
Online Prevention of Security Violations in

Reconfigurable Scan Networks

Atteya, Ahmed; Kochte, Michael A.; Sauer, Matthias;

Raiola, Pascal; Becker, Bernd; Wunderlich, Hans-Joachim

Proceedings of the 23rd IEEE European Test Symposium (ETS’18), Bremen, Germany,

28 May - 1 June 2018

doi: https://doi.org/10.1109/ETS.2018.8400685

Abstract: Modern systems-on-chip (SoC) designs are requiring more and more infrastructure for validation,
debug, volume test as well as in-field maintenance and repair. Reconfigurable scan networks (RSNs), as
allowed by IEEE 1687 (IJTAG) standard, provide flexible access to the infrastructure with low access latency.
However, they can also pose a security threat to the system, by leaking information about the system state. In
this paper, we present a protection method that monitors access and checks for violations of security properties
online. The method prevents unauthorized access to sensitive and secure instruments. In addition, the system
integrator can specify more complex security requirements, including giving multiple users different access
privileges. Simultaneous accesses to multiple instruments, that would expose sensitive data to an untrusted
core (e.g. from 3rd party vendors) or instrument, can be prohibited. The method does not require any change
to the RSN architecture and is easily integrable with IP core designs. The area overhead with respect to the
size of the RSN is below 6% and scales well with larger networks.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic
reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form
to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

https://doi.org/10.1109/ETS.2018.8400685


Online Prevention of Security Violations in
Reconfigurable Scan Networks

Ahmed Atteya1, Michael A. Kochte1, Matthias Sauer2, Pascal Raiola2,
Bernd Becker2, Hans-Joachim Wunderlich1

1ITI, University of Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
2University of Freiburg, Georges-Köhler-Allee 51, D-79110 Freiburg, Germany

Abstract—Modern systems-on-chip (SoC) designs are requiring
more and more infrastructure for validation, debug, volume test
as well as in-field maintenance and repair. Reconfigurable scan
networks (RSNs), as allowed by IEEE 1687 (IJTAG) standard,
provide flexible access to the infrastructure with low access
latency. However, they can also pose a security threat to the
system, by leaking information about the system state.

In this paper, we present a protection method that monitors
access and checks for violations of security properties online.
The method prevents unauthorized access to sensitive and secure
instruments. In addition, the system integrator can specify more
complex security requirements, including giving multiple users
different access privileges. Simultaneous accesses to multiple
instruments, that would expose sensitive data to an untrusted core
(e.g. from 3rd party vendors) or instrument, can be prohibited.
The method does not require any change to the RSN architecture
and is easily integrable with IP core designs. The area overhead
with respect to the size of the RSN is below 6% and scales well
with larger networks.

Index Terms—Hardware security, security specification, IJ-
TAG, IEEE Std 1687, reconfigurable scan networks

I. INTRODUCTION

Current systems-on-chip need an ever increasing number of
instruments. These instruments could be design-for-test (DfT)
structures, sensors, monitors, trace buffers, test and debug
controllers or actuators. On-chip instruments are required to
facilitate the test, diagnosis and debug required for fast yield
bring-up as well as continuous monitoring and maintenance
[1, 2]. Thus, the instruments are required to remain opera-
tional throughout the lifetime of the chip. The access to this
infrastructure through reconfigurable scan networks (RSNs)
was standardized in IEEE Std 1687-2014 (IJTAG, [3]).

RSNs allow efficient and flexible access to on-chip infras-
tructure. By changing the path through which data is shifted,
low latency access infrastructure is possible. However, such
flexible and interconnected structures also open a side-channel
for attacks. Since the infrastructure is integrated into all parts
of the system, it is possible for sensitive information to be
leaked, to gain unauthorized access and to manipulate the
system state, pushing it out of normal safe operation conditions
[4–6].

Since attackers can utilize the access port of the RSN,
some protection methods attempt to use authentication using
cryptographic techniques [7–10], while others present methods
based on obfuscation [11, 12]. Memory-mapped instruments
such as trace buffers can be secured using [13]. One could
also extend the access port with a filter allowing only restricted
access to the network [14, 15]. It is possible to extend the RSN

with control logic and formally verify that accesses cannot
violate security requirements [16, 17].

In [11, 12] locking SIBs (LSIBs), giving access to a lower
level of hierarchy, are protected using obfuscation strategies,
e.g. distributed key locations and honey traps. A linear feed-
back shift register (LFSR) and physically unclonable functions
(PUFs) were used in [9, 10] to generate the key for an LSIB,
this increased the security level compared to obfuscation.

Secure SIBs were presented by [8] that allow access to the
protected instruments only after a user has presented a correct
response to a randomized challenge. And trustworthy accesses,
that shift data only through trusted components, are generated
in [18]. It builds upon the concept of trustworthiness presented
in [16]. In [14, 15] a sequence filter is presented that restricts
the possible RSN accesses (shift in bit sequences) to a static
set of precomputed allowed accesses. However, in this way,
the access flexibility is reduced.

These methods are not suited for dealing with the increasing
complexity of on-chip infrastructure networks and the resulting
complex security requirements. Modern chips with multiple
possible users, many integrated intellectual property (IP) cores
and sensitive instruments need new methods that can fulfill
these requirements. The proposed method in this paper is also
filter based, but the model upon which the restriction occurs is
completely different. The proposed method is much more flex-
ible, restricts only the access to sensitive instruments and can
enforce more complex security requirements. By representing
the relevant structural characteristics and state of the RSN as
a finite state machine (FSM) and keeping track of the current
configuration, more complex security requirements as in [16],
can be specified and enforced, e.g. disallowing accesses based
on external control signals or that access sensitive parts of
the network. The security requirements are monitored online
and concurrent to accesses without any penalty to the latency
of allowed accesses. The method can prevent access to a
specified subset of instruments, give multiple users different
access levels and specify forbidden simultaneous access for
certain instruments, i.e. accessing multiple instruments at the
same time by a specified user can be forbidden to prevent
information flow between some cores or instruments.

The next section introduces RSNs and their operation. Sec-
tion III discusses the introduced security specification that this
method enforces and the considered attack model. Section IV
discusses the generation of the filter. This is followed by an
evaluation of experimental results.



II. RECONFIGURABLE SCAN NETWORKS

An RSN has the following components, signals and opera-
tion behaviour. An example of an RSN is shown in Figure 1.

A. Terminology

Scan Segment: consists of a shift register of a certain size
n. Data is shifted through scan segments from the scan-
in (SI) port to the scan-out (SO) port. An optional shadow
register is included for instruments that need bidirectional
communication or drive RSN-internal control signals, e.g. mux
select signals. The external control signals are Select, Capture,

Shift and Update.
Select Signal: all other control signals will only affect a scan

segment if its select signal is activated, i.e. deselected segments
do not participate in capture, shift or update operations.

Capture Signal: this signal will trigger the read operation
from the instrument to the shift register of the scan segment.

Shift Signal: this signal causes the shift register to start
shifting from SI to SO.

Update Signal: if the update signal is asserted the values
in the shift register are loaded into the shadow register (if
available).

Scan Multiplexer: sets up the path though which data is
shifted through the network (usually driven from same source
as the select signal of segments on the corresponding path).

Active Scan Path: the configured path of scan segments with
activated select signals from the main SI port to the main SO
port of the network. Only a single active scan path may exist
at a time throughout the network, such that no partial paths or
cycles are allowed, i.e. only segments on the active scan path
are selected. All other segments are deselected.

Configuration Segment: scan segments that are used to drive
control signals to configure the active scan path (either directly
or through combinational logic).

Segment Insertion Bits (SIBs): are one bit configuration scan
segments that allow access to a lower level, in a hierarchical
RSN architecture, when a ”1” is stored in the SIB.

B. RSN operation

Reconfigurable Scan Networks are usually accessed through
the Test Access Port (TAP) of the JTAG standard [3]. The user
keeps track of the active scan path length, the active segments
and their positions after every reconfiguration of the RSN.

RSNs are accessed by first capturing data from the active
segments, then shifting the length of the active scan path, such
that captured data is shifted out while new data is being shifted
in, and finally updating the shifted in data. This sequence is
called a capture-shift-update (CSU) operation. Any RSN has
an initial state that defines a specific active scan path through
some scan segments at start-up or when a restart signal is
activated. To access other segments that are not in the current
active scan path, one or more CSU operations are required.
In each CSU operation, the correct configuration values need
to be shifted into the configuration segments on the current
path to activate the scan segments to be accessed.

An example of an RSN is shown in Fig. 1. The initial
configuration of the RSN sets SI−S1−S3−S4−SIB−SO
as the active scan path. Assuming all segments store 1-
bit, shifting in the pattern ”0101” activates both the scan
multiplexer M2 as well as the SIB, and the new configuration

has SI −S1−S3−S5−S6−SIB−SO as the new active
scan path.

S2

S1

S4

S5

S3 SIB

S6

0

1

0

1

M1 M2SI SO

0101
11

0

0

Fig. 1. Example of accessing an RSN with scan multiplexers and SIBs.
Segments in blue can be protected.

III. SECURITY OF ON-CHIP INFRASTRUCTURE

In chips with multiple cores from different vendors, where
each core has its own integrated infrastructure, security has
become a major concern. As shown in [16], security require-
ments cannot be satisfied by simply blocking access to parts
of the infrastructure network anymore. Different users need
to have different access rights. For example, dependability
procedures for two cores from different vendors should not
access any infrastructure outside their corresponding core.
Also maintenance technicians should not have the same access
rights as testing engineers. Since each core provides different
trustworthiness, and the data have different levels of sensitivity,
a fine-grained access specification is required.

A. Security Specification

The goal of this method is to prevent any violations to a
provided security specification for a given RSN. The speci-
fication distinguishes different users or roles that access the
RSN, each is given different permissions, e.g. general users,
maintenance technicians, test engineers. The RSN contains
trusted and untrusted segments, also the data stored in seg-
ments can have different levels of required secrecy. Segments
that are easily controllable or observable through functional
logic must be given an appropriate level of trust, that would
prevent unsafe RSN configurations, i.e. configurations where
sensitive data from a core with high confidentiality is shifted
through an untrusted core, or vice versa. The required security
specification can be then inferred, using an approach as in [16],
and added to the specification to be enforced. The considered
security specification is defined as follows.

The set of all scan segments in a given RSN is denoted R
and the set of all possible users to access the RSN is denoted
U . Access to all segments is allowed by default, except those
specifically restricted by the specification. For the defined
properties in the specification, if the restricted users are not
specified, then the property is applied to all users U . The set
of security specifications is S := Sres ∪ Ssim, where Sres

and Ssim contain properties restricting access to segments and
preventing simultaneous access of segments, respectively.

A restricted segment is a segment that is not allowed to be
a part of the active scan path.

For a user ui ∈ U , the set G(ui) ⊂ R defines the segments
that ui is not allowed to access.

Predicate Active(Ri) denotes if a scan segment Ri ∈ R is
part of the active scan path, i.e. its select signal is enabled.
ActiveUser(ui): Denotes if user ui ∈ U is the current

active user.
Restrict access to segments: Is represented by one or more

properties Pi ∈ Sres. Any segment in Ri ∈ G(ui) must not



be on the active scan path when user ui is currently accessing
the network.

Pi = ∀Ri ∈ G(ui) : ¬(Active(Ri) ∧ ActiveUser(ui))

Restrict simultaneous access: To prevent access of mul-
tiple groups of segments (e.g. multiple cores) simultaneously
for a certain user, the security specification allows to define
multiple groups of segments. The system integrator is free to
define each group as a single or multiple segments, to forbid
the access between single or multiple segments.

Gsim := {G1, ..., Gn|Gi ⊂ R, ∀i, j, j 6= k : Gi ∩Gj = ∅}

The set of groups Gsim(ui) ⊂ Gsim are restricted from
simultaneous access for a user ui ∈ U . Each simultaneous
access restriction is a property Pi ∈ Ssim. Any two segments
from different groups (Gj , Gk) ∈ Gsim(ui) must not be on the
active scan path at the same time, while a user ui is currently
accessing the network.

Pi = ∀j, k, j 6= k ∀Rj ∈ Gj ∀Rk ∈ Gk :

¬(Active(Rj) ∧Active(Rk) ∧ActiveUser(ui))

The specification is enforced by preventing simultaneous
accesses, preventing access to a segment or specifying the
prohibited user from performing certain accesses. It is enforced
using a new type of sequence filters that is based on the
relevant characteristics of the RSN structure and state. The
filter is placed after the TAP controller as shown in Fig. 2.
During an access, new data is shifted in and RSN data is
shifted out. If the shifted out data is sensitive or confidential or
restricted for the particular user, then the specification already
prohibits this configuration ensuring that sensitive data is never
exposed.

The authentication of the current user through strong cryp-
tographic codes, e.g. challenge-response protocols or PUFs,
is usually enforced by an on-chip security manager [16]. The
security manager activates the filter if required and provides
it with the needed information about the current user, and the
filter informs it when a violation has occurred (Fig. 2). The
implementation of the security manager is outside the scope of
this paper, however it could be adapted from the implementa-
tion presented in [19] or the authentication controller in [8]. It
is clear that any secure SoC must implement an authentication
scheme for many reasons, as discussed in [13, 19], which can
be reused to reduce the overhead.

B. Attacker Model

The following points describe the considered capabilities of
an attacker in our approach.

• The attacker has control over the access port (TAP
controller).

• The attacker can observe scan data shifted through seg-
ments belonging to untrusted cores under his control.

IV. FILTER GENERATION

The proposed filter consists of three main parts (Fig. 2). A
finite state machine (FSM), a configuration array consisting of
1-bit scan segments that hold the current configuration of the
RSN and the synthesized conditions representing a violation
of the security specification. The filter allows only accesses
consisting of valid CSU operations, i.e. access operations that
capture, then shift the exact length of the currently configured

active scan path and finally update. Invalid accesses will
be filtered and the update signal will not be asserted. This
restriction ensures that the user cannot update unexpected data
(e.g. from preceding segments) into the configuration segments
of the RSN, causing an unknown or forbidden configuration of
the RSN to occur. Patterns for other devices on the same board
(but outside the RSN and SoC) must not be shifted through
the FSM, to ensure they do not affect the FSM. This could be
realized by sending the patterns for the secure SoC directly,
e.g. through one of the user-defined instructions and test data
registers of the TAP controller.

The FSM tracks which scan segment in the RSN will receive
the bit currently being shifted in at SI port, assuming the
current access is valid and shifts the complete length of the
currently configured active scan path. The FSM also stores
and updates the current RSN configuration in the configuration

array.

TAP RSN
Filter

Capture
Shift

Scan-in

Update

User

FSM

Security violations

Config. 

Array

activate

Update

Shift

Capture

Update

allow

Scan-in

Security Manager

Violation

Fig. 2. General architecture of the Filter
The filter has two requirements for ensuring correct func-

tionality.

1) In the initial (reset) configuration of the RSN, all seg-
ments on the active scan path must be accessible for any
user.

2) Access to all non-restricted segments should be possible,
i.e. the union of all paths to restricted segments (for
one or all users) must not block access to non-restricted
segments.

As an example for these conditions, consider Fig. 1. The
segments S1, S3, S4 and SIB form the initial configuration
of the RSN. Thus, any of these segments cannot be considered
as restricted segments. Also according to (2), both S4 and
S5 cannot be protected at the same time, because that would
block all further access to SIB as well as leaving no path
to the main scan out port. Preventing access to the segments
marked in blue is possible as none of them are on the initial
configuration and all have other paths to bypass them.

To construct the filter, a structural description of the RSN
is parsed and the security specification is provided. A general
filter that represents the RSN is generated. Boolean functions
that satisfy the provided security specification are generated
and synthesized into combinational logic. If an access is
detected to violate the security specification, the FSM goes
into a lock state at the end of the access and prevents an
update signal from reaching the RSN. The FSM stays in the
lock state until a global reset is performed.

A. FSM Generation

The FSM part of the filter gets the following inputs: Scan-
in, capture, shift, update, user and violation (indicates security
violation, see Section IV-C). The FSM has the following
control states:



INIT: The initial state after a reset, and where the FSM
waits for a CSU operation to begin. Only the capture control
signal may be asserted in this state, attempts to shift or update
will cause the FSM to go to the LOCK state.

LOCK: This state can only be left when allowed by the
security manager and after a global reset of the entire RSN net-
work. Any violations to the synthesized security requirements
or the valid CSU restriction causes the FSM to transition to
this state at the end of the access.

UPDATE: The last state of a valid CSU operation. In
this state, the allow signal (Fig. 2) is activated only if
violation = 0, permitting the update signal to affect the RSN.
The user must update in this state which will then complete
the access and transition back to the INIT state, otherwise the
FSM considers this a violation of the valid CSU restriction
and goes into the LOCK state.

For each 1-bit scan segment in the RSN a state is created.
During operation, when the FSM is in a certain state, the bit
currently at the main SI port will be stored in the correspond-
ing scan segment after a valid CSU operation is completed.
For a valid CSU operation, the first bit to be shifted in will
be stored at the last scan segment of the currently configured
active scan path, the next will be in the one before it, and
so on (Fig. 1). This means that the FSM will transition
through the states representing the currently configured active
scan path from SO to SI. As such, state transitions occur
from the current segment to the structural predecessors in
the RSN. Which of the predecessors is chosen depends on
the currently configured active scan path, i.e. depends on the
values of configuration segments stored in the configuration
array. The condition for transition to next state is built from
the conjunction of the required control signal (capture, shift or
update), the values of the configuration segments controlling
the scan multiplexers between the current segment and the
target predecessor segment. Fig. 3 shows the FSM for Fig. 1.
In the FSM, SIB has three possible predecessors, S6, S4 or
S5. Conditions that a path is generated between each of them
are annotated in the figure. It is clear that the condition should
contain all possible control values affecting the path between
the two segments in the RSN. States for segments connected
to the SI port will transition to UPDATE state, which then
transitions to LOCK or INIT to block or complete the access.

Finally, after all transitions are generated, a state optimiza-
tion is performed. Since each state represents a single bit in
the actual RSN, there are many redundant states representing
the same segment or segments connected serially. If these
states do not represent a configuration segment, they are
merged using a counter. The values being shifted into the
RSN for non-configuration segments will not affect the RSN
configuration. For the filter, it is only important to shift the
correct length of the segments. The counter is loaded with the
length of the segment, then the state is stable until the correct
number of shifts has been observed (i.e. counter is 0), and
finally the FSM continues transitioning. These final merged
states of non-configuration segments represent the smallest
granularity (smallest configurable paths in the RSN) that the
filter can allow or prevent. Algorithm 1 explains the process
of generating the FSM states and the transitions.

INIT SIB S3
S4

S6

S1

S2S5

C

SIB = 1

SIB=0 ∧
S3=0 

SIB=0 ∧
S3=1 

S1 = 1

S3 = 0

S3 = 1

violation = 0 violation = 1

S1 = 0

Update LOCK

violation = S3

Fig. 3. Generated FSM for RSN in fig. 1

Algorithm 1: FSM Generation Algorithm

input : RSN Structural Description
output: FSM

1 create state Init, Lock, Update
2 create transition t1: Update→ Init
3 annotate t1 with condition ”violation = 0” // violation is

synthesized from security spec.
4 create transition t2: Update→ Lock
5 annotate t2 with condition ”violation = 1”
6 stateSet← {Init, Update, Lock}
7 foreach 1-bit segment Ri of RSN do
8 stateSet.append(new state Si)
9 if Ri is ConfigSegment then

10 configArray ← new segment Ci

11 end
12 end
13 foreach Si in stateSet do
14 predecessors← {Sj |Rj is predecessor of Ri}
15 foreach Pi in predecessors do
16 create transition ti: Si → Pi

17 cd← condition that path (Pi → Si) is active
// The Boolean function of config segments

that activates the scan path from Pi to
Si

18

19 annotate ti with condition cd
20 end
21 end
22 merge any two states S1, S2 that are connected by a single transition

and cd = 1

B. Configuration Array

The FSM requires the values of the configuration segments
in the RSN. For this purpose, all configuration segments
are duplicated into a so called configuration array. During
an access, the states transitioned through will always be
equivalent to the segments on the actual active scan path of the
RSN, assuming the configuration array and the configuration
segments in the RSN have the same reset values.

All the segments in the configuration array have both shift
and shadow registers. They are all connected to the main SI
port as well as the shift and update control inputs. During an
access operation, a segment in the configuration array will be
selected (activated) if the current state of the FSM represents
the corresponding configuration segment in the RSN. Since
the definition of current state in the FSM is that the bit at
the input SI port will end up at the corresponding segment,
this value will also be stored into the shift register of the
configuration array. At the end of an allowed valid access, the
update signal is propagated to the configuration array, updating
the shifted in configuration data to the shadow registers. Since
the values in the shadow registers represent the currently
configured active scan path, they are used for the transition
conditions between states in the FSM. The values in the shift
register of the configuration array are used in the synthesized



security violations because these values represent the access
currently being attempted.

C. Synthesis of Security Conditions

The FSM along with the configuration array provide all
the information needed about the current access being per-
formed, while allowing only valid CSU operations to be
performed. To realize the required security properties, the
configuration values of the current access are checked using a
Boolean formula that satisfies the security properties defined
in Section III-A. The formula(s) are then synthesized into
combinational circuits and added to the implementation. The
disjunction of all violations to security specification is then
fed back to the FSM, instructing it to transition to the LOCK
state in case any of the properties was violated.

To restrict access to a specific scan segment (restricted

segment) for all users, the conditions on the transitions to
the state representing this segment need to be all false.
Consider the example in Fig. 3. To restrict access to S5
the condition violation = S3 is synthesized, i.e. S3 must
never be 1. This essential condition can be represented as the
intersection of all conditions on the incoming transitions for
S5. Specifying restrictions for certain users can be trivially
extended by adding the disjunction of all restricted users to the
generated conditions. Continuing with the previous example,
assume only U1 and U2 are restricted from accessing S5. The
condition in this case is violation = (U1 ∨ U2) ∧ (S3).

Finally, to prevent the simultaneous access to two or more
groups of segments, the disjunction of the essential condi-

tions of each group is evaluated together, followed by the
conjunction of any two groups. For m groups of segments
(G1, ..., Gm) each with n segments (R1, ..., Rn), a violation
to this property is evaluated as follows.

ActiveGroup(Gk) =
n∨

i=1

Active(Ri)

violation = ∀Ga, Gb, a 6= b :

ActiveGroup(Ga) ∧ActiveGroup(Gb)

V. EVALUATION

To evaluate the effectiveness and cost of the proposed
method, two implementations of the ITC’02 benchmarks were
used as presented in [18]. The area overhead of the approach
was evaluated for restricting access to a subset of the instru-
ments for all users, the restrictions of instruments for several
different users, and the prevention of certain simultaneous
accesses of instruments.

A. Benchmark Circuits

The benchmarks consist of boundary and internal scan
chains connected in a hierarchy either using scan multiplexers
as shown in Fig. 4 or using SIBs. The benchmarks consist
of several modules, and each module has a group of seg-
ments. The number of MUXes/SIBs, number of scan registers,
number of scan bits as well as the area of the synthesized
benchmarks are presented in the first section of Table I.

The MUX-based benchmarks have two types of access.
Configuration access where configuration segments are ac-
cesses to add or remove certain segments from the active scan

path, and data accesses where the segments configured onto
the scan path are then accessed. The SIB-based benchmarks,
on the other hand, have distributed control for accessing lower
levels of the hierarchy.

Module 0

Module 2

Module 1

INPUTS

SCAN

OUT
SCAN

IN
OUTPUTSAM

C C

INPUTS OUTPUTSAM

C C

C C

CHAIN 1

C

…

…

…

…

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Fig. 4. Architecture of MUX implementation of ITC benchmark [18]

B. Experiments

Three main experiments were performed in this evalua-
tion. In experiment (1), simple access restriction to specific
instruments for all users was performed. Different runs of
the experiment were performed, randomly restricting access
to 25%, 50% and 75% of the instruments in each benchmark.
Configuration scan segments are not targeted for protection,
only regular instruments are protected. In experiment (2), four
different users are defined with different access privelages.
One user is allowed to access all segments while the others
were restricted from accessing 25%, 50% and 75% of the
available segments in the benchmark. Finally in experiment(3),
two random modules in the benchmark are chosen. A subset of
segments from one module was restricted from being accessed
at the same time as any register in the second module.

Using a commercial unbounded model checker, the protec-
tion method was formally verified at RT-level. Due to the
difficulty of formally verifying RSNs, as discussed in [17],
the verification could only be performed on a small RSN
implementation.

All the benchmarks as well as all generated filters were
synthesized using the Nangate 45nm open cell library with
area optimization target. The filter can be clocked up to 300
MHz, and has no negative impact on circuit timing since the
shift frequency is typically only a fraction of this value. The re-
sulting overheads for all experiments are shown in Table I. The
table shows the area of the benchmarks, their characteristics
and the resulting number of states (configuration and total) for
the resulting filter. The number of states in the filter increases
with the number of configurable paths in the RSN. The area
overhead of the filters also depends on the complexity of the
conditions for transitioning between states. These conditions
can be much more complicated in MUX based benchmarks
(e.g. Fig. 4) as the possible paths (and their corresponding
activation conditions) grow proportionally to the number of
MUXes and paths that need to be configured to connect
the two segments in the active path. The overhead for SIB
benchmarks is much lower due to the simpler structure and
the lower number of possible connections for each segment.

The last three sections of Table I show the area of the syn-
thesized filters and their overheads for the three experiments.



TABLE I
AREA AND CHARACTERISTICS OF SYNTHESIZED BENCHMARKS AND FILTERS

Design Benchmark characteristics Filter 75% seg. restriction Different users Simul. access restriction
Area #MUX #scan #scan # states Area Overhead Area Overhead Area Overhead

[µm2] /#SIBs seg bits config/total [µm2] [+%] [µm2] [+%] [µm2] [+%]

f2126 mux 221 754 45 81 15 834 45/84 2 179 0.98% 2 179 0.98% 2 175 0.98%
f2126 sib 221 614 41 77 15 830 40/79 1 297 0.59% 1 305 0.59% 1 295 0.58%
q12710 mux 367 949 30 51 26 188 30/54 1 280 0.35% 1 287 0.35% 1 278 0.35%
q12710 sib 367 813 25 47 26 183 25/49 913 0.25% 920 0.25% 913 0.25%
p22810 mux 425 946 311 565 30 139 311/568 25 492 5.98% 25 500 5.99% 25 426 5.97%
p22810 sib 425 035 283 537 30 111 282/539 10 768 2.53% 10 771 2.53% 10 735 2.53%
p34392 mux 327 407 142 245 23 261 142/248 8 491 2.59% 8 494 2.59% 8 449 2.58%
p34392 sib 326 854 123 226 23 242 122/228 3 622 1.11% 3 624 1.11% 3 593 1.10%
p93791 mux 1 382 172 653 1241 98 637 653/1244 71 754 5.19% 71 779 5.19% 71 628 5.18%
p93791 sib 1 381 081 621 1209 98 605 620/1211 22 322 1.62% 22 345 1.62% 22 203 1.61%
t512505 mux 1 080 353 191 319 77 037 191/322 14 833 1.37% 14 826 1.37% 14 815 1.37%
t512505 sib 1 079 456 160 288 77 006 159/290 5 286 0.49% 5 289 0.49% 5 270 0.49%
a586710 mux 589 510 47 79 41 682 47/82 2 179 0.37% 2 181 0.37% 2 165 0.37%
a586710 sib 589 304 40 72 41 675 39/74 1 298 0.22% 1 302 0.22% 1 287 0.22%

In experiment (1), the results for restricting 25% and 50% of
the segments are very close to that of restricting 75% (less than
0.01% difference) and were omitted due to space restriction.
For all experiments, the area overhead is clearly very low
compared to the area of the RSN itself, with the maximum
overhead being 5.99% for the p22810 mux benchmark. Most
benchmarks have an overhead of less than 2%. It is also clear
that the method scales well with an increasing number of spec-
ified security requirements. A maximum of 0.02% overhead
is incurred when increasing the number of monitored security
properties in our experiments. This holds for increasing the
number of restricted segments, adding different user privileges
and also blocking accesses to different cores at the same
time. When all security requirements are combined, only the
additional synthesized conditions grow, which incurs a small
additional overhead (around 0.05%). This shows the capability
of our approach to handle complex systems and scale well with
increasing number of security specifications.

VI. CONCLUSION

While infrastructure access has become a requirement
throughout the lifetime of any modern SoC, it also poses
a security threat, possibly leaking sensitive data. As the
size and complexity of this infrastructure increases, security
requirements with higher complexity are needed. In this work,
a new type of filters for reconfigurable scan networks (RSNs)
is introduced as a protection method. The filter is placed at
the interface of the TAP controller. It requires no architectural
changes to the RSN, which facilitates its usage with verified IP
core designs. The filter is transparent to accesses that do not
violate any specified security properties. Modeling the RSN
structure in the filter allows more complex security properties
to be monitored during operation, e.g. different user privileges,
or prohibiting simultaneous activation of instruments. The area
overhead of the filter ranges from 0.1% to 6% when compared
to the original RSN area, and scales well with larger circuits.

ACKNOWLEDGMENTS

This work was supported by the Baden-Württemberg Stiftung (IKT-
Sicherheit, SHIVA).

BIBLIOGRAPHY

[1] N. Stollon, On-Chip Instrumentation: Design and Debug for Systems on
Chip. Springer US, 2011.

[2] F. G. Zadegan, E. Larsson, A. Jutman, S. Devadze, and R. Krenz-Baath,
“Design, Verification, and Application of IEEE 1687,” in Proc. IEEE
Asian Test Symposium (ATS), Nov 2014, pp. 93–100.

[3] “IEEE Standard for Access and Control of Instrumentation Embedded
within a Semiconductor Device,” IEEE Std 1687-2014, pp. 1–283, Dec
2014.

[4] J. Dworak and A. Crouch, “A call to action: Securing IEEE 1687 and
the need for an IEEE test Security Standard,” in Proc. IEEE 33rd VLSI
Test Symposium (VTS), April 2015, pp. 1–4.

[5] M. Tehranipoor and C. Wang, Introduction to Hardware Security and
Trust. Springer Publishing Company, Incorporated, 2011.

[6] D. Mukhopadhyay, S. Banerjee, D. RoyChowdhury, and B. B. Bhat-
tacharya, “CryptoScan: A Secured Scan Chain Architecture,” in Proc.
IEEE Asian Test Symposium (ATS), Dec 2005, pp. 348–353.

[7] K. Park, S. G. Yoo, T. Kim, and J. Kim, “JTAG Security System Based
on Credentials,” Journal of Electronic Testing, vol. 26, no. 5, pp. 549–
557, Oct 2010.

[8] R. Baranowski, M. A. Kochte, and H.-J. Wunderlich, “Fine-Grained
Access Management in Reconfigurable Scan Networks,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 34, no. 6, pp. 937–946, 2015.

[9] S. K. K, N. Satheesh, A. Mahapatra, S. Sahoo, and K. K. Mahapatra,
“Securing IEEE 1687 Standard On-chip Instrumentation Access Using
PUF,” in 2016 IEEE International Symposium on Nanoelectronic and
Information Systems (iNIS), Dec 2016, pp. 56–61.

[10] H. Liu and V. D. Agrawal, “Securing IEEE 1687-2014 Standard Instru-
mentation Access by LFSR Key,” in Proc. IEEE Asian Test Symposium
(ATS), Nov 2015, pp. 91–96.

[11] J. Dworak, A. Crouch, J. Potter, A. Zygmontowicz, and M. Thornton,
“Don’t forget to lock your SIB: hiding instruments using P1687,” in
Proc. IEEE International Test Conference (ITC), Sept 2013, pp. 1–10.

[12] A. Zygmontowicz, J. Dworak, A. Crouch, and J. Potter, “Making it
harder to unlock an LSIB: Honeytraps and misdirection in a P1687
network,” in 2014 Design, Automation Test in Europe Conference
Exhibition (DATE), March 2014, pp. 1–6.

[13] J. Backer, D. Hely, and R. Karri, “Secure and flexible trace-based
debugging of systems-on-chip,” ACM Trans. Des. Autom. Electron. Syst.,
vol. 22, no. 2, pp. 31:1–31:25, Dec. 2016.

[14] R. Baranowski, M. A. Kochte, and H.-J. Wunderlich, “Securing Access
to Reconfigurable Scan Networks,” in Proc. IEEE Asian Test Symposium
(ATS), 2013, pp. 295–300.

[15] R. Baranowski, M. A. Kochte, and H.-J. Wunderlich, “Access Port
Protection for Reconfigurable Scan Networks,” Journal of Electronic
Testing: Theory and Applications (JETTA), vol. 30, no. 6, pp. 711–723,
2014.

[16] M. A. Kochte, M. Sauer, L. R. Gomez, P. Raiola, B. Becker, and H. J.
Wunderlich, “Specification and Verification of Security in Reconfig-
urable Scan Networks,” in 22nd IEEE European Test Symposium (ETS),
May 2017, pp. 1–6.

[17] M. A. Kochte, R. Baranowski, M. Sauer, B. Becker, and H.-J. Wun-
derlich, “Formal Verification of Secure Reconfigurable Scan Network
Infrastructure,” in Proc. 21st IEEE European Test Symposium (ETS),
2016, pp. 1–6.

[18] M. A. Kochte, R. Baranowski, and H. J. Wunderlich, “Trustworthy
reconfigurable access to on-chip infrastructure,” in International Test
Conference in Asia (ITC-Asia), Sept 2017, pp. 119–124.

[19] A. P. D. Nath, S. Ray, A. Basak, and S. Bhunia, “System-on-chip security
architecture and cad framework for hardware patch,” in 23rd Asia and
South Pacific Design Automation Conference (ASP-DAC), Jan 2018, pp.
733–738.


