan path starting from the scan-in port, over
scan elements and ending at the scan-out port (green dashed line).
It can be seen that this way data is shifted solely through the scan
infrastructure and not through the underlying circuit – we call such
a path a pure scan path. There also might be paths, that use the
underlying circuit in addition to the scan infrastructure to transfer
information. We call such a scan path, that indirectly connects
scan elements over the underlying circuit a hybrid scan path.

In the running example (Figure 1) there are two scan paths on
which the confidential data from the crypto module can be shifted
into the untrusted module:

• Pure (not illustrated): The confidential content of F2 is cap-
tured into SF2, then shifted purely over the scan infrastructure
first into SF3, SF4, SF5 and SF6 and then into SF7. Lastly
it is updated into F7.

• Hybrid (blue dotted line): Similar to the pure scan path, at
first the confidential content of F2 is captured into SF2 and
then shifted into SF5; then, the data is updated into F5. An
attacker might now use the circuit’s functionality to transfer
the data over IF1 and IF2 into F7.

These paths can be utilized by an attacker to retrieve confiden-
tial information, e.g. via a side-channel attack on the untrusted
module. Therefore both paths pose a security threat and must be
prohibited.

D. Attack Scenario

In the following we will present a security threat that can be
detected and resolved with the proposed method. It should be
noted that [17] also elaborated on a similar attack scenario, but
only paths purely over the scan infrastructure were investigated. In
this work pure and additionally hybrid paths, i.e. paths over both
the scan infrastructure and the underlying circuit, are investigated.

Scan infrastructure connects instruments deeply inside the cir-
cuit with each other. Those instruments might be from different
vendors and sources, where one is untrusted potentially due to
lower security standards: A sensor might be very vulnerable to
side-channel attacks, as it hardly contains secret information.

Thus, shifting confidential data over a scan path involving such
an untrusted module must be prohibited to avoid an insecure
operation of the chip.

In summary, the following conditions describe the above de-
scribed security threat:

• One scan segment contains confidential data.
• There is a pure or hybrid scan path through this segment and

an untrusted module.

III. PROPOSED METHOD

An overview of the proposed method is outlined in Figure 2.
First, the RSN is passed to the method of [17], where it is an-
notated with the user-given security specification and all security
violations over pure scan paths are detected and resolved.

A data flow analysis (over multiple cycles) is performed to
capture the circuit’s capability to transfer data from one instrument
to another. Based on these information, the data flow is checked
against the user-given security specification. In case any security
violations are identified, the structure of the RSN is changed such
that the violations are resolved.

For the data flow analysis (cf. Chapter III-A) over the circuit
logic, first a SAT-based method [18] computes the circuit-internal
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Fig. 2: Overview of the proposed method.

dependencies over one cycle. Then two subroutines which are
essential for the method’s feasibility are executed: setting the
dependencies of consecutive flip-flops inside a scan register and
bridging internal dependencies, which greatly reduces the amount
of calculations and stored data.

As a security analysis must investigate on the dependency of
distant segments, we compute multi-cycle dependencies iteratively
[18] on the reduced data set.

The calculated multi-cycle dependencies are then used to detect
insecure circuit logic, i.e. security violations independently of the
scan infrastructure (cf. Chapter III-B). If the circuit logic was not
found to be insecure, the security analysis on hybrid scan paths is
performed, where security violating data paths through both the
RSN and the circuit logic are detected (cf. Chapter III-C) and then
removed (cf. Chapter III-D).

A. Data Flow Analysis

We use the notation of structural and functional dependency
as in [18]: If there is a connection between two flip-flops, on
which data can be propagated in one cycle, we say that one
flip-flop 1-cycle functionally depends on the other. In contrast,
if there is a connection between two flip-flops, but data cannot
be propagated from one flip-flop to the other, the dependency of
one flip-flop on the other is only structural. If there is a path
between two flip-flops, where every two consecutive elements 1-
cycle functionally depend on each other, the flip-flop at the end of
the path is called path-dependent on the flip-flop at the beginning
of the path. Naturally, 1-cycle functionally dependent flip-flops
are also path-dependent (over a path of length 1).

In the example of Figure 1, IF2 is 1-cycle functionally de-
pendent on IF1, IF1 is 1-cycle functionally dependent on F5

and IF1 is 1-cycle only structurally dependent on F6 due to the
reconvergence. It is also seen that IF2 is path-dependent on F5

and IF2 is multi-cycle only structural dependent on F6.
After the calculation of the 1-cycle dependencies, we execute

two subroutines, which greatly reduce the computational effort for
the calculation of multi-cycle dependencies:

1) (Pre-)Setting dependencies of consecutive flip-flops: For
each pair of flip-flops inside a scan register the latter flip-flop is
set to be path-dependent on the former due to the data-propagation
functionality of the RSN.

The number of hereby preset dependencies is quadratic in the
number of scan flip-flops per scan register. Thus, a substantial

dependency dependency dependency

F9 on IF2
Bridge IF1
=====⇒

F9 on IF2
Bridge IF2
=====⇒

F9 on F6 (str.)
IF2 on IF1 IF2 on F6 (str.) F9 on F5

IF1 on F6 (str.) IF2 on F5

IF1 on F5

. . . . . . . . .

Fig. 3: Two iterative steps to bridge dependencies over internal
flip-flops of the running example (Figure 1). Only structural

dependencies are marked with (str.).

amount of dependencies does not have to be elaborately calcu-
lated. Additionally, the proposed presetting allows for a faster
multi-cycle dependency calculation of dependencies over large
scan registers.

2) Bridging dependencies: In this work we propose to bridge
the dependencies over flip-flops, that are not directly connected
to the scan infrastructure; so-called internal flip-flops (e.g. flip-
flops IF1 and IF2 in Figure 1). We thus avoid denoting the pair-
wise dependency of every (internal) flip-flop pair, so that they
can be excluded from the subsequent calculation of multi-cycle
dependencies. On the average (for the experiments provided in
the following section) we reduce the number of denoted flip-flops
by 41.72% and the number of denoted dependencies by 65.37%.

The method iteratively bridges over every internal flip-flop. For
example, to bridge the dependencies over the internal flip-flop
IF1, the method considers the combination of:

• each flip-flop, on which IF1 was denoted as structurally or
path-dependent:
F5 (path-dependent) and F6 (only structural)

• each flip-flop, which depends on IF1:
IF2 (path-dependent)

The multi-cycle dependency of the above listed flip-flops is
updated as follows (cf. the first step in Figure 3):

• If one flip-flop is path-dependent on IF1 and IF1 is path-
dependent on the other flip-flop, the dependency between
those flip-flops is set to path-dependent.
Thus, IF2 is path-dependent on F5.

• If a flip-flop is denoted as only structural dependent on
IF1 or IF1 is denoted as only structural dependent on a
flip-flop, there is a structural dependency between those
flip-flops. Therefore, if they are not already known to be
path-dependent, the dependency is set to only structural
dependency.
Thus, IF2 is only structural dependent on F6.

It should be noted, that the dependencies of the also internal
flip-flop IF2 are only updated, if IF2 has not been bridged over
yet.

At last, the iterative method of [18] is applied to calculate
the multi-cycle dependencies in the circuit logic. The runtime
of this technique is cubic in the number of flip-flops. Thus, the
due to bridging reduced amount of analyzed flip-flops, greatly
reduces the number of executed calculations. Bridging is therefore
necessary for the feasibility of the proposed method.

It should be noted that at this point of the method, the
dependencies are calculated omitting the RSN. This is due to the
fact, that to later resolve security violations, the RSN connections
get changed multiple times. Thus, the dependencies change and
would have to be re-calculated after every change to the RSN.
Instead, the dependencies are calculated once at the beginning of
the method without RSN-internal connections and therefore can
be reused for the entire security analysis.

B. Insecure Circuit Logic

If the circuit logic was designed without examining security
aspects, a security violation might occur over a path solely inside
the circuit logic, not involving the scan infrastructure.
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Fig. 4: Running example (cf. Figure 1) after the violating
pure scan path has been resolved.

Such a security violation can only be fixed by analyzing and
altering the circuit functionality, with respect to the security
requirements. In this work, we investigate security violations, that
occur due to the existence of scan infrastructure and can hence be
resolved by modifying the scan infrastructure, especially without
altering the circuit logic.

Therefore, for each pair of path-dependent flip-flops, we test if
this circuit-internal dependency causes a security violation. The
violation would occur even without the scan infrastructure and
thus had to be resolved with a new design of the circuit.

C. Detecting Security Violations over Hybrid Scan Paths

In [17] a method to efficiently detect security violations on
pure scan paths was shown. This method can be summarized in
the following steps:

Propagation of Security Attributes: A forward traversal through
the circuit was executed, propagating security attributes from the
scan-in ports, over the scan registers toward the scan-out ports.

Finding a Security Violation: The propagated security attributes
were used to efficiently test for security violations.

Resolving the Security Violation: If a security violation was
found, multiple candidates to resolve that violation were generated
and evaluated. The candidate with the lowest cost was applied.

This process was repeated until all security violations were
resolved.

In this work, we at first apply the method from [17]. Afterwards,
all security violations over pure scan paths are resolved, but there
might be still security violations over hybrid scan paths, which
need to be addressed. Figure 4 shows the running example of
Figure 1, after the method was applied. It is seen that SF6 and
SF7 have been disconnected and newly connected to other scan
elements. In Chapter II-C, both a pure and a hybrid scan path
were shown that could allow an attacker to shift confidential data
into the untrusted module. As the pure scan path has led over the
now disconnected SF6 and SF7, the method resolved the security
violation, which occurred over this pure scan path.

However, the second security violation over the hybrid path
of Chapter II-C remains unresolved. This violation is targeted
by the novel technique presented in this work. While in the
method of [17] all flip-flops of one scan register could be handled
simultaneously, this is no longer possible if the underlying circuit
is considered: Scan flip-flops of the same scan register might
be linked to different parts of the underlying circuit and may
therefore have non-trivial dependency differences. For example
in Figure 4 there is a connection from F2 to F6, then into the
scan register encompassing SF5 and SF6. From this scan register,
there is a second path, leading into F5, then IF1, IF2 and then into
the untrusted module. A method on register level would falsely
concatenate those paths and wrongly detect a security violation,
as on register level it appears to be possible to propagate the
confidential data of F2 over these two paths into the untrusted
module. Contrary, if the method employs flip-flop granularity, it is
seen, that the two paths cannot be concatenated into one insecure

RSN

Functional Circuit Logic

Crypto Module Untrusted Module

0

1

Instrument 1

Instrument 2
0

1

F5

F6
IF1

IF2

Confidential 

Data

F1

F2

0

1
SF1 SF3 SF4SF2SF1 SF3 SF4SF2

SF12SF11

SF14SF13

SF6SF5

SF7 SF9 SF10SF8SF7 SF9 SF10SF8

F7 F9 F10F8F7 F9 F10F8F4F3

Fig. 5: Secure version of the running example (cf. Figure 1)
after the application of the proposed method. The path over F6

crosses the reconvergence at the XOR-gate and thus cannot
propagate (confidential) data to the untrusted module.

path, as there is no connection from SF6 to SF5 (only vice versa).
Therefore a flip-flop-granular method correctly detects no security
violation.

To employ flip–flop granularity, we store for each scan register,
both the propagated security attributes of the first scan flip-flop
and the first flip-flop where the propagated security attributes
change.

D. Resolving Security Violations

After the successful detection of security violations, the RSN
must be secured. We therefore separate insecure paths and re-
connect the disconnected segments to other scan segments, with
which they do not cause a security violation.

Due to the hybrid scan paths the proposed algorithm must deal
with the following challenges:

Maintaining a Cycle-free Scan Infrastructure: To resolve a
security violation, a connection between scan segments is cut.
Scan segments are prevented from dangling, by connecting every
separated segment S directly to other segments, which were
already connected to S over multiple cycles. To maintain a
cycle-free scan infrastructure, the reconnection must ensure to
not create cycles. Therefore only segments, that are multi-cycle
predecessors/successors over pure scan paths are connected to
such a segment S. If no such predecessor (successor) exists, S
will be connected to the scan-in port (scan-out) port.

Omnidirectionally Propagated Security Attributes: If only pure
scan paths are investigated, security attributes are propagated from
the scan-in port over every scan segment exactly once toward
the scan-out port. If also hybrid scan paths are invoked, scan
segments might be connected differently, e.g. while one scan
segment Sx might be a predecessor of Sy with respect to the scan
infrastructure, there might be a path in the underlying circuit,
such that over this path Sy is a predecessor of Sx. Therefore
propagation of security attributes might be cyclic and is in general
more elaborate on hybrid scan paths than on pure scan paths.
While on hybrid scan paths the propagation in general touches
some segments multiple times, reaching a fixed-point is still
guaranteed, as only a (small) finite number of security attributes
are propagated.

Rootless Cyclic Propagation of Security Attributes: After
scan segments are separated, the propagated security attributes
need to be updated. With the above mentioned propagation of
security attributes, for every scan register information on the
(transitive) predecessors is stored. The underlying details on the
propagation of security attributes are based on [17]. However,
the following should be mentioned: While the root-cause for
a propagated security attribute might now be separated from
following segments, the following segments potentially form a
cycle. The segments must then be updated, such that the security
attribute is not propagated inside this cycle anymore, which can
be done by a root-cause analysis or a recalculation of all security
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TABLE I: Experimental results for the proposed method (cf. Figure 2)

attributes. To avoid a runtime-consuming root-cause analysis, in
this work we propagate the security attributes anew for hybrid
scan paths.

After all security violations over hybrid scan paths are resolved,
the method returns a (data flow) secure RSN. The secure design
of the running example is illustrated in Figure 5. To resolve the
violation over the hybrid scan path, the first scan multiplexer was
disconnected from SF5; also SF5 was connected to the scan-in
port. No functional path leads from the crypto module to the
untrusted module; only a structural path exists, but leads over the
reconvergence at F6, and therefore cannot propagate (confidential)
data. Thus, the RSN is (data flow) secure.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

The proposed method has been evaluated using a subset of
the benchmarks introduced by BASTION in [19] which have 21
to 8,485 scan registers and 101 to 98,611 scan flip-flops. The
benchmark subset encompasses all 12 acyclic benchmarks with
explicitly stated modules or instruments for which an ICL source
file exists as well as the benchmark with the largest number of
scan registers (FlexScan). To integrate FlexScan it was assumed,
that each scan register belongs to a different module. Additionally,
we evaluated our method on a set of 9 industrial style benchmarks.
These benchmarks model a scalable memory built-in self-test
(MBIST) network and have 113 to 26,222 scan registers and
548 to 121,265 scan flip-flops. The network MBIST_n_m_o
consists of a chip with n cores, each of which contains m

MBIST controllers. Each controller is responsible for o individual
memories. The network is built up hierarchically to allow for fast
access times to each MBIST controller and to facilitate the parallel
operation of the controllers. On the chip level each core can be
included or excluded from the scan path. Similarly, each MBIST
controller can also be included or excluded from the scan path
through the core.

Each of the total 22 benchmarks is only available without the
underlying circuit. We therefore randomly generated 10 circuits
per benchmark and evaluated the method on those 10 circuits.
Table I presents the average results over all generated circuits.

The algorithm introduced in the previous chapters has been
implemented on top of the tool eda1687 [20], and uses the

techniques from [17] and [18] as presented in Chapter III. All
experiments are conducted on a single core of an Intel Xeon CPU
running at 3.3 GHz with 64 GB of main memory.

The security specification for real world applications is spec-
ified based on the sensitivity and confidentiality of the under-
lying instruments. In order to allow a thorough evaluation of
the characteristics of the presented method on a wide set of
benchmarks, we randomly generated the security specifications
with 16 different security requirements for each benchmark and
list the averaged results over all security specifications, where
a security violation occurred, but the circuit logic itself is not
insecure (cf. Chapter III-B).

B. Experimental Results

The results for all evaluated benchmark circuits are presented
in Table I. The first four columns enlist structural information:
the name of the respective benchmark, the total number of scan
registers, the total number of scan flip-flops, and the total number
of scan multiplexers. The name encoding of the industrial bench-
marks is described in Chapter IV-A. It is seen, that the benchmarks
vary greatly in size and complexity, starting from the smallest
benchmark BasicSCB with only 176 scan flip-flops and 10 scan
multiplexers to one of the largest benchmarks MBIST_20_20_20,
encompassing over 121,000 scan flip-flops and over 850 scan
multiplexers. The respective number of scan multiplexers in
general approximates the complexity of a benchmark circuit, with
the exception of FlexScan, where all 4,243 scan multiplexers are
connected in serial. The next column lists the number of scan
registers, where at least one flip-flop causes a security violation
with a predecessor before the RSN is passed to the method. After
application of the method all security violations are resolved.

As described in the previous section, the proposed method
resolves the security violations by changing the scan infrastructure
(cf. Figure 1 and Figure 4). It first resolves all security violations
over pure scan paths and then all security violations over hybrid
scan paths (cf. Figure 2). Columns 6, 7 and 8 list the number
of applied changes to resolve all security violations for pure and
hybrid scan paths and the total number, respectively.

The importance of looking into hybrid scan paths can clearly be
seen. By resolving only security violations over pure scan paths
(as was done in [17]), the benchmark circuits are in general still
vulnerable to the in Chapter II-D presented attack scenario. Even



more so, the number of changes to resolve security violations
over pure scan paths is on average less than half (43%) the
number of total changes that are needed to secure the RSN. Thus,
it can be seen that by resolving the violations over pure scan
paths, in general less than half the effort of securing the RSN
is processed. Only with the combined method presented in this
work, it can be guaranteed that the network is free from such
security violations and that secret data cannot be shifted through
an untrusted instrument.

The last 4 columns enlist the runtime of the proposed method
and three subroutines in seconds, starting with the runtime for the
calculation of all dependencies, i.e. for the data flow analysis de-
scribed in Chapter III-A. The next two columns show the runtime
needed for the detection and correction of security violations; for
most benchmarks these two steps are fully executed in under 10
seconds, only for the two benchmarks with the highest amount
of scan registers (FlexScan and MBIST_20_20_20), the combined
runtime is larger.

The total runtime encompasses the runtime of the three previous
columns plus the runtime of the detection of insecure circuit logic
(cf. Chapter III-B).

Small benchmark circuits run in under one minute, while the
largest total runtime for one benchmark circuit is 28,704s (around
8h) for t512505. In real world applications, it is sufficient to
apply the proposed algorithm once per circuit design. Table I
shows that even for large benchmark circuits the proposed method
computes “overnight”, whether or not the circuit is vulnerable to
the proposed security threats and how the vulnerability can be
prevented with an alternative design of the reconfigurable scan
network. The alternative design includes all scan registers of the
original insecure reconfigurable scan network.

C. Approximating Path-Dependency with Structural Dependency

Table I (Column ‘Dependency Calculation’) shows that the
proposed approach of computing multi-cycle dependencies highly
contributes to the overall runtime. The runtime for depen-
dency computation can be greatly reduced, if instead of path-
dependency, only structural dependency is computed, as the
algorithm then only has to structurally traverse through the circuit,
not considering reconvergencies and other data flow canceling
effects.

With this over-approximation, every security violation is still
detected, but false positives might occur, i.e. an only structural
data path is falsely computed as insecure. The in general higher
amount of “detected” security violations leads to a higher demand
of changes to the scan infrastructure.

Application of the proposed technique, where path-dependency
was over-approximated by structural dependency, resulted in on
average 61% additional changes to the scan infrastructure, e.g. re-
routing wires and placing new multiplexers, which should for most
security-relevant real-world applications be by far more expensive
than 8 hours of one-time run-time.

Additionally, for 6.21% of the investigated benchmarks, due
to the over-approximation with structural dependency, the circuit
logic of the benchmark was falsely classified as insecure (cf.
Chapter III-B). This leads to an entirely different problem class,
which is by far harder to solve and requires expensive solutions,
as the logic of the underlying circuit (unnecessarily) would have
to be changed.

V. CONCLUSION

While scan infrastructure is highly beneficial for circuit testing,
if not thoughtfully implemented, it can be exploited by an attacker.
We presented an attack scenario, where an attacker uses the data
flow of the scan infrastructure and the circuit logic to e.g. shift
confidential data into a module with low security standards and
then read it out via a side-channel attack.

In this work a method was presented to efficiently

• calculate all multi-cycle dependencies of scan flip-flops over
the circuit logic,

• detect insecure circuit logic and
• detect and resolve security violations not only over pure but

also over hybrid scan paths, i.e. scan paths leading over both
scan infrastructure and circuit logic.

The method’s feasibility is demonstrated on a wide set of academ-
ical and industrial benchmarks. After application of the proposed
method, an attack via the presented attack scenario is fully
prevented.
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