
Multi-Level Timing and Fault Simulation on

GPUs

Schneider, Eric; Wunderlich, Hans-Joachim

Elsevier INTEGRATION, the VLSI Journal – Special Issue of ASP-DAC 2018

doi: https://doi.org/10.1016/j.vlsi.2018.08.005

Abstract: In CMOS technology first-order parametric faults during manufacturing can exhibit severe
changes in the timing as well as in the functional behavior of cells. Since these faults are hard to detect
by conventional tests, the accurate simulation of these low-level faults plays an important role for test
validation. However, pure low-level fault simulation approaches impose a high computational complexity
that can quickly become inapplicable to larger simulation problems due to limitations in scalability. In
this paper, the first parallel multi-level fault simulation approach on graphics processing units (GPUs) is
presented. The approach utilizes both logic level and switch level descriptions concurrently in a mixed-
abstraction timing simulation. The abstraction is lowered in user-defined so-called regions of interest that
locally increase the modeling accuracy enabling low-level first-order parametric fault injection. Resulting
signal waveforms are transformed between the different abstractions transparently. This way a fast,
versatile and efficient multi-level fault simulation approach on GPUs is created that scales for designs
with millions of cells while achieving high simulation throughput with runtime savings of up to 84%
compared to full switch level simulations.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

This is the author’s ”personal copy” of the final, accepted version of the paper published by
Elsevier B. V..

c©2018 Elsevier B. V.

https://doi.org/10.1016/j.vlsi.2018.08.005

Multi-Level Timing and Fault Simulation on GPUs

Eric Schneider∗, Hans-Joachim Wunderlich

Institute of Computer Architecture and Computer Engineering, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany

Abstract

In CMOS technology first-order parametric faults during manufacturing can exhibit severe changes in the timing as well as in the

functional behavior of cells. Since these faults are hard to detect by conventional tests, the accurate simulation of these low-level

faults plays an important role for test validation. However, pure low-level fault simulation approaches impose a high computational

complexity that can quickly become inapplicable to larger simulation problems due to limitations in scalability.

In this paper, the first parallel multi-level fault simulation approach on graphics processing units (GPUs) is presented. The ap-

proach utilizes both logic level and switch level descriptions concurrently in a mixed-abstraction timing simulation. The abstraction

is lowered in user-defined so-called regions of interest that locally increase the modeling accuracy enabling low-level first-order

parametric fault injection. Resulting signal waveforms are transformed between the different abstractions transparently. This way

a fast, versatile and efficient multi-level fault simulation approach on GPUs is created that scales for designs with millions of cells

while achieving high simulation throughput with runtime savings of up to 84% compared to full switch level simulations.

Keywords: parallel fault simulation, multi-level, transistor faults, waveform accurate, GPUs

1. Introduction

Simulation plays an integral part for design and test valida-

tion as well as diagnosis of current nano-meter technology in-

tegrated CMOS circuits. With the strict performance require-

ments and narrow timing budgets of today’s designs, timing-

accurate and glitch-aware simulation approaches are demanded

that also consider information down to layout [1] to assess

the timing and non-functional properties for EDA applications,

such as low-power testing [2] and IR-drop estimation [3, 4, 5].

Test methods need to be cell-aware [6, 7] by considering lower

levels in order to model and test for parametric faults such as

resistive opens and bridges, as well as cross-wire opens and

shorts or parasitic capacitances [8, 9, 10]. For these faults,

both smaller and larger fault magnitudes are often hard to de-

tect and not screened properly during testing, mostly because

of their complex activation and propagation conditions [11] and

their detection can further be tampered and invalidated due to

hazards [12, 13, 14, 15] as well as pessimistic and insufficient

timing models [16, 17]. Therefore, the consideration of accu-

rate circuit timing and fault modeling has become subject of

recent test and diagnosis research [3, 18, 19, 7, 8].

The holistic validation of timing and the simulation of faults

in today’s CMOS circuits requires a reasonable level of accu-

racy and magnitude, which has always posed a big complex-

ity problem [20] for test and diagnosis of multi-million gate

designs and thereby has been subject of parallelization ever

since [21, 22, 23]. Parts of the complexity of these simulations

∗Corresponding author.

Email addresses: schneiec@iti.uni-stuttgart.de (Eric Schneider),

wu@informatik.uni-stuttgart.de (Hans-Joachim Wunderlich)

can nowadays be tackled by computing on recent data-parallel

general-purpose graphics processing unit (GPU) accelerators,

that are able to process thousands to millions of light-weight

threads concurrently on a single die [24]. Many approaches

have been published that rely on the help of GPUs to enable

faster circuit- [25, 26, 27, 28] and fault simulation [29, 30], i.e.,

for computation of fault dictionaries during diagnosis [31, 32]

and even allow to significantly speedup timing-accurate simu-

lations at both logic [33] and switch level [34]. Yet, accurate

simulations still cannot be applied exhaustively at large scale,

due to the runtime complexity, and further speedup of the eval-

uations is typically achieved again by providing more and faster

computing resources or by complete abstraction of the simula-

tion models [35, 36] to logic level [37].

However, simulation approaches can take advantage of both

higher- and lower-level abstraction at the same time through the

use of mixed abstractions. These multi-level approaches form a

combined simulation across multiple abstraction levels by sac-

rificing accuracy for speed and thereby provide flexible trade-

off to increase simulation efficiency [38, 39, 40, 41, 42, 5, 43].

For the realization on GPUs, a multi-level solution is, however,

not trivial due to strict constraints given by the underlying ar-

chitecture and parallel programming paradigm [24].

The paper at hand extends the work of [44] and presents a

novel approach for efficient and scalable parallel multi-level

fault simulation on data-parallel GPU-accelerators. It provides

• an efficient and highly parallel waveform-accurate multi-

level fault simulation with mixed abstractions combining

both logic and switch level,

• detailed first-order parametric fault modeling with transis-

tor granularity and efficient fault injection,

Preprint submitted to INTEGRATION, the VLSI Journal – Special Issue of ASP-DAC 2018 July 16, 2018

• comprehensive output syndrome analysis for detailed eval-

uation of multi-level faults,

• flexible trade-off between speed and accuracy in order to

be as fast as possible, while as accurate as necessary,

• simple interface with transparent transition between higher

and lower abstraction levels.

The remainder of this paper is organized as follows:

Section 2 summarizes and explains backgrounds of GPU-

accelerated simulation approaches. Section 3 provides an

overview of the implemented multi-level fault simulator. In

Section 4 the basic simulation model is explained in detail. The

fault modeling is briefly discussed in Section 6 with the out-

put analysis explained in Section 7. Finally, experimental re-

sults are presented and discussed in Section 8 that prove the

efficiency of the presented approach.

2. Background

The large number of parallel computing resources and

the high computational throughput of graphics processing

units (GPU) enables the massively parallel execution and

tremendous acceleration of scientific applications in the many-

core era [24, 45]. Parallelized programs for GPUs (called ker-

nels) invoke an array of concurrent threads (thread grid). For

the execution the threads of a thread grid are partitioned into

smaller batches (thread groups) each of which is distributed

and scheduled for processing on one of the available streaming

multi-processors on the GPU. The execution of a thread group

on a streaming multi-processor is organized as single instruc-

tion multiple data (SIMD) parallel processing, which heavily

relies on a simple and uniform control flow that is followed

by all parallel threads. Diverging execution flows (e.g., due

to branching) will result in serialization of the thread execu-

tion, thereby obstructing the parallelization. Synchronization

between threads is limited and often involves expensive mem-

ory transactions that cause a loss in performance and should be

minimized as much as possible. A GPU device typically has ac-

cess to a limited amount of global memory only (4–16 GB), that

is shared among all the threads invoked by the kernel. In addi-

tion, all local registers and resources of a multi-processor are

divided among all of its scheduled threads and typically pose a

limit to the number of active threads running.

2.1. GPU-accelerated Circuit and Fault Simulation

With the introduction of GPUs, several parallel approaches

for circuit simulation [46, 26, 47] and fault simulation [25, 30,

29] have been developed that exploit different dimensions of

available parallelism. In general, acceleration is achieved from

structural parallelism provided by mutually data-independent

cells in the design as well as faults. For this, the cells of

the circuit netlist are divided into partitions each of which is

independently evaluated by separate individual or groups of

threads. Furthermore, through simultaneous evaluation of in-

dependent input stimuli [29, 30], the acceleration can be fur-

ther enhanced by exploitation of data-parallelism. Especially

in untimed (zero-delay) logic simulation data-parallelism is

commonly exploited at word-level using bit-wise logic oper-

ations which is also applicable even to serial compute architec-

tures [20].

The simulation of timing is an essential part of timing- and

test validation of circuits. Timing-accurate simulations are typ-

ically performed at logic-level using event-driven approaches

based on the time-wheel as proposed in [48]. The time-wheel

approach schedules signal switches (events) in a circuit globally

at discrete points in time into dynamic lists and allows to com-

pute complete switching histories of signals over time as so-

called waveforms. Since the event-driven simulation only needs

to evaluate circuit structures that show events at their inputs,

simulation overhead can be efficiently reduced. Still, compared

to untimed (zero-delay) simulation, the event-driven timing-

accurate evaluation of a circuit is compute intensive. The par-

allelization is complex and requires thorough management as

well as synchronization of lists and data structures at the cost of

additional memory and computing performance [23].

Instead, [33] proposed a plain time simulation approach at

logic level, that utilizes local event scheduling of input wave-

form events at each cell in combination with an efficient merge-

sort evaluation. The approach utilizes both structural paral-

lelism from cells and data-parallelism from waveforms during

simulation, and attains speed-ups of up to three orders of mag-

nitude with a simulation throughput of up to several hundred

million gate-evaluations per second compared to a conventional

event-driven time simulation approach. Although the logic

level simulation is timing-accurate and can consider individual

pin-to-pin delays as well as transition polarities and glitch filter-

ing, its accuracy is insufficient to reflect actual CMOS switch-

ing behavior and low-level parametric faults accurately.

Although GPU-accelerated solutions for accurate, low-level

analog SPICE simulations exist [25, 47, 27, 28] the scalability

of these approaches is limited. The work of [25] off-loads parts

of the SPICE calculations for parallel evaluation to the GPU de-

vice. While the overall simulation approach showed a speedup

of up to 10×, it is not applicable to multi-million cell designs

due to the huge memory footprint. In [47], a complete approach

for performing SPICE simulations on GPU is presented, that

achieves up to two orders of magnitude in speedup. Yet, the

speedup quickly diminishes and the simulator can solely be ap-

plied to very small netlists composed of a few transistors only

(up to 30). In general, sparse matrix solving poses a huge bottle-

neck for SPICE simulations. GPU-accelerated solvers based on

LU-factorization that evolve around right-looking factorization

were proposed in [27] and [28]. The authors showed that the

right-looking approach allows to exploit a higher level of con-

currency through simultaneous parallelism from columns, sub-

matrices and vector operations, compared to left-looking ap-

proaches. Compared to conventional solvers, these approaches

achieved speedups of one to two orders of magnitude.

Switch level simulation [36, 35, 49] provides a trade-off in

speed and accuracy, due to simplified electrical models based

on discrete binary switches and simple electrical components,

such as resistors and capacitors. In a recently presented ap-

proach [34] fast switch level timing simulation on GPU was

2

presented that reflects functional and timing behavior of CMOS

cells using first-order electrical parameters. The simulator im-

plements a simplified electrical model as illustrated in Fig. 1

where the output behavior of the cell is described as a time- and

value-continuous function based on the internal RC-properties.

Compared to logic level, the switch level model can cover many

important timing effects related to CMOS technology, such as

glitch-filtering, transition ramps and pattern-dependent delays

due to multiple-input switching [16, 17] in a very efficient man-

ner. Despite the more complex modeling, the GPU-accelerated

switch level simulator outperforms traditional timing simula-

tion approaches at logic level by over two orders of magnitude.

An extension of the simulator [50] features modeling and in-

jection of low-level parametric faults for fast and accurate fault

simulation with transistor granularity.

2.2. Multi-Level Simulation

During the design phase, usually not all parts of a design

need to be simulated with the highest level of accuracy at the

same time for evaluation. It can also be the case that lower

level descriptions are not even readily available at all for the

whole system. Multi-level simulation approaches [38, 39, 40,

41, 42, 5, 43] have been proposed that evaluate the parts of

a design with different abstraction simultaneously. Typically,

lower-level electrical models and properties of cells or faults are

abstracted in pre-characterization processes [51] and handed to

simulations at higher levels for faster processing [5, 6]. While

the abstracted data can be stored offline for reuse, the charac-

terization process needs to be repeated for every new process

corner, fault models or patterns under consideration, which can

also cause high memory costs. Hierarchical multi-level ap-

proaches partition the circuit into regions for separate evalua-

tion at higher and lower levels [38, 39, 41, 42]. Parts of par-

ticular interest are simulated at more accurate and compute-

intensive lower levels, while the remainder of the circuit is eval-

uated using faster higher level simulation. In-between the eval-

uation, simulation data is exchanged at the abstraction bound-

aries. For example, a multi-level solution for efficient fault sim-

ulation was proposed in [41], which combines transaction level

and logic level simulations achieving speed-ups of up to four

orders of magnitude.

In [44] a first multi-level solution for fast and efficient paral-

lel timing simulation on GPUs was presented combining both

logic and switch level simulation in a mixed-abstraction fash-

ion. Although the concept of multi-level simulation gener-

ally conflicts with parallelization on GPUs and the underlying

A ZN
high

low

high

low

t0 t0

t0+tp+df

tp+

time df+

df

A ZN

VDD

GND

VDD

GND

VDD

GND

t0 t0

R

C

+Rf

f(t0,τf,...)

df

time

τ=RC

a) b)

Figure 1: Signal and timing abstraction of a faulty inverter cell (slow-to-rise) in

a) logic level and b) switch level simulation.

many-core programming paradigm [24], due to different algo-

rithms, data structures and working sets, the simulator utilizes

thoughtful unification and careful organization, allowing for ef-

ficient and scalable simulations with a flexible trade-off in speed

and accuracy. This work extends the multi-level solution of [44]

by fault modeling and simulation [52, 50] enabling fast, effi-

cient and comprehensive simulation of both high and low level

faults on GPUs.

3. Parallel Multi-Level Fault Simulation

The multi-level fault simulation technique presented in this

paper follows the parallel mixed-abstraction simulation ap-

proach of [44] that adopts the concepts of parallel timing-

accurate evaluation at logic level [33] with the flexibility to

locally increase the simulation accuracy to switch level. The

adopted switch level model [34] evaluates CMOS functional

and timing behavior based on first-order electrical parameters

and enables low-level parametric fault injection at transistor

granularity [50]. On the other hand, the logic level abstrac-

tion provides a timing-accurate evaluation of the circuit with

high-simulation throughput for fast and efficient fault propa-

gation [52]. During simulation, fault-parallelism is exploited

by prior partitioning of the fault sets into fault groups, each of

which consists of mutually output-independent faults which can

be simultaneously injected and simulated [21].

In the implemented multi-level simulator, the abstraction of

the design under evaluation is lowered in so-called regions of

interest (ROI), that locally increase the accuracy from logic to

switch level upon activation. Each ROI can represent an arbi-

trary set of nodes of the circuit graph, such as a single isolated

nodes (input, output, cell), input-cones, output-cones as well as

whole parts of a design (e.g., memory interfaces). When ROIs

are active in a design, the simulator will use descriptions of both

logic and switch level simultaneously in a mixed-abstraction

fashion. The logic-level timing annotations are based on stan-

dard delay format (SDF) [53] that describe propagation delays

on a pin-to-pin basis. For the switch level modeling in active

ROIs, low-level information extracted from detailed standard

parasitics format (DSPF) [54] and characterization of standard

library cells with SPICE simulation of the associated transistor

models are considered.

3.1. Overview

The overall flow of the implemented multi-level fault sim-

ulation is outlined in Fig. 2. First, a serial pre-processing

is performed comprised of reading the synthesized circuit de-

sign and timing annotations (step 1). This work assumes full-

scan designs and focuses on the evaluation of the combina-

tional logic part. After levelization of the combinational logic

netlist (step 2), the fault-list is read and all faults contained are

then partitioned into fault groups (step 3) for later parallel in-

jection. The remaining steps form the main parallel simulation

loop.

In each iteration of the main loop the fault simulator pro-

cesses an individual fault group. First, the fault locations of

3

all low-level parametric and parasitic faults in the active fault

group are marked as ROI to lower the abstraction level (step 4).

Additional ROIs can be specified by the user, if necessary. Then

the faults of the current fault group are injected into the corre-

sponding node descriptions in the netlist (step 5). The netlist

is simulated for the provided stimuli using the multi-level tim-

ing simulation kernel (step 6) in order to compute all inter-

nal signal histories (so-called waveforms) as well as outputs.

Note that during the simulation process all active ROIs and all

faults remain injected as no fault-collapsing is applied. In a

last step, the output waveforms are analyzed and the respective

syndromes are computed to determine the fault detection for

all stimuli (step 7). After the simulation, all modified node de-

scriptions are restored for the evaluation of the next fault group.

3.2. Simulation Parallelism

This paper adopts a multi-dimensional parallelization

scheme [33, 50] to speed-up the simulations on graphics pro-

cessing unit (GPU) accelerators. The implemented simulation

kernels exploit up to three dimensions of parallelism as shown

in Fig. 3.

The first dimension of parallelism (a) considers structural

parallelism from nodes that are scheduled on the same level

after levelization of the circuit netlist. As during levelization all

nodes are topologically ordered according to their data depen-

dencies, all nodes of a level are mutually independent of their

inputs and outputs and can therefore be processed concurrently

by individual threads [33]. The second dimension (b) exploits

data-parallelism by taking advantage from the evaluation of in-

dependent stimuli applied to a circuit. Since a stimuli applied

to a circuit produces new waveforms at all nodes during simula-

tion, the circuit and hence its nodes can therefore be evaluated

for multiple stimuli in parallel by different threads. The third

dimension of parallelism (c) exploited is similar to the afore-

mentioned structural parallelism and comprises the partitioning

of a given fault set under investigation into fault groups [21].

Each fault group is a set of mutually output-independent faults.

The faults of a fault group do not influence each other by mask-

ing or adding and can therefore be simultaneously injected into

the circuit for simulation in parallel.

The grid of threads for the parallel execution of the multi-

level simulation kernels on the GPU are organized as illustrated

in Fig. 4. The grids form a two-dimensional array of execu-

tion threads with each thread in the grid being responsible for

the calculation of the output waveform of one node on a level

for one particular stimuli. Threads shown in the vertical direc-

tion compute the functions of data-independent nodes on a level

concurrently for the same stimuli applied to the circuit. Threads

shown in the horizontal direction evaluate the same node in par-

allel for different input stimuli. When executing the thread grid

of a kernel, thread indices are utilized to align data and navigate

memory accesses to circuit information as well as waveform

data, which heavily exploits coalescing of memory accesses at

subsequent addresses for efficient memory transactions [33].

Since the evaluation kernels are called level by level, implicit

synchronization barriers are found between consecutive calls

reference

responses

regions
of

interest

waveform evaluation7

combinational network

extraction

topological ordering

netlist

input

stimuli

1

2

&

cell library

output

fault grouping3

transparent multi-level

time simulation

6

switch levellogic level

activate regions of interest4

fault-

set
fault

groups

fault group injection5

Figure 2: Flow-chart of the implemented multi-level fault simulation.

ROI

ROI

ROI

a) b) c)

Figure 3: Dimensions of parallelism exploited during simulation: a) node-

parallelism, b) stimuli-parallelism, c) fault-parallelism.

only and no additional explicit barriers are required during the

execution of the threads. For all nodes marked as ROI, the re-

spective execution threads (denoted by ’∗’) run the switch level

algorithms for all stimuli. Note that, although the abstractions

are mixed throughout the circuit, no additional control-flow di-

vergence is caused during execution of the kernels, since all

threads of a thread group evaluate the same node with the same

abstraction [44].

4. Multi-Level Time Simulation Model

This section briefly explains the underlying switch level cir-

cuit model of [34] and mixed-abstraction data structures which

are utilized by the implemented multi-level fault simulation.

4.1. Circuit Model

The circuit model of the multi-level simulator uses a mixed-

abstraction approach where both logic level and switch level

descriptions of nodes in the circuit are used simultaneously.

The description of each node is composed of two parts: The

abstraction-independent graph structure with access to its di-

rect predecessors for accessing the input waveforms during

evaluation, and the abstraction-dependent functional descrip-

tion of the node including the timing annotations. Whenever an

ROI is (de-)activated, the latter part is swapped out accordingly.

For the logic level modeling, the functional description of the

node is determined by annotation of a node type, that refers to a

Boolean formula (e.g., NAND, XOR). The timing annotations

4

V

mutually independent
nodes and faults

..
.

..
. ..

.

topological evaluation

n
o
d
e

k
-1

..
.

thread

(0,0)

thread

(0,k-1)

thread

(0,1)

stimuli 0 stimuli 1 stimuli n-1

n
o
d
e

0
n
o
d
e

1

...

thread

(1,0)

thread

(1,k-1)

thread

(1,1)

thread

(n-1,0)

thread

(n-1,k-1)

thread

(n-1,1)

s
tr

u
c
tu

ra
l
p
a
ra

ll
e
li
s
m

data-parallelism

waveforms

node evaluation kernel

(n⨯k thread grid)

node evaluation kernel

(n⨯k thread grid)

V

V

V

V

* * *

* * *

k-1

1

0

ROI

ROI

ROI

ROI

ROI

Figure 4: Multi-dimensional parallel evaluation of a levelized netlist with mul-

tiple data-independent nodes and waveforms of different abstractions.

follow the modeling of [33] and contain the pin-to-pin prop-

agation delays that also distinguish between rising and falling

transition polarities. These timing annotations are annotated for

each input pin of a cell directly.

For the switch level modeling, the transistor netlist of the cir-

cuit is partitioned into channel-connected components [55, 7]

as shown in Fig. 5, which can be derived from most primi-

tive and complex CMOS cells found in standard-cell libraries.

A channel-connected component (CCC) is composed of pull-

up (PMOS) and pull-down (NMOS) transistor sub-networks

both of which drive a specific signal line in the circuit. The

transistors in each of the sub-networks are connected via their

drain/source pins forming a mesh where current can freely flow

within. Each transistor mesh connects a power-supply (i.e.,

VDD for pull-up or GND for pull-down networks) to the signal

driven by the CCC, which is controllable via the gate terminal

voltages at all of its transistors in the pull-up and pull-down

meshes. Since, ideally current does not flow over gate termi-

nals, charging the output of the CCC only draws current from

its associated power supply.

ZN

GND

VDD

X1

X2

X

YA

B

CCCY

Figure 5: Transistor netlist of a small circuit with highlighted channel-

connected components (CCCs).

The switch level simulator of [34] uses so-called resistor-

resistor-capacitor (RRC) cells as basic simulation primitives,

that provide a unidirectional model for the simulation of a

channel-connected component in a circuit. A CCC is mapped

to a single RRC-cell as shown in Fig. 6. All transistor devices D

in the CCC (either PMOS or NMOS) are modeled as voltage-

controlled (binary) variable resistors RD(v) each of which is rep-

resented as a 3-tuple D = (Vth, {Roff ,Ron}), such that

RD(v) :=















Roff if (v < Vth),

Ron else.
(1)

The Roff and Ron parameters of the tuple description of D cor-

respond to the drain-source resistances of the device for block-

ing and conducting state and Vth is the threshold voltage that

divides the state based on the applied input voltage v at the

gate terminal of D. For each network of transistors (pull-up

and pull-down) the respective equivalent network-resistances

(Ru and Rd) are derived using simple nodal analyses based on

Kirchhoff’s laws. The equations of the transistor networks are

hardcoded into the simulation kernels for compilation. Both Ru

and Rd are utilized to form a voltage divider (Ru,Rd) that drives

the lumped output capacitance Cload with voltage v associated to

the output signal Y of the channel-connected component CCCY .

The stationary voltage v of the voltage divider is computed as

v = (S · V) + GND, where S = Rd/(Ru + Rd) is the ratio of

the divider and V = (VDD − GND). The pull-up and pull-

down resistances Ru and Rd as well as the stationary voltage v

need to be computed whenever a transistor changes its state. A

lumped wire resistances Rw associated to the interconnects in

the CCCs can also be incorporated during the calculations as

shown in [34].

GND

VDD

B

GND

VDD

RA,P

B,PR

RA,N

RB,N

Y

B

A

A

Cload

YRw

Ru

Rd

V

GND

VDD

Y
Pull-Up

Pull-

Down Cload

Ru

Rd

V v

vo

Rw

S
t
e
p

 A

S
t
e
p

 B

vo

CCCY

R
R
C
Y

Figure 6: Mapping of a CCC (signal Y) to a corresponding switch level RRC-

cell (step A) and electrical equivalence model (step B).

4.2. Mixed-Abstraction Time-Behavioral Modeling

The presented multi-level simulator uses a generic data struc-

ture in order to model time-continuous signal histories or wave-

forms. A waveforms w = {e0, e1, ...} is a sequence of temporally

ordered events ei, each of which reflects a value change at a cer-

tain point in time. Each event ei = (ti, p0, p1, ...) is modeled as

a tuple composed of an event time ti ∈ R and a set of parame-

ters {p0, p1, ...} that describe the change in value. The value of

a waveform w at a given point in time t is denoted as w(t).

The parameters of an event depend on the type of abstrac-

tion of the associated waveform. While throughout the sim-

ulation the implemented multi-level simulator uses both logic

and switch level descriptions at the same time, the abstraction

of each waveform is determined by the generating node (i.e.,

switch level when the node is marked as ROI or logic level oth-

erwise). Header information is added to each waveform to iden-

tify the abstraction by the threads, such that during simulation

all events contained are read from memory accesses and pro-

cessed accordingly. In the following, the waveform structures

encountered during logic and switch level simulation will be

explained.

4.2.1. Ternary Logic Level Waveforms

To express the time-continuous signal history at logic level,

the implemented multi-level simulator utilizes the efficient

5

modeling of [33] originally proposed for the use in Boolean

logic domain B2 = {0, 1}. The implemented multi-level

simulation extends the waveform structure for the use with

ternary (three-valued) logic E3 = {0, 1, X} [37], allowing to

consider uncertainties (X) in an efficient manner. At logic level,

the waveform w = {e0, e1, ...} of a signal is modeled as sequence

of temporally ordered logic-level events ei = (ti), each of which

expresses a discrete value change at an event time ti ∈ R.

While transitions at logic level with multiple logic values can

in general be modeled as time-value pairs [56], this paper ex-

tends the waveform structure of [33] for an efficient modeling of

undefined values without introducing additional memory over-

head. The extension comprises the use of negative numbers

and the sign bit information of the event times ti ∈ R, which

are implemented in the IEEE floating point standard [57] to al-

low the transition to two different signal states from any value

as shown in Fig. 7. The sign function sgn(x) of a floating point

number x ∈ R delivers sgn(x) = 1 iff. the sign bit is set in its re-

spective floating point representation, or otherwise sgn(x) = 0.

If a signal waveform is in a defined state (logic-0 or logic-1),

and an event ei = (ti) with sgn(ti) = 1 occurs, the waveform

enters the undefined state X at time |ti|. From this state X, it can

switch to either ’0’ or ’1’ depending on the sign of the succeed-

ing event ei+1 in the waveform.

0 X 1

sgn(ti)=1 sgn(ti)=1

sgn(ti)=1sgn(ti)=0

sgn(ti)=0

sgn(ti)=0

init

Figure 7: State transitions of waveform signals in ternary logic E3 = {0, 1, X}.

In order to sustain the temporal order of the events in the logic

level waveforms and to allow efficient mergesort processing,

all events ei = (ti), e j = (t j) ∈ w are ordered at indices i, j in

the waveform w according to increasing absolute values of the

event times, such that

∀ei, e j ∈ w, ti , −∞, t j , −∞ : (i < j)⇒ (|ti| < |t j|). (2)

Initially, for time t = −∞ each waveform is assumed to have

a value of w(t) = 0. The last event in a logic level waveform

always has an event time ∞, which is used simply for termi-

nation as no event can occur after infinity. All events with

signal switches in a waveform are assumed to happen at time

t after −∞ and before ∞. To determine the signal value w(t)

at a given time t ≥ 0, the events ei ∈ w in the correspond-

ing waveform are read in temporal order of the absolute event

times |ti| from earliest to latest. During the process the sig-

nal value is switched according to each event ei encountered

until time t is eventually reached. The value of w(t) then

corresponds to the signal value w(ti) after the latest event ei

with maxi{ei = (ti) ∈ w : |ti| < t}. Note that, although nega-

tive event times ti are used, the order of the events ei follows

the natural concept of time through |ti| ≥ 0. Similar to [33], ini-

tializing events (−∞) are utilized to set the initial signal values

’1’ and ’X’ .

For example: A constant-0 waveform is expressed as w0 =

{(∞)}, a constant-1 waveform as w1 = {(−∞), (−∞), (∞)}, and

a constant-X waveform as wX = {(−∞), (∞)}. Since the IEEE

floating point standard also distinguishes negative (−0) and pos-

itive zeroes (+0) [57], the modeling also allows for arbitrary

state changes at the transition launch time t = 0.

4.2.2. Switch Level Waveforms

In a similar manner, the signal switching histories of the

switch level simulation [34] are modeled as sequence w =

{e0, e1, ...} of switch level events ei that provides a piece-wise

approximation of the time- and value-continuous switching sig-

nal. Whenever a transistor switches its state at a given event

time ti, the output of an RRC-cell vo(t) will follow an exponen-

tial behavior for t ≥ ti with time constant τ = S ·Ru ·Cload due to

the RC-properties of the circuit. The time-continuous change in

the output voltage is then expressed by a switch level event in

the waveform. An event is modeled as tuple ei = (ti, vi, τi) that

represents a continuous exponential curve segment in-between

the interval [ti, ti+1], where ti+1 corresponds to the event time of

the next event ei+1 in order. The three parameters of an event

tuple allow to closely describe the charging or discharging pro-

cess of an RC-sub-circuit as shown in Fig. 8. These parameters

are:

• ti: The event time at which the curve segment is initiated.

• vi: The stationary voltage the curve is heading for.

• τi: The slope of the exponential curve or time constant.

The associated curve segment of a switch level transient

event ei = (ti, vi, τi) initiated at time ti is expressed as [34]:

w(t) := (w(ti) − vi) · e
− ∆t
τi + vi, ti ≤ t ≤ ti+1 (3)

in the interval [ti, ti+1] between two consecutive events ei and

ei+1 in the waveform, with w(ti) being the value of the wave-

form at the start of the interval and ∆t = (t − ti). The ini-

tial value w(−∞) of a waveform is set by an initialization

event einit = (−∞,Vinit,−) at time t = −∞, where Vinit corre-

sponds to the initial voltage value.

Similarly to the logic level waveforms, the switch level wave-

form value w(t) at a given time t is determined by computing

the curve intervals from earliest to latest [34]. Starting from

the initial value w(−∞) at time −∞, the algorithm iterates over

all events ei ∈ w of the waveform in temporal and computes

the voltage change at w(ti) in each interval [ti, ti+1] based on

0

0.3

0.8

1.1

0 20 40 60 80 100

O
u
tp

u
t
[V

]

time [ps]

t3=22.5ps
v3=1.1V
τ3=3.5ps

t4=27.8ps
v4=0.0V
τ4=5.0ps

t7=45.7ps
v7=1.1V
τ7=9.9ps

X7_switch
X7_SPICE
X4_switch
X4_SPICE
X3_switch
X3_SPICE

Figure 8: Signals of nodes with varying fanout from SPICE transient analysis

(dotted) and switch level event representation (bold).

6

Eq. (3). Note that between event times ti and ti+1 of consecu-

tive events all resistances and supply voltages in the RRC-cell

remain constant. This evaluation process is repeated until the

latest event ei is found with maxi{ei ∈ w : ti < t}, that describes

the curve segment in which time t is located. As a final step,

the voltage change of the event ei is computed for the remain-

ing time ∆t = (t − ti) using Eq. (3).

5. Multi-Level Simulation Algorithm

In Algorithm 1 the implemented multi-level simulation of a

circuit is outlined [44]. As input of the evaluation, the levelized

circuit netlist G with both logic and switch level descriptions

for each node is provided. Since certain logic level nodes need

to be represented by multiple RRC-cells at switch level [34],

corresponding placeholder nodes were added prior to the lev-

elization of the netlist. This way, the levelized graph structure

does not need to be altered and the topological order is sus-

tained. Input stimuli for all circuit primary and pseudo-primary

inputs are provided for a set P of different delay tests in the

global waveform memory W on the GPU device. The circuit is

then processed level by level from inputs towards outputs. For

each node N on a level its respective input waveforms I of the

predecessors nodes are evaluated and a corresponding output

waveform wN is computed (lines 8–31). These evaluations are

performed concurrently by individual threads for all nodes on a

level and all assigned delay tests P following the parallelization

scheme presented in [33] and [50]. The general evaluation algo-

rithm executed for each node uses a mergesort waveform pro-

cessing, which sorts the local switching events of the respective

input waveforms in a local schedule that is processed in tempo-

ral order such that the output waveform can be generated in a

single pass. The set of waveforms generated during processing

of a circuit for a delay test p ∈ P will be referred to as Wp.

If multiple delay tests p ∈ P are provided at a time, each cor-

responding Wp represents a distinct partition of the waveform

memory W.

The evaluation kernel itself first fetches all input waveforms I

of the current node N (line 8) and determines the type of ab-

straction from the waveform header. Then the data structures

for storing the current input event are set up and the initial value

of each input waveform wi ∈ I in Wp is computed (line 9–

13). After putting the first events of each waveform in the

(thread-)local schedule E, the output state of the node N is

computed and the output waveform wN is initialized with the

corresponding signal value (line 14). In the main simulation

loop (lines 16–29), the events of the local event schedule E are

processed in temporal order from earliest to latest. In each it-

eration, the earliest next input event is consumed, which indi-

cates a change in the associated input signal. The input event is

transformed to the target abstraction level of the node N. De-

pending on whether N is marked as ROI, the implications of

the value change are incorporated into the state of N by se-

lecting either the low-level switch level (line 20) or high-level

logic level kernel (line 23 for the evaluation. In case the con-

sumed event causes a change in the output signal of N, an

output event is generated and appended to the output wave-

form wN (line 26). After the event has been processed, the al-

gorithm determines the next event of the corresponding input

waveform and schedules it for evaluation in the next iteration

of the main loop (line 28). In case all input events have been

processed, the main simulation loop is terminated and the out-

put waveform wN of the node is stored in the waveform memory

partition Wp of W (line 31).

Note that during evaluation of a node, each thread in the im-

plemented multi-level simulation computes only a single out-

put waveform for its applied input stimuli. In case multi-output

cells need to be modeled, a duplication of the node can still be

used where each output of the cell is handled by an individual

duplicate. This way, the working set (e.g., number of local reg-

isters required) and memory access patterns of the threads are

not affected.

5.1. Multi-Level Waveform Transformation

Since the implemented multi-level fault simulator uses wave-

forms of mixed abstraction, bi-directional transformations be-

tween the different waveform types need to be provided. This

work utilizes two mappings for the transformations between

the higher logic and lower switch level abstraction [44]. The

transformations are applied to the input waveforms by the eval-

uation kernels on a per-event basis, i.e., an event of a source

abstraction has a corresponding set of events at the other tar-

geted abstraction level. All transformed events are identified

and inserted in the event scheduler for processing by the ker-

nel. The source abstraction level of each input waveform is ac-

quired once from the respective waveform header information

in the beginning of the node evaluation. The target abstraction

of the transformation is determined by the node under evalua-

tion. In case source and target abstraction are equal, the input

waveform events can be directly processed.

5.1.1. Logic to Switch Level Transformation

The signal transitions expressed by waveform events at logic

level (e.g., rising or falling) are considered to be rectangular in

shape. The instantaneous transitions expressed by these events

can be modeled by infinitely small time constants τε > 0 at

switch level. Given the power supply VDD and ground GND

voltage levels of the targeted technology, all transition events

in the original logic level waveform source w are transformed

to switch level events ei by substitution. Depending on the tar-

geted logic value of a transition (e.g., ’1’ for rising and ’0’ for

falling) the transformation of a logic level event at time ti is

performed as follows [44]:

ti 7→ ei :=



























(t′
i
,VDD, τi) if (ti rising),

(t′
i
,GND, τi) elif (ti falling),

(t′
i
, VDD+GND

2
, τi) else,

(4)

where t′
i

is the time of the new switch level event ei, the station-

ary voltage represents the electrical interpretation of the logic

value (VDD for ’1’, GND for ’0’ and 1
2
· (VDD+GND) for ’X’)

and τi is the corresponding time constant.

7

Algorithm 1: Transparent multi-level simulation (serial).

Input: netlist G, input stimuli P in waveform memory W = ∪p∈P{Wp}

Output: output responses (stored in W)

1 foreach level L in the netlist G do

2 /* GPU: The following loops over L and P are executed as

two-dimensional grid of parallel threads (cf. Fig.4): */

3 foreach node N on level L do

4 /* node-parallelism */

5 foreach stimuli p in P do

6 /* stimuli-parallelism */

7 // A. initialization

8 Load input waveforms I ⊆ Wp for node N.

9 foreach waveform wi in I do

10 Look-up abstraction level of wi.

11 Set-up data structures and initial state.

12 Get first event e of wi and put into schedule E.

13 end

14 Initialize output waveform wN .

15 // B. event processing

16 while Events to process in schedule E do

17 Remove earliest event e from E.

18 if node N is ROI then

19 Transform e to switch level event.

20 Compute new switch level state of N.

21 else

22 Transform e to logic level event.

23 Compute new logic level state of N.

24 end

25 if new state of N causes output change then

26 Compute output event and add to wN .

27 end

28 Get next event e of wi ∈ I and put into E.

29 end

30 // C. finalization

31 Store wN to waveforms Wp := Wp ∪ {wN }.

32 end

33 end

34 end

In general, the resulting switch level events can be fitted in

time and slope to match the RC-characteristics of the driving

signal. According to the standard definition of the signal prop-

agation delay, it is assumed for logic level transitions that the

corresponding electrical signal passes the 50% voltage thresh-

old Vth =
VDD+GND

2
at the exact time. Suppose a signal transi-

tion of a logic level waveform occurs at time ti. The following

equation allows to fit the time t′
i

for a given time constant τi of

the RC-properties of a driving cell [44]:

ti
!
= t′i − τi · log

(

Vth − v
′
i

w(ti) − v
′
i

)

. (5)

The fitted time parameter of the switch level curve segment is

then obtained by transformation of the above equation and solv-

ing for t′
i
:

t′i := ti + τi · log (0.5) , (6)

which corresponds to a shifted starting point of the new event ei.

By considering the RC-properties in the transients, more real-

istic representations of the input signals for the targeted node

are obtained. An example is shown in Fig. 9, which illus-

trates both transformations with an infinitely small time con-

stant τε ≈ 0 (”τε trans.”) as well as with consideration of RC-

characteristics in the time constant (”RC 50%”) to match Vth as

explained above. Note that according to Eq. (6), the resulting

error ǫ = |t′
i
− ti| of the τε-transformation is always smaller than

τε, since | log(0.5)| < 1. Thus, for τε → 0, it closely resembles

the logic level representation (”source”) with a negligible error

of ǫ = |t′
i
− ti| < τε.

GND

50%

VDD

 0 10 20 30 40 50 60 70 80

O
u
tp

u
t
[V

]

time [a.u.]

source
τ

ε
 trans.

RC 50%

Figure 9: Transformation of waveform (source) from logic to switch level with

different RC-characteristics for rising and falling transitions.

5.1.2. Switch to Logic Level Transformation

If during simulation, a logic level node n has a switch level

waveform as input, lower level signal information needs to be

transformed to the higher level accordingly. At switch level

all signals are continuous in value and do not always corre-

spond to well-defined logic high or low symbols. Since inter-

mediate signal values can be interpreted differently by succeed-

ing stages an undefined value (X) is assumed. In this work,

an open interval (VthL,VthH) ⊂ [GND,VDD] bounded by a

low (VthL) and a high (VthH) signal threshold is utilized to map

from the continuous voltage domain to discrete logic symbols

of a ternary (three-valued) logic E3 = {0, 1, X} with undefined

values [37]. The mapping is defined as follows [50]:

val : R→ {0, 1, X}, val(v) :=



























0 if (v ≤ VthL),

1 elif (v ≥ VthH),

X else.

(7)

Hence, for the voltage v of a signal with v ≥ VthH (v ≤ VthL) the

signal value is interpreted as defined logic-1 (logic-0). In case

v ∈ (VthL,VthH), then v is assumed to be undefined (X).

The transformation of a waveform is performed event after

event in temporal order from earliest to latest. For all curve in-

terval [ti, ti+1] of consecutive events ei and ei+1, the intersection

points of the corresponding curve segment with the low (VthL)

and high (VthH) thresholds are identified. At each intersection

point, the interpreted logic value of the input waveform is as-

sumed to change at the given time which is added to the event

schedule for processing the current node n.

The threshold-based switch to logic level transformation is

illustrated in Fig. 10 on the example of an arbitrary continuous

waveform signal. For each intersection point with a threshold

VthL or VthH , the corresponding logic value is determined and

added to the resulting output waveform. Note that during this

transformation pulse filtering can be applied to either logic-1/0

or X-pulses to remove glitches that are physically impossible to

be generated.

At logic level, the implemented simulation algorithm per-

forms a pessimistic propagation of Xes in the circuit. In case

a node enters an undefined state (X) due to an input transition,

always the minimum propagation delay at the arriving input pin

is applied. In case the node transitions from X to a defined

8

1 X 0 X1
GND

VthL

VthH

VDD

0 20 40 60 80 100

O
u

tp
u

t
[V

]

50%
source

3-valued

X 1

time [a.u.]

Figure 10: Transformation of an arbitrary continuous signal to discrete ternary

logic symbols (3-valued) based on thresholds VthL < 50% and VthH > 50%.

state, the maximum propagation delay at the pin is considered.

Unknown signals at node inputs subject to controlling off-path

signal values and can get masked during propagation.

6. Fault Modeling

The data structures of the presented multi-level timing sim-

ulation are used to model and inject timing-related faults mod-

eled at higher abstraction (i.e., small delay faults) as well as

parametric and parasitic faults at switch level (e.g., resistive

opens and shorts). In this section, the fault modeling at both

higher and lower abstraction levels is presented. Faults of both

abstraction types can be used simultaneously using the pre-

sented mixed-abstraction simulation. In general, all faults f

of any of the implemented fault models are represented as tuple

f = (loc, {δ0, δ1, ...}), (8)

independent of its abstraction, where loc pin-points to a spe-

cific fault location of the targeted abstraction (i.e., a node pin)

and the set {δ0, δ1, ...} corresponds to the parameter deviation

introduced by f at loc.

The remainder of this section briefly describes the modeling

and mechanics of the supported fault models as well as the in-

jection scheme.

6.1. Logic Level Faults

At logic level, the underlying simulation model of the tim-

ing simulator is utilized to model small (gate) delay faults,

that slow down the propagation of signal transitions through

an affected fault site by adding an additional small amount

of delay [58]. The core model of [33] annotates each node

with pin-to-pin delays at their inputs and also distinguishes

delays for rising and falling polarities. Following Eq. (8),

each small (gate) delay fault f is therefore modeled by a tu-

ple f = (loc, {δrise, δfall}) [52], where the parameter deviations

δrise and δfall of the fault describe the additional propagation de-

lays for the rising and falling transition polarities at the node

pin associated with loc, respectively. Using this model, a small

delay fault can affect a rising transitions (δrise > 0 and δfall = 0),

falling transitions (δrise = 0 and δfall > 0) or both polarities si-

multaneously (δrise > 0 and δfall > 0). Since the underlying

simulation model annotates timing with respect to input pins

only, small delay faults located at the output pin of a node are

mapped to a sets of corresponding small delay faults at the in-

puts [52].

6.2. Switch Level Faults

The switch level simulation simulation allows to model low-

level parametric and parasitic faults based on first-order elec-

trical parameters in CMOS. The identification of manufactur-

ing defects and their relevant faults at electrical level is nei-

ther trivial nor intuitive and typically requires a lot of manual

work. However, cell-aware test approaches typically rely on

the identification and extraction of potentially relevant faults

using user-defined fault models [6] as well as layout-aware ex-

traction of defects by inductive fault analysis such as proposed

in [59, 51] or [60]. This work utilizes the switch level algo-

rithm and data-structures of [50] for modeling and injection of

low-level parametric faults without higher level abstraction as

follows:

6.2.1. Resistive Transistor Shorts and Opens

Faults related to the resistive properties of a transistor de-

vice are mapped to the corresponding device description D =

(Vth,Roff ,Ron) of the RRC-cells. A resistive transistor fault f

of a cell is described as a tuple f = (loc, {∆R f }), according to

the aforementioned representation. It comprises the fault lo-

cation loc referring to either blocking Roff or conducting Ron

property of the targeted transistor device D, and a fault pa-

rameter ∆R f ∈ R that describes the deviation in Ohms (Ω)

of the resistive parameter Rloc selected by loc. The result-

ing device parameter is then modified accordingly, such that

R̃loc := Rloc + ∆R f [61]. In the simplest case, a transistor open

fault is modeled by increasing the conducting resistance Ron of

a device D (∆R f > 0). Analogously, a simple transistor short

is modeled by lowering (∆R f < 0) the blocking resistance Roff

of D.

More complex examples of fault injections are shown in

Fig. 11, which illustrates the modeling of a resistive open

fault (a) and a resistive short forming a bypass (b) at an NMOS

transistor of an RRC-cell. For the injection of the depicted re-

sistive open fault, the NMOS transistor device resistances are

modified to R̃on := Ron + Ropen and R̃off := Roff + Ropen with

∆R f = Ropen > 0 by changing the two device parameters. The

resistive short fault as shown in Fig. 11-b), on the other hand,

is a more complex example and acts as a bypass to the tran-

sistor thereby lowering the effective resistance of the transis-

tor. For injecting the fault, the device resistances are set to

R̃on := Ron + ∆Ron with ∆Ron = −R2
on/(Ron + Rshort) < 0 and

R̃off := Roff + ∆Roff with ∆Roff = −R2
off
/(Roff + Rshort) < 0, re-

spectively.

A ZN

VDD

GND

Ropen

A ZN

VDD

GND

Rshort

a) b)

Figure 11: Example of a faulty RRC inverter-cell with (a) resistive open fault

and (b) resistive short fault at the NMOS transistor.

9

6.2.2. Capacitive Faults

The modeling of capacitive faults related to the circuit in-

terconnects and fanout descriptions [54] assumes a lumped ca-

pacitance model [62] which is incorporated into the RRC-cell

model [61]. A capacitive fault is described as f = (loc, {∆C f })

using the presented tuple-description. The fault location pin-

points to the output load capacitor Cload of a targeted RRC-cell,

where ∆C f ∈ R introduces an additional capacitance, such that

C̃load := Cload + ∆C f .

6.2.3. Voltage-Related Faults

Voltage-related faults target the voltage parameters of RRC-

cells, such as power supply VDD and ground GND of the

cells as well as the threshold voltages Vth of the transistor de-

vices [50]. A voltage fault f = (loc, {∆V f }) models a par-

ticular shift ∆V f ∈ R in volts in a voltage parameter V loc

of a targeted RRC-cell or device indicated by loc, such that

Ṽ loc := V loc ∓ ∆V f . By altering the VDD and GND voltages

of the RRC-cells, adaptive voltage scaling and power-related

issues like fluctuations in the power-grid due to IR-drop and

ground bounce [63] can be reflected. Yet, modeling of dynamic

fluctuations requires additional implementation effort and is not

focus of this work. Voltage faults affecting the threshold volt-

ages Vth of transistor devices allow to model degradation phe-

nomena, e.g., caused by aging effects, such as negative-bias

temperature instability (NBTI) or hot-carrier injection (HCI).

Both NBTI and HCI can increase the threshold voltage of a tar-

geted NMOS (or PMOS) device over time and thereby delaying

the transistor switching processes [64, 65].

6.3. Fault Injection

All faults of the presented fault models are injected into the

circuit description prior to the simulation run. The injection of

a fault f = (loc, {δ0, δ1, ...}) is performed by manipulation of

the parameters expressed by loc at the associated node based

on the fault description {δ0, δ1, ...} and marking of the node as

faulty. Without loss of generality, the fault locations of in-

jected switch level faults are turned to ROIs automatically in the

mixed-abstraction environment of the implemented multi-level

simulator. In case a small delay fault is injected, any ROI flag at

the fault location is removed, such that the corresponding node

is simulated with logic level abstraction. Multiple faults can be

injected into the circuit for simultaneous evaluation, which do

not only allow to exploit fault-parallelism, but also allows for

modeling of multi-faults across the circuit. After the simula-

tion of the faulty circuit is finished, the node descriptions of all

fault sites marked as faulty are restored to their original speci-

fications. Since both the node descriptions and the descriptions

of faults are quite compact (tens to hundreds of bytes each), the

ROI activation and fault injection process comprises only a few

small memory transactions.

6.4. Fault Grouping

The implemented fault simulation approach exploits fault

parallelism from simultaneous injection and evaluation of mu-

tually output-independent faults in a circuit [21]. For this, the

fault set under investigation is partitioned into fault groups,

each of which contains mutually output-independent faults

whose fault effects cannot add or mask each other during sim-

ulation. The paper at hand utilizes a fast heuristic [52, 50] for

identification of the fault groups of a given set of faults. The ap-

plied heuristic considers the fault location during grouping and

therefore can be applied to arbitrary sets of faults containing

both logic and switch level faults for mixed-abstraction fault

simulation. The heuristic processes the initial fault set in re-

verse topological order one by one from inputs to outputs.

First, a fault is assigned an initial fault group, as determined

by its fault location. For each fault location, a group index is

kept, which is used as initial index for associated faults. If a

fault location has not been assigned an index yet, it is sched-

uled in the first group by default. The grouping algorithm then

compares the reachable outputs of the fault with the reachable

outputs of the group for the following groups until an output-

disjoint group is found. The fault and the reachable outputs are

then added to the group and the index of the group is assigned

to the fault site. The distribution of the grouping information to

input predecessors allows to reduce the number of comparisons

and hence the required grouping attempts in order to quickly

find a suitable fault group for each fault [52].

7. Syndrome Evaluation

Once the circuit has been fully simulated, the waveforms of

all output signals are present in the GPU device memory. For

each fault, the waveform of all output pins in the output-cone of

the respective fault site are captured at a given sample time tsamp

according to [52] for logic and [50] for switch level waveforms.

The sampled values are then applied to Eq. (7) if necessary

to obtain a corresponding logical interpretation of the signals,

which is stored in a dedicated syndrome memory [61]. The

syndromes are then used to distinguish faulty from fault-free

output signals and therefore allow to determine whether a fault

was detected or not.

7.1. Computation of Discrete Syndromes

To compute the syndrome at an output the value w(t) sam-

pled from the corresponding output waveform w at time t is

compared against the fault-free response denoted as w(∞). This

paper assumes that all fault-free values of signals are stabilized

and correspond to defined high or low signals. The syndrome

information of an output is obtained by evaluation of a so-called

syndrome waveform, which is derived from the output wave-

forms and the reference responses. For the sake of simplicity,

values of logic level output waveforms are mapped to their cor-

responding voltage values at switch level (cf. Sec. 5.1.1). The

values of the syndrome waveform synw(t) of an output wave-

form w are then generated similar to [50]:

synw(t) :=















val(w(t)) if (w(∞) ≤ VDD+GND
2

),

val(w(t)) else,
(9)

where w is the inverted waveform of w that is generated by mir-

roring the values w(t) at VDD+GND
2

. This inverted waveform is

10

computed as

w(t) = (VDD − w(t) + GND),∀t : w(t) ∈ [GND,VDD].

After computing the syndrome the original output value w(t)

is recognized as faulty if the extracted syndrome is synw(t) = 1

or fault-free if synw(t) = 0. In case the interpreted value

of w(t) is undefined, the corresponding syndrome is unknown

(synw(t) = X). The output signal is then pessimistically consid-

ered as possibly erroneous.

7.2. Multi-Level Fault Detection

The detection of a fault f is determined by looking up the

computed syndromes syno(tsamp) at a given capture time tsamp

for all of the respective outputs o ∈ O f in the output cone O f

of f . Given the captured syndromes, fault f is classified ei-

ther as detected, as undetected or pessimistically as possibly

detected as follows [50]:

• DT (detected) iff ∃o ∈ O f : syno(tsamp) = 1, hence at least

one output signal in the output-cone of the fault shows a

faulty syndrome.

• UD (undetected) iff ∀o ∈ O f : syno(tsamp) = 0 with all

output signals in the output-cone of the fault being fault-

free.

• PD (possibly detected) iff (∀o ∈ O f : syno(tsamp) , 1) ∧

(∃o ∈ O f : syno(tsamp) = X), such that no output in the

output cone is faulty, but a non-empty sub-set is unknown.

Since all computed waveforms remain untouched in the GPU

memory during the computation of the syndromes, the outputs

can be evaluated for multiple capture times quickly in succes-

sion. Furthermore, the evaluation also allows the modeling of

clock skew in the clock distribution tree [66] by introducing

individual capture times to
samp for each output pin o ∈ O of the

circuit. In addition, both space- and time-compaction of the test

responses can be applied during computation of the syndromes,

as all output responses are available for all the simulated input

stimuli.

8. Experimental Results

For the experiments, benchmark circuits from ISCAS’89,

ITC’99 and industrial designs kindly provided by NXP were

synthesized using a 45nm academic standard-cell library in a

commercial tool-chain. Full-scan designs were assumed with

all sequential elements having been removed and only the com-

binational logic remaining. For each circuit, a 10-detect transi-

tion delay fault test set with an average test coverage of over

98.7% was generated by a commercial ATPG-tool to be ap-

plied during the simulation. All experiments were conducted

on an NVIDIA R© TeslaTM P100 GPU device with 3584 cores

and 16GB of global device memory. The host system was com-

posed of two Intel R© Xeon R© E5-2687W v2 processors clocked

at 3.4GHz with access to 256GB of main memory.

8.1. Fault Behavior

The modeling capability and detail of the multi-level fault

simulation is briefly discussed using Fig. 12, which shows the

waveform behavior of resistive open transistor faults in a two-

input NOR-cell with an input hazard [50]. Both visualizations

of the waveforms from SPICE simulation and the implemented

switch level model are compared for varying fault sizes.

In the first case (a), the resistive open was injected into an

NMOS transistor of the parallel pull-down net. As expected,

the fault delays the falling transition significantly with increas-

ing ohmic resistances. For 10MΩ, the resulting conductance of

the pull-down net is already too small to effectively discharge

the node output and the voltage level at the time of the fault ac-

tivation sustains for the whole time-frame. Similarly in the sec-

ond case (b), the resistive open fault was injected into a PMOS

transistor in the serial pull-up net. The fault now affects the ris-

ing transition of the output signal. Since the conductance of the

pull-up net is lowered, the charging process is delayed and can-

not be completed before the second input arrives, which even-

tually pulls the output signal to ground completely unaffected

by the fault. In both of the cases, the waveforms obtained from

the switch level simulation showed a fairly high similarity of

the modeled fault effect compared to the SPICE reference sim-

ulation.

8.2. Runtime Performance

Table 1 reports the runtimes of the multi-level simulator for

varying ROI scenarios. In column 2 and 3 the size of each cir-

cuit in number of nodes (inputs, outputs and cells) and the de-

lay test pairs in the ATPG-generated test pattern set are stated

for each circuit. Column 4 states the runtime of processing the

test set for each circuit using a commercial event-driven timing

simulator. The remaining columns then report the runtimes us-

ing the multi-level simulator for different simulation scenarios

with varying amount of active ROIs from lowest to highest. A

logic level simulation using the multi-level simulator with zero

active ROIs is stated in column 5, while the runtime of a full

simulation at switch level with all nodes marked as active is

presented in the last column. In-between a mixed-abstraction

simulation is performed with increasing amount of ROIs: First

in absolute amount (Col. 6–7) followed by relative amount with

respect to all circuit nodes in percent (Col. 8–13). The ROIs

of the mixed abstraction scenarios were chosen randomly. All

runtimes shown were averaged from three simulation runs with

unique seeds for drawing the random numbers. Each row of a

circuit also reports the runtime savings S (x) of the multi-level

simulator compared to a full simulation at switch level com-

puted as

S (x) := 100% ·

(

1 −
TML(x)

Tswl

)

, (10)

where TML(x) is the runtime of the multi-level simulator for a

given ROI scenario x, and Tswl is the reference runtime of a full

switch level simulation.

As shown, for all simulation scenarios the runtimes were in

the order of seconds for smaller circuits and a few minutes for

11

Table 1: Multi-level simulation runtime (fault-free) for the evaluation of simulation scenarios with different amounts of active regions of interest (ROIs) from lowest

to highest. All ROI locations were chosen randomly.

Pattern- Comm. Full Mixed Abstraction (active ROIs) Full

Circuit(1) Nodes(2)
Pairs(2) Event- Logic- #Nodes % of total Nodes Switch-

Driven(4) Level(5) 1(6) 100(7) 1%(8) 5%(9) 10%(10) 25%(11) 50%(12) 75%(13) Level(14)

s38417 19.0k 348 3.11s runtime: 20ms 51ms 48ms 55ms 53ms 56ms 67ms 75ms 82ms 94ms
saving: 78.7% 45.7% 48.9% 41.5% 43.6% 40.4% 28.7% 20.2% 12.8% –

s38584 23.1k 563 5.29s runtime: 28ms 66ms 74ms 55ms 75ms 67ms 85ms 104ms 112ms 138ms
saving: 79.7% 52.2% 46.4% 60.1% 45.7% 51.4% 38.4% 24.6% 18.8% –

b17 42.8k 2135 35.13s runtime: 107ms 155ms 147ms 179ms 207ms 247ms 315ms 423ms 549ms 654ms
saving: 83.6% 76.3% 77.5% 72.6% 68.3% 62.2% 51.8% 35.3% 16.1% –

b18 125.3k 3174 6:42m runtime: 436ms 568ms 580ms 650ms 884ms 939ms 1.18s 1.84s 2.46s 3.21s
saving: 86.4% 82.3% 81.9% 79.8% 72.5% 70.7% 63.2% 42.8% 23.4% –

b19 250.2k 4651 0:17h runtime: 1.14s 1.34s 1.36s 1.84s 2.30s 2.67s 3.57s 5.09s 6.80s 8.89s
saving: 87.2% 84.9% 84.7% 79.3% 74.1% 70.0% 59.9% 42.8% 23.5% –

p500k 527.0k 5012 0:49h runtime: 4.05s 4.55s 4.09s 5.67s 6.41s 6.01s 8.64s 11.61s 15.21s 18.97s
saving: 78.7% 76.0% 78.5% 70.1% 66.2% 68.3% 54.4% 38.8% 19.8% –

p533k 676.6k 3417 1:07h runtime: 2.75s 3.79s 3.83s 3.66s 5.92s 5.54s 8.19s 10.50s 13.94s 17.58s
saving: 84.3% 78.4% 78.2% 79.2% 66.3% 68.5% 53.4% 40.3% 20.7% –

p951k 1.09M 7063 3:00h runtime: 16.99s 18.72s 15.27s 19.46s 21.13s 20.28s 26.87s 33.85s 40.20s 48.03s
saving: 64.6% 61.0% 68.2% 59.5% 56.0% 57.8% 44.1% 29.5% 16.3% –

p1522k 1.09M 17980 8:21h runtime: 29.87s 24.79s 31.67s 36.46s 43.58s 49.32s 59.23s 1:18m 1:42m 2:01m
saving: 75.4% 79.6% 73.9% 70.0% 64.1% 59.4% 51.2% 34.9% 15.4% –

p2927k 1.67M 22107 18:17h runtime: 52.79s 54.63s 55.06s 1:07m 1:30m 1:44m 1:47m 2:24m 3:08m 3:52m
saving: 77.3% 76.5% 76.3% 71.0% 61.0% 55.1% 53.5% 37.7% 18.8% –

p3188k 2.85M 26502 42:02h runtime: 2:23m 2:22m 2:00m 2:39m 3:05m 3:31m 3:56m 5:23m 7:08m 8:55m
saving: 73.2% 73.5% 77.4% 70.2% 65.4% 60.5% 55.9% 39.6% 20.1% –

p3726k 3.56M 15512 39:24h runtime: 1:31m 1:27m 1:25m 3:29m 6:36m 4:30m 3:33m 4:56m 6:24m 7:31m
saving: 79.8% 80.7% 81.2% 53.6% 12.1% 40.1% 52.6% 34.5% 15.0% –

p3847k 2.96M 31653 40:12h runtime: 2:40m 3:00m 3:31m 3:39m 3:39m 3:49m 4:31m 7:03m 8:06m 0:10h
saving: 75.3% 72.3% 67.5% 66.2% 66.4% 64.8% 58.4% 35.1% 25.3% –

p3881k 3.69M 12092 23:53h runtime: 1:13m 1:43m 1:19m 1:27m 1:38m 2:20m 2:30m 3:07m 3:54m 5:08m
saving: 76.1% 66.3% 74.4% 71.8% 68.1% 54.4% 51.2% 39.2% 24.2% –

 0

 0.3

 0.8

 1.1

 0 20 40 60 80 100 120

O
u

tp
u

t
[V

]
(S

P
IC

E
)

time [ps]

f=10MΩ
f=100kΩ
f=10kΩ

f=4kΩ
f=1kΩ

fault-free

 0

 0.3

 0.8

 1.1

 0 20 40 60 80 100 120

O
u

tp
u

t
[V

]
(s

w
it
c
h

)

time [ps]

f=10MΩ
f=100kΩ
f=10kΩ

f=4kΩ
f=1kΩ

fault-free

a) Injection at an NMOS-transistor in the parallel pull-down net.

 0

 0.3

 0.8

 1.1

 0 20 40 60 80 100 120

O
u

tp
u

t
[V

]
(S

P
IC

E
)

time [ps]

f=10MΩ
f=100kΩ
f=10kΩ

f=4kΩ
f=1kΩ

fault-free

 0

 0.3

 0.8

 1.1

 0 20 40 60 80 100 120

O
u

tp
u

t
[V

]
(s

w
it
c
h

)

time [ps]

f=10MΩ
f=100kΩ
f=10kΩ

f=4kΩ
f=1kΩ

fault-free

b) Injection at a PMOS-transistor in the serial pull-up net.

Figure 12: Resistive-open fault in a) NMOS- and b) PMOS-transistors [67, 68]

of a two-input NOR-cell [69] in presence of an input hazard.

the larger designs all outperforming the simulation of the com-

mercial event-driven approach. In case of the mixed-abstraction

cases, the runtimes were observed to scale linearly with the

amount ROIs active from lowest to highest. However, for sce-

narios with small ROI count (1 and 100), the runtimes strongly

fluctuate due to more complex waveforms generated at ROIs

and varying propagation conditions of the ROI-dependent loca-

tion and fanout. When comparing the multi-level simulator to a

native logic level simulation using [33, 52], the full logic sim-

ulation in the mixed-abstraction simulation was observed 40%

slower in average for the smaller circuits and only 2% slower

for the million-node designs. The difference in runtime is due

to the increased number of processing resources required by all

the kernel threads. The multi-level evaluation kernel requires

roughly double the amount of local processor registers com-

pared to the native logic level evaluation kernel. However, the

amount of registers is the same as in the native switch level

kernel. Consequently, with the higher amount of resources re-

quired per thread, the number of concurrent threads running per

multi-processor need to be reduced which results in less free-

dom for the thread schedulers and less effective utilization of

the multi-processors during execution. Compared to the native

switch level simulation, the processing of the full-switch level

scenario multi-level simulator was observed to be 5% slower

in average than its native counterpart, but for the million-node

designs also 2% faster. Runtimes deviations in this magnitude

will therefore be considered as negligible random fluctuations.

Fig. 13 investigates the speedup of the multi-level simula-

tor (left y-axis) compared to the commercial unparallelized

timing simulator at logic level for all circuits and mixed-

12

abstraction scenarios in more detail. The speedups of the logic

level simulation range from 155× to more than 1600×, while

the switch level speedups range between 33× (s38417) and

314× (p3726k). In general, the speedups tend to be higher for

the larger designs due to a better utilization of the GPU com-

puting resources. The red line in the figure (right y-axis) indi-

cates the ratio of the speedups from full switch level and full

logic level simulation, which shows a runtime difference rang-

ing from 3× up to 8× (average 6×).

8.3. Throughput Performance

The simulation performance of the presented approach is

summarized in Fig. 14. On the left side, the simulation through-

put in million node evaluations per second (MEPS) depend-

ing on the circuit size is shown, while the right side presents

the average simulation time spent per pattern pair in millisec-

onds. The multi-level simulator was able to achieve more than

1000 MEPS at full logic level (average 740 MEPS) and an av-

erage of over 132 MEPS in the full switch level case with a

peak performance of 174 MEPS. Again, the switch and logic

level simulation performances differ by roughly one order of

magnitude. As for the per-pattern runtimes, the average run-

times spent per stimuli ranged from less than 0.1ms to 25ms for

the largest circuit investigated. While the effective parallelism

from nodes typically diminishes on deeper levels of a design,

the available stimuli parallelism compensates for this loss, al-

lowing for a good utilization of the GPU.

As shown, the average runtime time per pattern trend scales

with the circuit size and the throughput performance shows a

constant trend due to full utilization of the GPU device. This

saturation can be overcome by running multiple simulation pro-

cesses and parallelization across multiple devices on recent ar-

chitectures [70]. All fault groups and stimuli are independent

simulation problems and can be partitioned and distributed for

execution on different GPUs or even compute nodes. Especially

for the larger circuits, the process initialization time is negligi-

ble and the overall execution time is dominated by the actual

simulation for processing the faults and stimuli sets. Hence, for

a sufficiently large set of simulation problems, the theoretical

speedup obtained would be linear in the number of considered

GPU devices and allow for further scalability.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

s
3

8
4

1
7

s
3

8
5

8
4

b
1

4
b

1
7

b
1

8
b

1
9

b
2

0
b

2
1

b
2

2
p

3
5

k
p

4
5

k
p

7
7

k
p

8
1

k
p

8
9

k
p

1
0

0
k

p
1

4
1

k
p

2
6

7
k

p
3

3
0

k
p

4
1

8
k

p
5

0
0

k
p

5
3

3
k

p
9

5
1

k
p

1
5

2
2

k
p

2
9

2
7

k
p

3
1

8
8

k
p

3
7

2
6

k
p

3
8

4
7

k
p

3
8

8
1

k

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

S
im

u
la

ti
o

n
 S

p
e

e
d

u
p

 [
X

]

S
/L

 S
p

e
e

d
u

p
 R

a
ti
o

 [
X

]

Circuit

Full Switch
75% ROI
50% ROI
25% ROI
10% ROI

5% ROI
1% ROI
100 ROI

10 ROI
1 ROI

Full Logic

Figure 13: Speedup of the multi-level simulation compared to commercial logic

level time simulation and full-switch-to-full-logic level (S/L) speedup ratio.

 10

 100

 1000

 10000

10
4

10
5

10
6

10
7S

im
u

la
ti
o

n
 T

h
ro

u
g

h
p

u
t

[M
E

P
S

]

Circuit Size [#Nodes]

 0.01

 0.1

 1

 10

 100

10
4

10
5

10
6

10
7

A
v
e

ra
g

e
 R

u
n

ti
m

e
 p

e
r

 S
ti
m

u
li

P
a

ir
 [

m
s
]

Circuit Size [#Nodes]

Full Switch
75% ROIs
50% ROIs
25% ROIs
10% ROIs

5% ROIs
1% ROIs

Full Logic

Figure 14: Simulation throughput in MEPS (left) and average simulation time

per stimuli pair (right) for different ROI scenarios.

8.4. Simulation Efficiency

The implemented multi-level fault simulation approach uti-

lizes sparse ROI activation for increasing speedup and simula-

tion efficiency of low level fault simulations. For this, a single-

fault-single-ROI activation is assumed upon injection of a fault

for each fault of a fault group.

In this work, a location-exhaustive low-level parametric fault

set is assumed where a single fault is contained for each tran-

sistor in the design. The fault set was grouped using the fault

grouping heuristic of [50] and no fault dropping is performed.

Fig. 15 reports the resulting sizes of the fault groups obtained

(solid lines), which were plotted on the x-axis normalized due

to different magnitudes in the circuit sizes. Furthermore, the

cumulative amount of processed faults with respect to the full

fault set is indicated by the dotted lines. The leftmost groups

cover the most faults at once, since they contain faults that are

closer to the circuit outputs which have a higher probability of

being mutually output-independent. After processing 25% of

the fault groups already more than 90% of the overall faults

were processed in average and more than half of the groups

contained in average more than ten faults, thus indicating the

effectiveness of the fault-parallel processing. The size of each

fault group was less than 10% of the amount of nodes contained

in its respective circuit.

The efficiency of the multi-level fault simulation becomes ev-

ident from Fig. 16, which illustrates the runtime savings for the

different mixed-abstraction scenarios. Since for active ROIs,

the node descriptions have to be updated on the GPU any-

way, the fault injection scheme itself introduces no additional

costs [52, 50]. With the number of ROIs of the injected faults

of each fault group being less than 10% of the total circuit nodes

10
0

10
1

10
2

10
3

10
4

10
5

0% 25% 50% 75% 100%
 0

 20

 40

 60

 80

 100

N
u

m
b

e
r

o
f

F
a

u
lt
s
 [

#
]

C
u

m
u

la
ti
v
e

 [
%

]

Fault Group (normalized)

s38417
s38584

b17
b18
b19

p500k
p533k
p951k

p1522k
p2927k
p3881k

avg.

Figure 15: Sizes of obtained fault groups and cumulative amount of faults pro-

cessed [50].

13

at all time, the average runtime savings of the simulation of a

group will range from 60% for the larger to 70% for the smaller

fault groups (minimum 1 fault). This way, the presented multi-

level simulation approach allows for fast and efficient realistic

fault simulation on GPUs.

9. Conclusion

In this paper the first high-throughput multi-level timing sim-

ulator for fast and efficient fault simulation on graphics process-

ing units (GPUs) was presented. It utilizes waveform-accurate

evaluation in a mixed-abstraction fashion by considering both

logic and switch level descriptions simultaneously for a trade-

off in simulation speed and modeling accuracy. The presented

approach carefully exploits similarities in data-structures and

execution patterns of the different abstraction levels and trans-

parently transitions between the abstractions using waveform

transformations. The presented fault modeling allows for both

higher level (e.g., small delay faults) as well as lower level

parametric and parasitic fault models (e.g., resistive open tran-

sistor) and highly efficient fault simulation is achieved through

combination of fault injection at lower level with fault propaga-

tion at higher level and comprehensive syndrome analysis. Ex-

periments have shown that the implemented GPU-accelerated

multi-level fault simulator outperforms conventional commer-

cial timing simulation solutions at logic level by speedups up to

1600× with a simulation throughput of more than 1000 million

node evaluations per second, and achieves runtime savings of

up to 84% compared to a full switch level simulation at GPU

while being scalable for designs with millions of cells.

Acknowledgment

This work has been funded by the German Research Foun-

dation (DFG) under the project PARSIVAL (WU 245/16-1).

References

[1] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,

M. R. Stan, HotSpot: A Compact Thermal Modeling Methodol-

ogy for Early-Stage VLSI Design, IEEE Trans. on Very Large

Scale Integration Systems (TVLSI) 14 (5) (2006) 501–513.

doi:10.1109/TVLSI.2006.876103.

0%

20%

40%

60%

80%

100%

7
5

%

5
0

%

2
5

%

1
0

%

5
%

1
%

1
0

0

1
0 1

R
u

n
ti
m

e
 S

a
v
in

g
s
 [

%
]

Amount of active ROIs [highest to lowest]

Full
Switch
Level

Full
Logic
LevelPercent of Total Nodes #Nodes

s38417
s38584

b17
b18
b19

p500k
p533k
p951k

p1522k
p2927k
p3881k

avg.

Figure 16: Runtime savings of sparse ROI activation compared to full switch-

level simulation.

[2] P. Girard, N. Nicolici, X. Wen (Eds.), Power-Aware Testing and

Test Strategies for Low Power Devices, Springer New York, 2010.

doi:10.1007/978-1-4419-0928-2.

[3] M. Tehranipoor, K. Peng, K. Chakrabarty, Test and Diagnosis for Small-

Delay Defects, Springer New York, 2011. doi:10.1007/978-1-4419-8297-

1.

[4] Y. Yamato, T. Yoneda, K. Hatayama, M. Inoue, A Fast and Accurate Per-

Cell Dynamic IR-drop Estimation Method for At-Speed Scan Test Pattern

Validation, in: Proc. IEEE Int’l Test Conf. (ITC), 2012, pp. 1–8, Paper

6.2. doi:10.1109/TEST.2012.6401549.

[5] J. Jiang, M. Aparicio, M. Comte, F. Aza is, M. Renovell, I. Polian,

MIRID: Mixed-Mode IR-Drop Induced Delay Simulator, in: Proc. 22nd

Asian Test Symp. (ATS), 2013, pp. 177–182. doi:10.1109/ATS.2013.41.

[6] F. Hapke, W. Redemund, A. Glowatz, J. Rajski, M. Reese, M. Hus-

tava, M. Keim, J. Schloeffel, A. Fast, Cell-Aware Test, IEEE Trans.

on Computer-Aided Design of Integrated Circuits and Systems (TCAD)

33 (9) (2014) 1396–1409. doi:10.1109/TCAD.2014.2323216.

[7] H. H. Chen, S. Y. H. Chen, P. Y. Chuang, C. W. Wu, Efficient Cell-Aware

Fault Modeling by Switch-Level Test Generation, in: Proc. IEEE 25th

Asian Test Symp. (ATS), 2016, pp. 197–202. doi:10.1109/ATS.2016.33.

[8] A. D. Singh, Cell Aware and Stuck-Open Tests, in: Proc. IEEE

21st European Test Symp. (ETS), 2016, pp. 1–6, Paper 15.1.

doi:10.1109/ETS.2016.7519316.

[9] R. L. Wadsack, Fault Modeling and Logic Simulation of CMOS and MOS

Integrated Circuits, The Bell System Technical Journal 57 (5) (1978)

1449–1474. doi:10.1002/j.1538-7305.1978.tb02106.x.

[10] J. C. Li, C.-W. Tseng, E. J. McCluskey, Testing for Resistive Opens and

Stuck Opens, in: Proc. Int’l Test Conf. (ITC), 2001, pp. 1049–1058, Paper

38.2. doi:10.1109/TEST.2001.966731.

[11] C. Han, A. Singh, Testing Cross Wire Opens within Complex Gates,

in: Proc. IEEE 33rd VLSI Test Symp. (VTS), 2015, pp. 1–6.

doi:10.1109/VTS.2015.7116301.

[12] C. Han, A. D. Singh, Improving CMOS Open Defect Coverage Using

Hazard Activated Tests, in: Proc. IEEE 32nd VLSI Test Symp. (VTS),

2014, pp. 1–6. doi:10.1109/VTS.2014.6818740.

[13] S. Eggersglüß, R. Drechsler, As-Robust-As-Possible Test Generation in

the Presence of Small Delay Defects using Pseudo-Boolean Optimization,

in: Proc. Conf. on Design, Automation & Test in Europe (DATE), 2011,

pp. 1–6. doi:10.1109/DATE.2011.5763207.

[14] I. Pomeranz, S. M. Reddy, Hazard-Based Detection Conditions for Im-

proved Transition Fault Coverage of Scan-Based Tests, IEEE Trans. on

Very Large Scale Integration (VLSI) Systems (TVLSI) 18 (2) (2010) 333–

337. doi:10.1109/TVLSI.2008.2010216.

[15] H. Konuk, On Invalidation Mechanisms for Non-Robust Delay Tests,

in: Proc. Int’l Test Conf. (ITC), 2000, pp. 393–399, Paper 14.3.

doi:10.1109/TEST.2000.894230.

[16] E. Melcher, W. Röthig, M. Dana, Multiple input transitions in CMOS

gates, Microprocessing and Microprogramming 35 (1–5) (1992) 683–

690. doi:10.1016/0165-6074(92)90387-M.

[17] L.-C. Chen, S. K. Gupta, M. A. Breuer, A New Gate Delay Model

for Simultaneous Switching and Its Applications, in: Proc. 38th

Design Automation Conf. (DAC), 2001, pp. 289–294, Paper 19.2.

doi:10.1109/DAC.2001.156153.

[18] Y. M. Kim, T. W. Chen, Y. Kameda, M. Mizuno, S. Mitra, Gate-Oxide

Early-Life Failure Identification using Delay Shifts, in: Proc. 28th VLSI

Test Symp. (VTS), 2010, pp. 69–74. doi:10.1109/VTS.2010.5469615.

[19] S. Hellebrand, T. Indlekofer, M. Kampmann, M. A. Kochte, C. Liu, H.-J.

Wunderlich, FAST-BIST: Faster-than-At-Speed BIST Targeting Hidden

Delay Defects, in: Proc. IEEE Int’l Test Conf. (ITC), 2014, pp. 1–8, Paper

29.3. doi:10.1109/TEST.2014.7035360.

[20] M. Abramovici, B. Krishnamurthy, R. Mathews, B. Rogers, M. Schulz,

S. Seth, J. Waicukauski, What is the Path to Fast Fault Sim-

ulation?, in: Proc. Int’l Test Conf. (ITC), 1988, pp. 183–192.

doi:10.1109/TEST.1988.207796.

[21] V. S. Iyengar, D. T. Tang, On simulating faults in parallel, in: Proc. 18th

Int’l Symp. on Fault-Tolerant Computing (FTCS), 1988, pp. 110–115.

doi:10.1109/FTCS.1988.5307.

[22] J. A. Waicukauski, E. Lindbloom, B. K. Rosen, V. S. Iyengar, Transition

Fault Simulation, IEEE Design & Test of Computers 4 (2) (1987) 32–38.

doi:10.1109/MDT.1987.295104.

[23] M. L. Bailey, J. V. Briner, Jr., R. D. Chamberlain, Parallel Logic Simula-

14

tion of VLSI Systems, ACM Computing Surveys 26 (3) (1994) 255–294.

doi:10.1145/185403.185424.

[24] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, J. C.

Phillips, GPU Computing, Proceedings of the IEEE 96 (5) (2008) 879–

899. doi:10.1109/JPROC.2008.917757.

[25] K. Gulati, S. P. Khatri, Towards Acceleration of Fault Simula-

tion using Graphics Processing Units, in: Proc. ACM/IEEE 45th

Design Automation Conf. (DAC), 2008, pp. 822–827, Paper 45.1.

doi:10.1145/1391469.1391679.

[26] D. Chatterjee, A. DeOrio, V. Bertacco, Event-Driven Gate-Level Simula-

tion with GP-GPUs, in: Proc. ACM/IEEE 46th Design Automation Conf.

(DAC), 2009, pp. 557–562. doi:10.1145/1629911.1630056.

[27] X. Chen, L. Ren, Y. Wang, H. Yang, GPU-Accelerated Sparse LU Factor-

ization for Circuit Simulation with Performance Modeling, IEEE Trans.

on Parallel and Distributed Systems (TPDS) 26 (3) (2015) 786–795.

doi:10.1109/TPDS.2014.2312199.

[28] K. He, S. X. D. Tan, H. Wang, G. Shi, GPU-Accelerated Parallel Sparse

LU Factorization Method for Fast Circuit Analysis, IEEE Trans. on

Very Large Scale Integration (VLSI) Systems 24 (3) (2016) 1140–1150.

doi:10.1109/TVLSI.2015.2421287.

[29] M. Li, M. S. Hsiao, 3-D Parallel Fault Simulation With GPGPU, IEEE

Trans. on Computer-Aided Design of Integrated Circuits and Systems

30 (10) (2011) 1545–1555. doi:10.1109/TCAD.2011.2158432.

[30] M. A. Kochte, M. Schaal, H.-J. Wunderlich, C. G. Zoellin, Efficient

Fault Simulation on Many-Core Processors, in: Proc. ACM/IEEE 47th

Design Automation Conf. (DAC), 2010, pp. 380–385, Paper 23.4.

doi:10.1145/1837274.1837369.

[31] K. Gulati, S. P. Khatri, Fault Table Computation on GPUs, Journal of

Electronic Testing 26 (2) (2010) 195–209. doi:10.1007/s10836-010-

5147-x.

[32] M. Beckler, R. D. Blanton, Fault Simulation Acceleration for TRAX Dic-

tionary Construction using GPUs, in: Proc. IEEE Int’l Test Conf. (ITC),

2017, pp. 1–9, Paper A.3. doi:10.1109/TEST.2017.8242078.

[33] S. Holst, M. E. Imhof, H.-J. Wunderlich, High-Throughput Logic

Timing Simulation on GPGPUs, ACM Trans. on Design Au-

tomation of Electronic Systems 20 (3) (2015) 1–22, Article 37.

doi:http://dx.doi.org/10.1145/2714564.

[34] E. Schneider, S. Holst, X. Wen, H.-J. Wunderlich, Data-Parallel Simula-

tion for Fast and Accurate Timing Validation of CMOS Circuits, in: Proc.

IEEE/ACM 33rd Int’l Conf. on Computer-Aided Design (ICCAD), 2014,

pp. 17–23. doi:10.1109/ICCAD.2014.7001324.

[35] R. E. Bryant, A Survey of Switch-Level Algorithms, IEEE Design & Test

of Computers 4 (4) (1987) 26–40. doi:10.1109/MDT.1987.295146.

[36] J. P. Hayes, An Introduction to Switch-Level Modeling, IEEE Design &

Test of Computers 4 (4) (1987) 18–25. doi:10.1109/MDT.1987.295145.

[37] J. P. Hayes, Digital Simulation with Multiple Logic Values, IEEE Trans.

on Computer-Aided Design of Integrated Circuits and Systems 5 (2)

(1986) 274–283. doi:10.1109/TCAD.1986.1270196.

[38] S. Gai, P. L. Montessoro, F. Somenzi, MOZART: A Concurrent Multilevel

Simulator, IEEE Trans. on Computer-Aided Design of Integrated Circuits

and Systems (TCAD) 7 (9) (1988) 1005–1016. doi:10.1109/43.7799.

[39] W. Meyer, R. Camposano, Active Timing Multilevel Fault-Simulation

with Switch-Level Accuracy, IEEE Trans. on Computer-Aided Design

of Integrated Circuits and Systems (TCAD) 14 (10) (1995) 1241–1256.

doi:10.1109/43.466340.

[40] M. Radetzki, R. S. Khaligh, Accuracy-adaptive Simulation of Transaction

Level Models, in: Proc. Conf. on Design, Automation and Test in Europe

(DATE), 2008, pp. 788–791. doi:10.1145/1403375.1403566.

[41] M. A. Kochte, C. G. Zöllin, R. Baranowski, M. E. Imhof, H.-J.

Wunderlich, N. Hatami, S. Di Carlo, P. Prinetto, Efficient Simu-

lation of Structural Faults for the Reliability Evaluation at System-

Level, in: Proc. IEEE 19th Asian Test Symp. (ATS), 2010, pp. 3–8.

doi:http://dx.doi.org/10.1109/ATS.2010.10.

[42] R. S. Khaligh, M. Radetzki, Modeling Constructs and Kernel for Par-

allel Simulation of Accuracy Adaptive TLMs, in: Proc. Conf. on

Design, Automation Test in Europe (DATE), 2010, pp. 1183–1188.

doi:10.1109/DATE.2010.5456987.

[43] N. Hatami, R. Baranowski, P. Prinetto, H.-J. Wunderlich, Multilevel

Simulation of Nonfunctional Properties by Piecewise Evaluation, ACM

Trans. on Design Automation of Electronic Systems (TODAES) 19 (4)

(2014) 37:1–37:21. doi:10.1145/2647955.

[44] E. Schneider, M. A. Kochte, H.-J. Wunderlich, Multi-Level Tim-

ing Simulation on GPUs, in: Proc. 23rd Asia and South Pa-

cific Design Automation Conf. (ASP-DAC), 2018, pp. 470–475.

doi:10.1109/ASPDAC.2018.8297368.

[45] NVIDIA Corporation, NVIDIA Tesla Supercomputing — NVIDIA

(2018).

URL http://www.nvidia.com/tesla/

[46] K. Gulati, J. F. Croix, S. P. Khatri, R. Shastry, Fast Circuit Simulation

on Graphics Processing Units, in: Proc. 14th Asia and South Pacific De-

sign Automation Conf. (ASP-DAC), 2009, pp. 403–408, Paper 4C–6s.

doi:10.1109/ASPDAC.2009.4796514.

[47] L. Han, X. Zhao, Z. Feng, TinySPICE: A Parallel SPICE Simulator

on GPU for Massively Repeated Small Circuit Simulations, in: Proc.

ACM/EDAC/IEEE 50th Design Automation Conf. (DAC), 2013, pp. 1–8,

Article 89.

[48] E. G. Ulrich, Exclusive Simulation of Activity in Digital Net-

works, Communications of the ACM 12 (2) (1969) 102–110.

doi:10.1145/362848.362870.

[49] Z. Barzilai, D. K. Beece, L. M. Huisman, V. S. Iyengar, G. M. Silberman,

SLS-a fast switch-level simulator [for MOS], IEEE Trans. on Computer-

Aided Design of Integrated Circuits and Systems (TCAD) 7 (8) (1988)

838–849. doi:10.1109/43.3214.

[50] E. Schneider, H.-J. Wunderlich, SWIFT: Switch Level Fault Simulation

on GPUs, IEEE Trans. on Computer-Aided Design of Integrated Circuits

and Systems (TCAD) (2018) 1–14DOI: 10.1109/TCAD.2018.2802871.

doi:10.1109/TCAD.2018.2802871.

[51] F. J. Ferguson, J. P. Shen, Extraction and Simulation of Realistic CMOS

Faults using Inductive Fault Analysis, in: Proc. Int’l Test Conf. (ITC),

1988, pp. 475–484. doi:10.1109/TEST.1988.207759.

[52] E. Schneider, M. A. Kochte, S. Holst, X. Wen, H. J. Wunderlich, GPU-

Accelerated Simulation of Small Delay Faults, IEEE Trans. on Computer-

Aided Design of Integrated Circuits and Systems (TCAD) 36 (5) (2017)

829–841. doi:10.1109/TCAD.2016.2598560.

[53] IEEE Computer Society, IEEE Standard for Standard Delay For-

mat (SDF) for the Electronic Design Process, IEEE Std 1497-

2001doi:10.1109/IEEESTD.2001.93359.

[54] IEEE Computer Society, IEEE Standard for Integrated Circuit (IC)

Open Library Architecture (OLA), IEEE Std 1481-2009 (2010) c1–

658doi:10.1109/IEEESTD.2009.5430852.

[55] A. E. Ruehli, G. S. Ditlow, Circuit Analysis, Logic Simulation, and De-

sign Verification for VLSI, Proceedings of the IEEE 71 (1) (1983) 34–48.

doi:10.1109/PROC.1983.12525.

[56] A. Czutro, N. Houarche, P. Engelke, I. Polian, M. Comte, M. Renovell,

B. Becker, A Simulator of Small-Delay Faults Caused by Resistive-Open

Defects, in: Proc. 13th European Test Symp. (ETS), 2008, pp. 113–118.

doi:10.1109/ETS.2008.19.

[57] IEEE Computer Society, IEEE Standard for Floating-Point Arithmetic,

IEEE Std 754-2008 (2008) 1–70doi:10.1109/IEEESTD.2008.4610935.

[58] V. S. Iyengar, B. K. Rosen, J. A. Waicukauski, On Computing the Sizes of

Detected Delay Faults, IEEE Trans. on Computer-Aided Design of Inte-

grated Circuits and Systems 9 (3) (1990) 299–312. doi:10.1109/43.46805.

[59] F. J. Ferguson, J. P. Shen, A CMOS Fault Extractor for Inductive Fault

Analysis, IEEE Trans. on Computer-Aided Design of Integrated Circuits

and Systems (TCAD) 7 (11) (1988) 1181–1194. doi:10.1109/43.9188.

[60] C. Sebeke, J. P. Teixeira, M. J. Ohletz, Automatic Fault Extraction and

Simulation of Layout Realistic Faults for Integrated Analogue Circuits,

in: Proc. European Conf. on Design and Test (EDTC), 1995, pp. 464–

468. doi:10.1109/EDTC.1995.470319.

[61] E. Schneider, H.-J. Wunderlich, High-Throughput Transistor-Level Fault

Simulation on GPUs, in: Proc. IEEE 25th Asian Test Symp. (ATS), 2016,

pp. 151–156.

[62] N. H. E. Weste, D. M. Harris, CMOS VLSI Design – A Circuits and

Systems Perspective, Addison-Wesley, 2011.

[63] M. Shao, Y. Gao, L.-P. Yuan, M. D. R. Wong, IR drop and Ground Bounce

Awareness Timing Model, in: Proc. IEEE Computer Society Annual

Symposium on VLSI: New Frontiers in VLSI Design (ISVLSI), 2005,

pp. 226–231. doi:10.1109/ISVLSI.2005.44.

[64] K. U. Giering, C. Sohrmann, G. Rzepa, L. Heiß, T. Grasser, R. Jancke,

NBTI modeling in analog circuits and its application to long-term aging

simulations, in: Proc. IEEE Int’l Integrated Reliability Workshop (IIRW),

2014, pp. 29–34. doi:10.1109/IIRW.2014.7049501.

15

[65] D. Lorenz, G. Georgakos, U. Schlichtmann, Aging Analysis

of Circuit Timing Considering NBTI and HCI, in: Proc. 15th

IEEE Int’l On-Line Testing Symp. (IOLTS), 2009, pp. 3–8.

doi:10.1109/IOLTS.2009.5195975.

[66] M. Shoji, Elimination of Process-Dependent Clock Skew in CMOS

VLSI, IEEE Journ. of Solid-State Circuits (JSSC) 21 (5) (1986) 875–880.

doi:10.1109/JSSC.1986.1052620.

[67] W. Zhao, Y. Cao, New Generation of Predictive Technology Model for

Sub-45 nm Early Design Exploration, IEEE Trans. on Electron Devices

53 (11) (2006) 2816–2823. doi:10.1109/TED.2006.884077.

[68] Nanoscale Integration and Modeling (NIMO) Group, Predictive Technol-

ogy Model (PTM) (2017).

URL http://ptm.asu.edu/

[69] Nangate Inc., NanGate 45nm Open Cell Library (2018).

URL http://www.nangate.com/

[70] NVIDIA Corporation, NVIDIA DGX-2 (Apr. 2018).

URL http://www.nvidia.com/DGX-2

16

