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Abstract—Reconfigurable Scan Networks (RSNs) allow flexible
access to embedded instruments for post-silicon validation and
debug or diagnosis. However, this scan infrastructure can also be
exploited to leak or corrupt critical information as observation and
controllability of registers deep inside the circuit are increased.

Securing an RSN is mandatory for maintaining safe and secure
circuit operations but difficult due to its complex data flow
dependencies.

This work proposes a method that detects security violations
and transforms a given insecure RSN into a secure RSN for
which the secure data flow as specified by a user is guaranteed
by construction. The presented method is guided by user-defined
cost functions that target e.g. test performance or wiring cost. We
provide a case study and experimental results demonstrating the
applicability of the method to large designs with low runtime.
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I. INTRODUCTION

Today’s complex circuitry employs a great variety of on-
chip functional and non-functional instrumentation to facilitate
e.g. on-chip diagnosis, post-silicon validation and bring-up,
therefore allowing test/debug access to the circuit [1]. In order
to cope with the complexity of connecting these instruments,
reconfigurable scan networks (RSNs) as standardized by e.g.
IEEE Std 1149.1-2013 or IEEE Std 1687-2014 are increasingly
deployed in (industrial) designs. Such RSNs allow configuration
and changes to the active scan path and hence provide flexible
and scalable access to embedded instruments.

However, due to the flexibility and powerful observability
and controllability properties of an RSN, security properties
might be compromised. They need to be guaranteed in order
to allow secure operations and prevent an attacker to use the
infrastructure as a side channel to leak sensitive information [2],
[3].

In this work, we present a method that detects security
violations in a given RSN and structurally transforms a given
(insecure) RSN into a secure RSN based on a user-given
security specification [4]. The security specification in our
model is provided by defining a trust category for each segment
of an RSN to model its trustworthiness. Furthermore, for each
segment a set of accepted trust categories to model its data
sensitivity is given. Based on these user-specified information,
paths that may leak or corrupt sensitive data by passing seg-
ments, which do not guarantee an adequate trustworthiness, are
prohibited. Such insecure paths are identified by an efficient
traversal algorithm over the RSN structure. In a second step, we
gradually change the structure as well as the connectivity of the
given RSN in order to structurally prevent every insecure scan
path while still maintaining accessibility of the individual RSN
segments. The proposed method is guided by a cost heuristic,
that optimizes the resulting RSN with respect to different cost
criteria like the overall access latency and thereby tries to keep
the modifications as small as possible.

The applicability of the presented method is demonstrated by
an experimental evaluation using standard RSN benchmarks. As

we will demonstrate, the computational runtime is in the order
of a few seconds for all tested benchmarks. Additionally, we
give example heuristics to guide the search toward different
goals and report an analysis of these different heuristics.

The remainder of the paper is organized as follows: Section II
summarizes the related work on securing RSNs. Section III
gives the required background on the underlying model. The
method to transform an insecure RSN into a secure RSN is
explained in greater detail in Section IV. Section V provides
the experimental results. Section VI concludes the paper.

II. RELATED WORK

The potential conflict between testability and security has
been already addressed for conventional design-for-test infras-
tructures such as standard scan chains, e.g. in [5]–[7]. The data
flow in conventional scan infrastructure is always static and
thereby much less complex than in RSNs.

Security of reconfigurable scan infrastructure has been tack-
led in various works, with diverse approaches to defend against
attacks. Approaches using authorization techniques were e.g.
presented by the authors of [8], who proposed an authorization
instrument for access management as well as by the authors of
[9], [10], who introduced a technique where scan segments are
skipped, unless a secret key is provided. Secure test wrappers
are introduced e.g. by [11] and [12], where the technique from
[11] functions without any hard-coded secrets in the design and
in [12] flip-flops are reused to achieve little area overhead.

Various techniques to obfuscate the scan data have been
introduced: E.g. inverters get inserted at unknown positions
[13], the scan chain is partitioned into sub-chains and the access
to the sub-chains is pseudo-randomized [14], obfuscation is
achieved with the use of state-dependent flip-flops [15] and
XOR-gate confusion is added [16]. The authors of [17] present
a compaction approach, where due to on-chip test comparison
the full test response is compacted to one bit without a loss in
test quality or negative impact on diagnostic of modeled faults.

A sole alteration of sensitive data in a maybe even non-
deterministic way might cause security issues. Therefore in this
work the scan infrastructure must not allow any insecure data
traversal over a scan path.

In [18], [19] a filter is introduced locally at the interface of
the RSN (TAP), that only allows a precomputed set of secure
scan-in access sequences. [20] introduces a filter, that monitors
the security requirements online and can prevent forbidden
accesses.

Security violations might occur for registers which are insep-
arable by scan path configuration, forcing a filter to make every
such register pair inaccessible. In contrast the method presented
in this paper re-designs the RSN, to include all scan registers
in the scan infrastructure.

The use of e-fuses or a wafer saw to fully deactivate the scan
path has been proposed e.g. in [21] and [22], making any in-field
use of the scan infrastructure (e.g. built-in self-test) impossible
and is therefore not considered in this work.
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Fig. 1: Reconfigurable scan network with five scan segments (S1 to S5)

A formal description of data dependency in sequential cir-
cuits is introduced in [23], but did not consider any security
aspects. We adapt the model introduced in [4] to specify access
permissions and restrictions of an RSN.

To the best of our knowledge, the challenge of guaranteeing
secure data flow in the design of reconfigurable scan infrastruc-
ture without the need to add complex control circuitry, yet still
maintaining flexible in-field access, is only considered in this
work.

III. UNDERLYING MODEL

A. Reconfigurable Scan Network: Running Example

We focus on reconfigurable scan networks (RSNs) as stan-
dardized by e.g. IEEE Std 1149.1-2013 or IEEE Std 1687-
2014. Figure 1 shows an example RSN consisting of five scan
segments (S1 to S5) and two scan multiplexers M1 and M2. Note
that the scan segments contain a potentially large amount of
scan register bits (5 and 11 respectively, in the running example
RSN of Fig. 1).

In an RSN multiple active scan paths are configurable, the
example of Figure 1 pictures the active scan path if both scan
multiplexers are set to 1 (dashed line).

An RSN is equipped with three global signals capture, shift

and update, which are controlled by the TAP controller and are
exclusively active, enabling either the capture-, shift- or update-

phase, respectively. In the capture phase, the scan registers are
loaded with data from the underlying circuit, while during the
shift phase, data is shifted through the segments’ scan registers.
In the update phase, data from the scan registers is loaded into
the optional shadow registers.

B. Security Threats

In this work, two security threats are investigated as well as
a countermeasure against both threats.

1) Attack via untrusted Third-party IP: Scan infrastructure
is in general deeply weaved into the circuit, connecting instru-
ments from different sources with each other by a common
interface. Hence, shifting confidential data over a scan path
involving an untrusted third-party module needs to be ruled out.
Third party modules often need to be considered as untrusted,
as their trustworthiness cannot be guaranteed.

In other words the security threat described above has to be
taken into account, if the following holds:

● One scan segment S contains sensitive data.
● There is a scan path through S and an untrusted module.

In Chapter III-C, we will present a formal definition of data

sensitivity and trustworthiness to allow the modeling of such
threats.

2) Using Scan Path Branches for a Side-Channel Attack:

The scan path in Figure 1 (dashed line) shows the data flow from
the scan-in port over the scan segments to the scan-out port. The
data stream not only follows this path, but additionally branches
at each fan-out (cf. Figure 2, blue dashed lines). If S2 or S4 are
inside a third-party module, it should be considered, that data
on the scan path also enters the respective third-party module.
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Fig. 2: Modules adjacent to the scan path access scan data via
scan path branches.

Therefore even though a module is not part of the current
scan path, it might still leak sensitive data e.g. via a side-channel
attack, which is also taken into account by our security model.

3) Proposed Method: This work investigates the RSN
for prohibited connections between scan segments and uses
rewiring to structurally eliminate every such prohibited con-
nection. It therefore serves as countermeasure for the security
threats of both Chapter III-B1 and Chapter III-B2.

C. Security Specification

As already mentioned, we adapt the model introduced in [4]
to specify access permissions and restrictions to instruments
attached to scan segments in an RSN. Each scan segment S is
denoted with a trust category T (S), characterizing the trustwor-
thiness of the segment (or its surrounding core). Furthermore,
for each segment a set of accepted trust categories AT (S) is
given. AT (S) serves as a measure of data sensitivity, i.e. the
category of secrecy or required protection of the data stored in
or read from S. To fulfill data sensitivity issues, any active scan
path through S must only traverse registers with a trust category
in AT (S). This allows for flexible specifications, where the trust
categories can be e.g. linearly ordered or not ordered at all.

The assignment of all segments to their respective trust
categories and confidentialities is referred to as (data flow)

2



security specification. The security specification is violated if
there exists an active scan path over two segments Sx and Sy,
where the trust category of one segment is not contained in the
set of accepted trust categories of the other segment:

T (Sx) ∉ AT (Sy) or T (Sy) ∉ AT (Sx) (1)

In case of T (Sx) ∉ AT (Sy) the low trustworthiness of Sx could
be used to access confidential data mirrored by the scan segment
Sy and vice-versa for T (Sy) ∉ AT (Sx).

If an RSN comprises no such violation, it is called (data

flow) secure. The data flow security specification of the running
example RSN (cf. Figure 1) is shown in Table I:

Scan Segment(s) Trust (T ) Accepted Trust (AT )
S1, S3 , S4 a {a, b, c}
S2 b {a, b}
S5 c {a, c}

TABLE I: Security specification of the example RSN

Note that trust category a (of segments S1, S3, S4) is
contained in every set of accepted trust categories (last column).
Consequently, data from and toward every scan segment is
allowed to be shifted through scan segments of trust category a;
thus, segments of trust category a, are accepted as trustworthy
by each segment/module. In contrast, scan segments S2 and S5

are e.g. placed inside different third party IP modules and are
hence annotated with trust categories, that are not universally
accepted as trustworthy.

It can also be seen that data of scan segments with accepted
trust set {a, b, c} can be shifted through scan segments of any
trust category, as every trust category is contained in the set.
Therefore such scan segments do not mirror data, which is too
confidential for other modules. Especially for large RSNs, it
is in general not straightforward to state whether an RSN is
secure.

Note that the given RSN is not secure, as segments S2

and S5 may exchange data, which violates the given security
specification. In general, efficiently detecting such security
violations is non-trivial as it requires an in-depth analysis of
the RSN structure and its security specification, as presented in
the following Chapter IV-A.

IV. DETECTION AND CORRECTION

An overview of the proposed method is provided in Figure 3.
At first a structural analysis is performed to find security vio-
lations in the existing RSN structure (cf. Subchapter IV-A). A
security violation – if existent – is selected and multiple change
candidates to resolve the security violation are investigated (cf.
Subchapter IV-B), utilizing a cost function, that aims at specific
design goals (cf. Subchapter IV-C). The change candidate that
led to the lowest cost will be applied.

As long as a security violation is found, the above described
steps for the corresponding insecure path are executed.

A. Analysis for Security Violations

This work uses a structural analysis of the RSN for an
efficient check of the security specification. To do so, we
annotate each scan segment S additionally with the unified trust
Ð→
UT and the common accepted trust

ÐÐÐ→
CAT :

●

ÐÐÐÐ→
UT (S) is the union of the trust category of S with the trust
categories of all predecessors.

●

ÐÐÐÐÐ→
CAT (S) describes the intersection of AT (S) (the set of
accepted trust categories of S) with the AT -sets of all

predecessors of S.

Security

Violation

Found?

Evaluate

Change Candidates

Done

(Success)

Cost

Function

Apply Change with

Lowest Cost

Reconfigurable

Scan Network

Security

Specification

no

yes

Fig. 3: Flow of proposed method.

The respective values of all scan segments of the example RSN
(cf. Figure 1) are given in Table II:

Scan Segment(s)
Ð→
UT

ÐÐÐ→
CAT

S1 {a} {a, b, c}
S2 {a, b} {a, b}
S3 {a} {a, b, c}
S4 {a, b} {a, b}
S5 {a, b, c} {a}

TABLE II: Derived security values of the example RSN

Both
Ð→
UT and

ÐÐÐ→
CAT can be iteratively calculated in a prepro-

cessing step, by traversing through the the RSN in topological
order. In the example RSN, the values for the scan segment S5
were calculated as follows:

ÐÐÐÐ→
UT (S5) = T (S5) ∪

ÐÐÐÐ→
UT (S2) ∪

ÐÐÐÐ→
UT (S3) (2)

ÐÐÐÐÐ→
CAT (S5) = AT (S5) ∩

ÐÐÐÐÐ→
CAT (S2) ∩

ÐÐÐÐÐ→
CAT (S3) (3)

After this preprocessing, (data flow) security violations can
be locally detected for each scan segment: The target is to
find a violation, i.e. an insecure path from a (predecessor)
scan segment SPr to a (successor) scan segment SSu . Thus,
as displayed in Formula 1, either the trust category of SPr

conflicts with SSu ’s accepted trust – T (SPr) ∉ AT (SSu) – or
the trust category of SSu conflicts with SPr ’s accepted trust –
T (SSu) ∉ AT (SPr).

● Instead of checking T (SPr) ∉ AT (SSu) for each pair of

scan segments, it should be noted, that the union
ÐÐÐÐÐ→
UT (SSu)

contains T (SPr). Therefore it is possible to instead locally

check

ÐÐÐÐÐ→
UT (SSu) /⊆ AT (SSu) (4)

for each scan segment SSu .
● Similarly, if T (SSu) ∉ AT (SPr), then T (SSu) is also not

contained in the intersection
ÐÐÐÐÐÐ→
CAT (SSu). Thus, instead of

checking T (SSu) ∉ AT (SPr) for each scan segment pair,
the following property can be locally checked:

T (SSu) ∉
ÐÐÐÐÐÐ→
CAT (SSu) (5)

The possibility to locally test for security violations of poten-
tially distant scan segments is summarized in the following
lemma:

Lemma 1: In every security violation is one scan segment S

involved, for which
ÐÐÐÐ→
UT (S) /⊆ AT (S) or T (S) ∉

ÐÐÐÐÐ→
CAT (S) holds.
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If by utilizing Lemma 1, a security violation is found for
a scan segment, a backward traversal identifies a violating
predecessor over an insecure path. In Tables I and II it can

be seen, that
ÐÐÐÐ→
UT (S5) /⊆ AT (S5) as well as T (S5) ∉

ÐÐÐÐÐ→
CAT (S5)

holds, which both imply a security violation. By investigating
one of these implications further, a backward traversal leads to
the predecessor S2. Hence, it must be prohibited, to shift data
from S2 into S5. Otherwise the low trustworthiness of one scan
segment could be used to access confidential data mirrored by
the other scan segment.

B. Candidates to Resolve the Security Violation

Once a security violation has been identified, we modify the
RSN structure in a way that the insecure data path does no
longer exist. In order to do so, multiple resolve options are
investigated for every pair of directly connected (↦) segments
on the insecure scan path.

In the example RSN (cf. Figure 1), S2 and S5 were found
to cause a security violation over the path S2 ↦ M1 ↦ S5. The
resolve options are then investigated once for a cut at S2 ↦ M1

and once for a cut at M1 ↦ S5.

In general, for a pair of directly connected segments Sx and
Sy, at first the connection Sx ↦ Sy is cut. Then, to prevent
unconnected scan segments, the method structurally searches
the RSN to find potential new successor segments of Sx (called
Succpot(Sx)) and potential new predecessor segments of Sy

(called Predpot(Sy)), respectively.

The search for Succpot(Sx) starts at Sx and branches, when-
ever a fan-out is traversed. Scan segments that cause a security
violation with Sx are skipped. A search branch terminates as
soon as a scan segment is reached, that does not cause a security
violation with Sx. If a search branch reaches the scan-out port,
the scan-out is added to Succpot(Sx). Thus Succpot(Sx) is not
empty, as each search branch reaches a segment that will be
contained in Succpot(Sx).

Predpot(Sy) is computed analogously but branches at every
multiplexer instead of every fan-out and proceeds in the direc-
tion of the scan-in port.

In the example RSN (cf. Figure 1), the above described search
was executed once for a cut at S2 ↦ M1 and once for a cut at
M1 ↦ S5. The latter is displayed in Figure 4:

S1

S2

S3

S4

S5

0

1

0

1

scan-in scan-out

M1 M2

Fig. 4: Potential new predecessors of S5 and potential new
successors of M1 are chosen by traversing through the RSN.

As shown in Figure 4, the following sets are created for a
cut at M1 and S5:

Succpot(S2) = {M1 ↦ S4, M1 ↦ scan-out}

Predpot(S5) = {S1 ↦ S5, S3 ↦ S5}

Then all change candidates are generated. Every change candi-
date C is of the form C = C1 ∪ C2, where C1 consists of either

one or all elements of Succpot(Sx) and similar for C2. For the
example RSN:

C1 ∈ {{M1 ↦ S4}, {M1 ↦ scan-out}, {M1 ↦ S4, M1 ↦ scan-out}} ,

C2 ∈ {{S1 ↦ S5}, {S3 ↦ S5}, {S1 ↦ S5, S3 ↦ S5}}

In order to avoid a combinational explosion of possibilities,
we do not employ every subset of Succpot(Sx) and Predpot(Sy)
and additionally limit the number of change candidates per
security violation to 256. By this method every scan segment
is guaranteed to remain in the scan network, and therefore the
full scan accessibility is preserved.

Each change candidate C is then checked by temporarily
applying all of its connections, evaluating the changed RSN
using a cost function (cf. Chapter IV-C). At last, the change
candidate with the lowest cost will be irreversibly applied.

After the application of the change candidate with the low-
est cost, the security violation is not necessarily completely
resolved yet. In case a security violation is caused by two scan
segments that are connected via multiple paths, multiple cuts
have to be executed to resolve the security violation. To do so,
the method structurally finds another insecure path for the same
security violation and the method computes new candidates to
resolve this security violation.

C. Evaluating the RSN with a Cost Function

The proposed method supports so-called cost functions to
assign any RSN a specific cost, tuning the RSN transformation
process toward specific (design) targets, e.g. wiring cost, place-
ment & routing optimization or access latency. We introduce
two exemplary cost functions:

1) costal : Determining the shortest structural access latency

for each scan segment S, where the access latency is
measured in traversed scan register bits from the scan-
in port over S to the scan-out port. The cost is then the
average over all scan segments. In the original RSN (cf.
Figure 1), every scan path traverses 5+ 11+ 11 = 27 scan
register bits, thereby the cost is 27.

2) costcon : Each pair of scan segments is called closely

connected, if they are connected without any other scan
register in between. The original RSN has 6 close connec-
tions: S1 → S2, S1 → S3, S2 → S4, S2 → S5, S3 → S4 and
S3 → S5. The cost is then the amount of close connection
changes compared to the original RSN; naturally, the cost
of the original RSN is 0.

In the proposed method, every change candidate is evaluated
with the chosen cost function. The change candidate that led
to the lowest cost is applied. For the example RSN, the use of
costal leads to the RSN depicted in Figure 5:
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Fig. 5: Secure RSN after execution of the proposed method,
utilizing the cost function costal .

In the above RSN the shortest scan path over a scan segment
traverses on average only 18.2 scan register bits.
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If instead of costal the cost function costcon is utilized, the
change would result in the RSN of Figure 6:

S1

S2

S3

S4

S5

0

1

0

1

M1 M2

Fig. 6: Secure RSN after execution of the proposed method,
utilizing the cost function costcon . The removed close

connection is marked with a dashed line.

The cost of the new RSN is then 1, as the close connection
between S2 and S5 is removed and no new close scan segment
connections have been created. It can be seen that even for only
one design change the choice of the cost function potentially
has a big impact on the RSN design.

The proposed method can be flexibly extended by additional
structural cost functions such as counting the number of multi-
plexers or connections between RSN regions. Additionally, we
can easily integrate load-profile dependent cost functions such
as minimizing the number of cycles needed to apply a given
sequence of RSN operations.

After the application of the change,
Ð→
UT and

ÐÐÐ→
CAT are re-

computed, by traversing from every scan segment of a changed
connection through the RSN and applying Equations 2 and 3
(cf. Chapter IV-A) until a fixed point is reached.

As soon as the security violation is resolved, the proposed
method looks for further un-resolved security violations. If
another security violation is found, the above described steps
for the corresponding insecure path are executed.

D. Termination, Soundness & Completeness

The method terminates, as the number of possible security
violations is finite and each violation is resolved with a finite
number of changes, e.g. the cutting of each insecure path for a
security violation over multiple paths. The proposed method
changes the RSN without causing new security violations,
because it only connects segments, that were already connected
before via other segments.

For soundness, note that the method terminates with a
resulting RSN that does not contain any security violation.
Furthermore Lemma 1 (cf. Chapter IV-A) shows that any
security violation can be found by locally checking Formulas 4
and 5.

The method is complete, because the simple RSN, where all
scan segments are connected in parallel is secure and always
reachable, i.e. the method finds a transformation that leads
towards that simple RSN. It should be noted, that this simple
RSN is more of theoretical nature. In general the proposed
method will return a much more feasible RSN.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

The presented methods have been validated and evaluated
using the benchmarks introduced by BASTION in [24] which
have 10 to 8,485 scan segments. The benchmark set consists of
all 17 acyclic benchmarks for which an ICL source file exists.

The algorithm introduced in the previous sections has been
implemented on top of the tool eda1687 [25]. All experiments

are conducted on a single core of an Intel Xeon CPU running
at 3.3 GHz.

In real world applications the security specification of the
scan segments would be individually specified based on the sen-
sitivity and confidentiality of the various employed instruments.
In order to allow a thorough evaluation of the characteristics of
the presented method on a wide set of benchmarks, we randomly
generated the security specification for each benchmark. We
distributed three categories of trust and up to seven categories
of confidentiality such that a (pessimistic) number of security
violations (cf. Table III) occurs.

B. Experimental Results

Table III shows the experimental results for the proposed
method utilizing the cost functions costcon and costal (cf.
Chapter IV-C).

In the first column the benchmark names are listed. Columns
two to four enlist size information on the corresponding bench-
mark, namely the total number of scan segments, the total
number of scan register bits and the total number of scan mul-
tiplexers, respectively. While the total number of scan segments
and scan register bits is constant throughout the transformation,
the number of scan multiplexers might rise, as scan segments
that were in series might be redesigned in parallel. In the fifth
column we list the number of scan segments, which cause a
security violation with another scan segment in the original
RSN; it can be seen that due to the randomized security
specification 16.67% (SoC_DAP_3D) to 40.61% (p34392) of
the scan segments cause a security violation with a predecessor.

For each cost function the proposed method was applied
on each benchmark; the last 8 columns show information on
the runs for costcon and costal , respectively. As described
in Chapter IV-B, for each security violation multiple change
candidates are evaluated and only the change candidate with
the lowest cost is applied. Table III shows both the total
number of (evaluated) change candidates and the total number
of then applied changes. For the benchmarks SoC_DAP_3D and
MultiCoreAL only one change needs to be applied to retrieve
a secure RSN, therefore only a comparably small amount of
changes (4 and 48, respectively) needs to be evaluated. Note
that even though only two changes were applied to some
benchmark RSNs, up to 681 candidates (Mingle with costcon )
were evaluated for these benchmarks. For the largest benchmark
FlexScan, the method created and investigated over 2,000,000
change candidates out of which around 3,000 were applied for
costcon and around 2,200 were applied for costal to get a secure
RSN. Note that the number of applied changes is not identical
to the number of security violations as an applied change may
resolve multiple security violations. At the same time resolving
a security violation may require multiple applied changes.

The Columns Final Cost list the cost of the transformed RSN,
namely the number of changed close connections for the run
with costcon . For the run with costal Final Cost lists the average
shortest access latency, which is on average reduced by 31%

compared to the original insecure RSN. Thus, the algorithm
was able to reduce the access latency, in addition to securing the
RSN. Lastly, the runtime of the proposed method is presented
(in seconds). The efficiency of the proposed method is shown, as
the complete transformation method runs within a few seconds.
It is also seen that the scoring function costal , that requires
a global analysis of the RSN structure, takes up more runtime
due to its higher complexity, but still remains below 40 seconds,
even for the largest benchmark.
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costcon costal

Benchmark
#Scan

Segments

#Scan
Register

Bits

#Scan
Muxes

#Segm. with
security
violation

#Change
Candidates

#Applied
Changes

Final
Cost

Runtime
(in s)

#Change
Candidates

#Applied
Changes

Final
Cost

Runtime
(in s)

BasicSCB 21 176 10 5 279 2 5 0.00 209 2 22.90 0.00
Mingle 22 270 13 4 681 2 6 0.00 1 101 4 39.32 0.01
TreeFlat 24 101 24 7 176 2 6 0.00 2 297 7 57.92 0.04
TreeFlatEx 122 5 194 59 37 16 249 33 87 0.02 21 132 50 748.07 0.64
TreeBalanced 90 5 581 46 29 12 647 23 60 0.02 36 615 73 361.61 0.56
TreeUnbalanced 63 41 887 28 25 4 237 11 27 0.01 18 562 56 5,807.70 0.26
q12710 50 26 187 27 19 435 6 17 0.00 475 6 550.14 0.01
t512505 287 77 006 159 96 65 138 94 242 0.08 34 962 85 377.74 3.36
p22810 524 30 118 270 187 154 941 179 454 0.15 50 040 177 162.36 3.44
a586710 64 41 667 32 22 2 798 15 36 0.01 4 607 33 712.30 0.03
p34392 197 23 196 96 80 21 086 65 162 0.03 27 243 130 176.55 0.27
p93791 1 185 98 480 596 403 205 180 349 857 0.19 1 764 448 14 941 183.80 17.13
SoC_DAP_3D 12 216 3 2 4 1 3 0.00 4 1 88.67 0.00
MultiTAP 67 41 894 34 26 21 057 20 53 0.03 4 888 16 763.73 0.12
MultiCoreAccessLink 10 16 8 2 48 1 2 0.00 48 1 10.20 0.00
Kernel 59 22 396 32 17 4 357 9 24 0.01 1 936 6 467.80 0.04
FlexScan 8 485 8 485 4 243 3 012 2 173 724 3 002 7 509 5.19 2 129 705 2 183 2,126.25 36.96

TABLE III: Experimental results invoking the cost function costcon that penalizes changed close connections and for the cost
function costal that penalizes access latency.

Overall the proposed method returns an RSN, that satisfies
the security specification in feasible runtime and fulfills its aim
to design the RSN beneficial to specific goals, while maintaining
the same scan accessibility as the original RSN.

VI. CONCLUSIONS AND FUTURE WORK

In this work we investigated data flow security violations
in reconfigurable scan networks, some of which can only be
resolved by design changes, e.g. removing wires and adding
wires.

We proposed:

● Structural tests for security violations, where instead of
testing each combination of distant scan segments, only
local properties have to be checked.

● A sound and complete method to efficiently resolve secu-
rity violations in an RSN to finally obtain a secure RSN,
while maintaining full scan accessibility.

● Cost-based heuristics to effectively tune the method to-
wards scan design targets, e.g. test time or wiring cost.

As demonstrated by the experimental evaluation, the presented
method is highly scalable and hence also applicable for trans-
forming large RSN structures toward given scan design goals.

In the future, we plan to extend the algorithm towards inte-
grating design check rules and an optimal synthesis of secure
scan networks, e.g. using ILP-based optimization methods.
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