
Multi-Layer Diagnosis for Fault-Tolerant

Networks-on-Chip

Schley, Gert; Dalirsani, Atefe; Eggenberger, Marcus; Hatami,

Nadereh; Wunderlich, Hans-Joachim; Radetzki, Martin

IEEE Transactions on Computers Vol. 66(5) 1 May 2017

doi: http://dx.doi.org/10.1109/TC.2016.2628058

Abstract: In order to tolerate faults that emerge in operating Networks-on-Chip, diagnosis techniques are
employed for fault detection and localization. On various network layers, diverse diagnosis methods can be
employed which differ in terms of their impact on network performance (e.g. by operating concurrently vs.
pre-empting regular network operation) and the quality of diagnostic results. In this contribution, we show
how diagnosis techniques of different network layers of a Network-on-Chip can be combined into multi-layer
solutions. We present the cross-layer information flow used for the interaction between the layers and show
the resulting benefit of the combination compared to layer-specific diagnosis. For evaluation, we investigate
the diagnosis quality and the impact on system performance to explore the entire design space of layer-specific
techniques and their multi-layer combinations. We identify pareto-optimal combinations that offer an increase
of system performance by a factor of four compared to the single-layer diagnosis.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic
reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form
to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

http://dx.doi.org/10.1109/TC.2016.2628058

1

Multi-Layer Diagnosis for Fault-Tolerant

Networks-on-Chip
Gert Schley, Atefe Dalirsani, Marcus Eggenberger, Student Member, IEEE, Nadereh Hatami,

Hans-Joachim Wunderlich, Fellow, IEEE, Martin Radetzki, Senior Member, IEEE

Abstract—In order to tolerate faults that emerge in operating
Networks-on-Chip, diagnosis techniques are employed for fault
detection and localization. On various network layers, diverse
diagnosis methods can be employed which differ in terms of their
impact on network performance (e.g. by operating concurrently
vs. pre-empting regular network operation) and the quality of
diagnostic results. In this contribution, we show how diagnosis
techniques of different network layers of a Network-on-Chip can
be combined into multi-layer solutions. We present the cross-layer
information flow used for the interaction between the layers and
show the resulting benefit of the combination compared to layer-
specific diagnosis. For evaluation, we investigate the diagnosis
quality and the impact on system performance to explore the
entire design space of layer-specific techniques and their multi-
layer combinations. We identify pareto-optimal combinations that
offer an increase of system performance by a factor of four
compared to the single-layer diagnosis.

Index Terms—Networks-on-Chip, NoC, Diagnosis, Perfor-
mance, Multi-layer, Design Space Exploration.

I. INTRODUCTION

FOR THE LAST 50 YEARS, chip integration density has

increased exponentially, enabling the implementation of

multi-core chips such as Intel’s Xeon Phi Coprocessor [1].

As technology scaling continues from today’s 16 nm feature

size to 1 nm in 2028 [2], thousands of processing cores

on a single chip will become feasible. With the increasing

number of cores, higher communication bandwidth will be

required. Conventional bus-based systems will no longer meet

these requirements and would thus become a performance

bottleneck. To avoid this bottleneck, Networks-on-Chip (NoC)

have been proposed as communication structure for manycore

systems [3].

A negative aspect of technology scaling, however, is the

increasing probability of chip defects introduced during man-

ufacturing [4] or caused during system operation by wear-

out effects such as BTI, HCI or electromigration [5]. Such

defects are modeled as permanent faults in the structure of a

NoC. When a fault leads to a deviation of information from

the fault-free case, we say that an error is activated. Different

from transient errors caused by radiation or crosstalk, errors

resulting from permanent faults cannot be corrected with a

This work has been supported by the German Research Foundation (DFG)
under grant RA 1889/4-1 (ROCK) and WU 245/12-1 (ROCK).

G. Schley, M. Eggenberger, and M.Radetzki are with the Chair of Em-
bedded Systems, University of Stuttgart, Stuttgart 70569, Germany. (e-mail:
{schley, eggenbms, radetzki}@informatik.uni-stuttgart.de).

A. Dalirsani, N. Hatami, and H.-J. Wunderlich are with the Chair of
Computer Architecture, University of Stuttgart, Stuttgart 70569, Germany.
(e-mail: {dalirsani, hatami, wu}@informatik.uni-stuttgart.de).

simple retransmission. Without proper handling, they may lead

to system malfunction or even to complete system failure.

To bypass faults, they have to be located and classified

as permanent. For this purpose, diagnostic techniques can be

designed on various network layers from physical layer to

transport layer. Each layer has its specific tradeoff between

quality (granularity) and cost (overhead) of diagnosis. On the

transport layer, diagnosis is implemented in software, without

additional hardware cost, and is conducted concurrently with

regular system operation. However, the available information

is largely abstracted from the underlying hardware. Therefore,

faults cannot be attributed to individual gates and wires.

Granularity increases towards lower network layers at the

expense of an increased diagnosis effort (e.g., the need to

shut down the network for diagnosis or the cost of built-in

self diagnosis hardware).

With this article, we contribute the following:

• NoC-specific diagnostic techniques for three individual

layers: transport layer, network layer, and physical layer,

• the fusion of any combination of these techniques into

a multi-layer approach with cross-layer information ex-

change,

• and the investigation of all possible combinations with

respect to diagnostic quality and performance impact, so

as to identify pareto-optimal solutions.

The remainder of this article is organized as follows: In

Section II we present related work relevant to this contribu-

tion. The cross-layer interaction for multi-layer diagnosis is

presented in Section III. Detailed descriptions of the layer-

specific diagnosis techniques and their cross-layer interfaces

can be found in Sections IV to VI. Evaluation results are

presented and discussed in Section VII. Section VIII concludes

our contribution.

II. RELATED WORK

A. Software-Based Diagnosis

A probabilistic method for locating permanent faults in link

wires based on a software protocol is presented in [6]. All

data packets are equipped with an error locality aware error

correction code. At receiver side each packet is checked for

errors and the positions of erroneous bits are identified. The

bit positions are sent to a central network node where they are

accredited to the wires of the links situated on the path the

packet has taken.

In [7], faulty links are localized by means of heartbeat

messages, which are sent by each network node to dedicated

2

fault detection units. Because of the applied scheduling and

routing, heartbeat messages are expected to arrive at a fault

detection unit after a specific duration. If a heartbeat message

is delayed or does not arrive at all, the corresponding path is

marked as suspicious. A link is considered to be faulty if it

was marked suspicious by multiple heartbeat messages.

In [8], links and switches are tested on system startup by

a distributed built-in self-test mechanism and all faulty com-

ponents are disabled. A software-based localization method

is used to provide the exact location of faulty components

to a central routing reconfiguration mechanism. Each network

node tests by means of ping messages if all other nodes can

be reached. If a node can be reached, the corresponding path

is added to a local log. A central node collects all logs and

analyzes them to determine the location of faulty components.

All the software-based diagnosis approaches mentioned

above have in common that they have only a coarse-grained

network view and thus permanent faults can only be tracked

down to a link or switch. Consequently, fault tolerance is

achieved by shutting down faulty components (e.g. [6]) and

by triggering routing reconfiguration (e.g. [9]). However, the

shutdown of a complete switch, which also leads to the loss

of the connected processing core, may be inappropriate when

the fault affects just a small part of the switch’s functionality.

To salvage the remaining intact functionality, diagnosis tech-

niques with a more fine-grained diagnosis granularity such as

functional diagnosis or structural diagnosis have to be used.

B. Functional Diagnosis

A framework to support functional diagnosis in NoCs

is proposed in [10]. The considered functional faults are:

deadlock, livelock, misrouting, and packet starvation. During a

logging phase, each network node takes a snapshot containing

information about the packets in the node’s input buffers and

the current timestamp. In the subsequent local check phase,

network operation is pre-empted and the snapshots are used to

identify the occurrence of functional faults. If a functional fault

is found, the snapshots of all network nodes are forwarded

to a central node where they are used to derive diagnostic

information. Evaluations show that the observability of faults

depends on the packet injection rate and the snapshot rate.

A distributed online functional diagnosis approach to de-

tect stuck-at, bridging, and delay faults in a NoC switch is

presented in [11]. Each switch is equipped with a test packet

generator and a diagnosis unit. During diagnosis, test packets

are sent by the local network interface and by all neighbors

of a switch under test (SUT). To detect and locate faults

in the data path and control path of the SUT, the diagnosis

process is separated into nine phases with different test packet

destinations. A token-based control mechanism ensures that

only a single switch is diagnosed at each point in time.

Having determined the failure of a switch function, the

usage of the affected functionality can be avoided, e.g. by

adapting the routing [12]. Alternatively, one can attempt to re-

store that functionality, e.g. by invoking redundant components

or by reconfiguring the data path [13]. However, functional

diagnosis cannot attribute the misbehavior to a particular

location of a structural fault but only to a set of locations that

all cause this misbehavior. To find the exact location of a fault,

which enables precisely directed countermeasures, structural

diagnosis has to be applied.

C. Structural Diagnosis

The fine-granular fault localization of structural diagnosis is

achieved by adding a dedicated test access mechanism (TAM)

or built-in self-test (BIST) to the hardware design. The most

widely used methodology for structural testing is scan design

[14].

In [15], a scan-based TAM is proposed to test the logic

and input buffers of NoC switches. The TAM’s architecture

corresponds to the minimal spanning tree of the network

topology. Test patterns are sent by the source network node of

the spanning tree via a dedicated line to all other nodes. The

test responses of each switch are sent back to the source node

via the same line. Another approach for NoCs that makes use

of scan chains is presented in [16]. It deals with the optimized

transport of patterns to scan chains using flits.

An IEEE 1500 compliant test wrapper for NoCs is proposed

in [17]. The wrapper facilitates the parallel test of all switches

in the network as well as diagnosis of individual switches. This

work considers the complete NoC as a flat core and exploits its

regularity. This results in smaller area overhead and reduced

test time compared to other scan approaches.

A distributed BIST architecture for diagnosing NoCs is

proposed in [18]. The goal of this work is to reuse the

NoC’s interconnection infrastructure as TAM and to exploit

the inherent parallelism of NoCs to reduce test time. A strategy

is proposed that allows test data to be produced by a global

test data generator and to be transmitted to the switches by

means of special test packets.

All the above structural diagnosis approaches have in com-

mon that the network has to be switched to offline mode

partly or in full before diagnosis is carried out, causing service

interruption and significant performance penalty. On the other

hand, due to their gate level granularity, these approaches

allow the most fine-grained reconfiguration on the level of

individual wires [19] or switch ports [20].

D. Multi-Layer Diagnosis

Multi-layer diagnosis combines diagnosis techniques of

different layers to locate hardware defects. Multi-layer ap-

proaches have been published for various kinds of systems

ranging from FPGA systems to all-optical networks. They

can reduce the time required for localization [21] and re-

configuration [22] by combining diagnostic information from

the individual layers and may even reduce implementation

overhead [23].

In [21], the benefits and challenges of bottom-up multi-

layer fault localization in all-optical multi-layer networks

are discussed. Considerations for designing multi-layer fault

localization under the aspects of efficient fault detection and

fast localization are presented.

A hardware/software integrated diagnosis technique for

processors is proposed in [24]. In this approach fine-grained

3

hardware information is provided to the software diagnosis

technique, which uses this information to diagnose intermittent

faults.

Multi-layer online diagnosis for FPGA-based systems is

presented in [22] and [25] to detect faults in programmable

logic blocks (PLBs). On the highest layer, the set of the

possibly defective PLBs is determined before a more fine-

grained diagnosis is carried out on the next lower layer.

The work of [23] proposes a model for cross-layer resilience

for on-chip systems featuring diagnosis. The authors state that

cross-layer resilient systems have the benefit that by shifting

functionality to the software layers, hardware overhead is

reduced. Furthermore, using detailed information provided by

the different layers helps to make optimal decisions how to

handle a fault. Since diagnosis is tightly coupled to the hard-

ware, contribution from application/software layer is stated to

be difficult. However, the application can e.g. help to schedule

the diagnosis depending on the number of errors it observes.

While prior research confirms the usefulness of multi-

layer diagnosis for more traditional systems, there is hardly

any NoC related work available so far. A NoC diagnosis

approach involving multiple layers is presented in [26]. Based

on the work of [6], faulty links and crossbar connections are

located in software. On network layer, functional faults such

as misrouting or flit/packet dropping are diagnosed by means

of hardware counters at each switch port and router logic.

The information about the occurrence of functional faults in

a switch is forwarded to a central network node where it is

used by a probabilistic method to determine permanent faults.

However, both diagnosis techniques are strictly separated from

each other and there is no cross-layer interaction.

Therefore, we investigate subsequently how diagnosis tech-

niques of multiple NoC layers can interact in order to achieve

a superior tradeoff between diagnosis quality and performance

impact compared to isolated solutions. To the best of our

knowledge, this is the first attempt towards a true multi-layer

diagnosis architecture with cross-layer interaction in the NoC

domain.

III. MULTI-LAYER DIAGNOSIS OVERVIEW

Diagnosis techniques can be employed on various network

layers to locate permanent faults in NoCs. Each layer has its

own functionality, with which diagnosis must be integrated,

and its specific information that is subject of diagnostic

processes:

• On transport layer, a software-based diagnostic protocol

(DP) can locate faulty network components by analyzing

incoming data packets.

• On network and data link layer, functional diagnosis

(FD) identifies functional misbehavior and remaining

functionality of a network switch using dedicated test

packets.

• On the physical layer1, structural diagnosis (SD) deter-

mines faulty gates or wires in the logic of a network link

1Whereas the Open Systems Interconnection Model (ISO/IEC 7498-1)
definition of network layer only includes the physical interconnection between
two switches, we interpret the term physical layer in a broader way to include
the implementation of switches as digital circuits.

or switch.

A. Combination of Diagnostic Techniques

In the following, we show how interaction between layer-

specific diagnostic techniques is achieved by exchanging di-

agnostic information between the layers and by using this in-

formation to optimize the respective diagnostic processes. All

possible combinations of the three layer-specific techniques

will be considered. They are denoted as follows:

1) DP+FD,

2) DP+SD,

3) DP+FD+SD,

4) and FD+SD.

Figure 1 depicts the proposed information flow for multi-

layer diagnosis. It consists of a top-down information flow in

order to narrow down the position of a fault and of a bottom-up

information flow to provide diagnostic feedback from FD or

SD to DP. As we will discuss in more detail in Section IV, this

is required to adapt DP to avoid cases where intact switches

are erroneously diagnosed as faulty (false positives). In the

limits of their respective fault models, FD and SD do not suffer

from false positives due to the applied test patterns. Top-down

and bottom-up information exchange are explained in the next

subsection.

FD

SD

Fault

Location

Diagnosis

Feedback

D
P

+
S

D

D
P

+
F

D
+

S
D

D
P

+
F

D

D
P

+
S

D

D
P

+
F

D

D
P

+
F

D
+

S
D

D

P
+

F
D

+
S

D

Path

Defective Switch(es)

False Positive

False Positive

Defective Switch

Sending
Scheme

DP

Diagnosis

Technique

Transport

Layer

Physical

Layer

Network

Layer

Network Schedule

F
D

+
S

D

Fig. 1. Interaction of multi-layer techniques.

B. Cross-Layer Information Flow

When a fault has only been detected, without further diag-

nostic information, the set of potentially defective switches, Φ,

is the set of all switches of the NoC, S. A diagnosis technique

t ∈ {DP,FD, SD} determines the subset of faulty switches

(including the connected links) out of this set. This is described

with the diagnosis function dt : S → S. Details on the

implementation of this function are described in subsequent

chapters for each technique t. Here we show the multi-layer

flow of diagnosis for DP, FD, and SD. This flow is modeled

by the algorithm presented in Listing 1. This algorithm does

not have a centralized implementation, but it describes the

behavior that results from the distributed interaction of the

layer-specific techniques. The distributed interaction points

will be highlighted in the layer-specific chapters.

The top-down diagnostic process starts with the transport

layer protocol, DP, followed by functional diagnosis (FD) and

4

Listing 1 Flow of Diagnosis.

Φ: set of potentially faulty switches

Φt: set of faulty switches identified by technique t
∆: set of all false positives

Σ: set of all faulty switches reported by DP

1: while true do

2: wait for fault detection

3:

4: —Top-Down—

5: if DP implemented then

6: ΦDP := dDP (Φ ∩ Φpath) ⊲ where 0 ≤ |ΦDP | ≤ 1
7: Σ := Σ ∪ ΦDP ⊲ add switch to list

8: Φ := ΦDP ⊲ update set of faulty switches

9: end if

10:

11: if FD implemented then

12: ΦFD := dFD(Φ) ⊲ where ΦFD ⊆ Φ
13: ∆ := Φ \ΦFD ⊲ determine false positives

14: Φ := ΦFD

15: end if

16:

17: if SD implemented then

18: ΦSD := dSD(Φ) ⊲ where ΦSD ⊆ Φ
19: ∆ := ∆ ∪ (Φ \ΦSD)
20: Φ := ΦSD

21: end if

22:

23: —Bottom-Up—

24: if DP implemented then

25: if ∆ 6= ∅ then ⊲ false positive was reported

26: adaptation of DP

27: Σ := Σ \∆ ⊲ remove false positive from list

28: end if

29: end if

30: end while

structural diagnosis (SD). If any of these techniques is not

implemented in the system, it is skipped. Each diagnostic

technique receives the set of potentially faulty switches, Φ,

as input and passes a potentially reduced set on to the lower

layers. Assuming a deterministic routing, the set of switches

that have to be diagnosed by DP can be reduced due to the

knowledge about the path a packet has taken from sender to

receiver. Thus, the diagnostic function is invoked only for the

switches situated on that path, Φpath (line 6). Diagnosis of FD

and SD is carried out for set Φ (line 12 and 18) received from

the preceding technique.

For each technique t, the diagnosis result Φt contains those

switches identified as faulty. While the result of DP is, at each

point in time, at most one faulty switch, the result of FD and

SD can be any subset of Φ. A switch that was identified as

faulty by DP is added to the list Σ of faulty switches and,

as a result of this, is deactivated (line 7). Those potentially

faulty switches that are not confirmed as such by FD or SD

are added to the set of false positives, ∆ (line 13 and 19). Each

diagnostic technique t updates the set Φ according to its own,

more precise diagnostic result Φt (line 8, 14, and 20). Thereby

it also reduces the search space of faults for the subsequent

technique(s).

The bottom-up information flow communicates any false

positives found by FD or SD back to DP. If the set ∆
is not empty, we know that DP erroneously diagnosed an

intact switch as faulty and deactivated it. This is reversed

by removing the switch from list Σ and thus reactivating it

(line 27). Furthermore, the software protocol DP is adapted to

reduce future false positives (line 26). This adaptation requires

a deeper understanding of DP and is detailed in the next

chapter.

IV. SOFTWARE-BASED DIAGNOSIS PROTOCOL

The transport layer protocol, DP, is an enhanced version of

our software-based end-to-end protocol presented in [27]. It

has an increased localization granularity: besides faulty links,

faulty crossbar connections of a switch can be diagnosed as

well. The failure of a complete switch is diagnosed as the

failure of all its links or crossbar connections.

Protocol DP consists of two parts: the base protocol and the

diagnosis protocol. The base protocol (cf. Subsection IV-A) is

responsible for acknowledging the receipt of packets to the

corresponding senders and for retransmitting packets in case

they were received with errors or if they were lost. We employ

end-to-end retransmission as switch-to-switch retransmission

protocols have been found inferior unless unrealistically high

error rates are assumed [28][29]. The diagnosis protocol

(cf. Subsection IV-B) is used to locate the faulty network

component in case of a permanent fault. It is activated for

such packets that could not be successfully delivered to their

destinations after a number of attempts.

Beside the localization feature, the end-to-end protocol in-

cludes a software-based routing mechanism for fault tolerance.

If, due to a localized fault, a switch cannot forward a packet

using the regular routing, the packet is consumed by the

processing element (PE) connected to that switch. The PE

calculates an intermediate destination that results in a path

that bypasses the fault. It updates the packet header with

this intermediate information and reinjects the packet into

the network. This software routing feature is not subject of

this article; details can be found in [27]. Base protocol and

diagnosis protocol are described in the following subsections.

A. Base Protocol

The base protocol uses the Selective Repeat ARQ mecha-

nism, i.e. all packets received correctly at their destination are

kept and only erroneous packets are retransmitted. To identify

errors, each packet is equipped with a parity bit. Alternatively,

any other error detection code (EDC) could be used. We fur-

ther assume that on sender side, a retransmission buffer exists

where a packet is stored until it is positively acknowledged.

To reorder packets on receiver side, additional reorder buffers

are required. Retransmission buffers and reorder buffers are

assumed to be shared with the PE so that they can be managed

in software.

5

The base protocol handles packet corruption as well as

packet loss. When a packet arrives at its destination it is

checked for errors. If no errors are found, a positive acknowl-

edgement (ACK) is transmitted back to the sender. Otherwise,

a negative acknowledgement (NACK) is given. ACKs and

NACKs are transmitted as single-flit protocol packets. When a

sender receives an ACK, the corresponding packet is removed

from the sender’s retransmission buffer, and in case of a

NACK, the packet is retransmitted. In case a packet is lost,

neither ACK nor NACK are generated and thus the packet

will neither be removed nor retransmitted. To handle this

situation, the base protocol makes use of an adaptable timer

δ. If no acknowledgement is received for a packet within time

tδ , the packet is considered as lost and it is automatically

retransmitted. This is also the case if a protocol packet with

ACKs and NACKs was lost. The function tδ(l) used by DP to

adapt timeout tδ is shown in Equation 1:

tδ(l) = tinit ∗ (⌈l
l
max ∗

1

l!
⌉) (1)

Function tδ(l) allows the gradual increase of timeout tδ
up to a defined maximum. Starting from the initial timeout

tinit, the adaptation function calculates the new timeout tδ(l)
depending on control parameter l (0 ≤ l < lmax). For

small values of l, tδ(l) increases exponentially to achieve a

large change in timer value. Towards large values of l, the

timeout increase becomes linear to avoid excessively large

timer values. The control parameter l is incremented by one

and a new timeout is calculated whenever FD or SD report a

false positive or the roundtrip time exceeds tδ . The roundtrip

time is the time between sending out a data packet and

receiving the corresponding acknowledgement. It is considered

in order to take the network load and potential congestion

into account. As soon as roundtrip time falls significantly, the

control parameter is decremented, leading to a shorter timeout.

The base protocol handles the corruption and loss of packets

caused by transient errors. However, if packet retransmission

fails multiple times (in our investigations: twice) we assume

that a permanent fault is present. In this case, all retransmitted

packets are corrupted again since they use the same path

from sender to receiver; thus, they always either arrive at

the receiver with an error or get lost. To restore a fault-free

communication, the permanent fault has to be localized by the

diagnosis protocol.

B. Diagnosis Protocol

On transport layer, fault localization relies on analysis of

packet data. To be able to locate faulty network components,

protocol DP must determine the path a packet has taken

and thus requires knowledge about the routing. Moreover,

fault localization relies on packets being retransmitted via

the same path as the original packet. Therefore, the routing

has to behave deterministically at least when the diagnosis

protocol is activated. The routing may be reconfigured after

diagnosis. The protocol finds the faulty network component by

continuously narrowing down the fault position on the path.

It can locate a single faulty network component at a time.

Sender X/Y Receiver X/Y d [hops] ACK/NACK

1 0/3 (S) 3/0 (R) 6 NACK

2 0/3 (S) 3/3 (I1) 3 NACK

3 0/3 (S) 2/3 (I2) 2 ACK

4 2/3 (I2) 3/0 (R) 4 NACK

5 2/3 (I2) 2/3 (I3) 2 NACK

6 2/3 (I2) 3/3 (I4) 1 NACK

7 2/3 (I2) 3/3 (I4) 1 NACK

8 2/3 (I2) 3/3 (I4) 1 NACK

X

Y

0 1 2 3

0

1

2

3

R

S

I3

I1

I4
I2

Fig. 2. Example of sending scheme.

When multiple faulty components coincide, these components

are found by distinct diagnosis runs.

The diagnosis protocol is activated when a permanent fault

has been detected with a packet. That packet is no longer

sent to the receiver directly but to a so called intermediate

node determined by the sender. Intermediate nodes are network

nodes that are situated halfway on the path between sender

and receiver. When a packet arrives at an intermediate node,

it is consumed by that node and checked for faults. If the

packet passes the check, i.e. no fault is found, this implies

that the path from the original sender to the intermediate node

is fault-free and the fault must reside in the second half of

the path. In this case, the intermediate node takes over the

role as sender for this packet, stores it in its retransmission

buffer, and positively acknowledges the packet to the sender.

On receipt of the acknowledgement, the sender removes the

corresponding packet from its buffer. On the other hand, if

the packet does not pass the check at the intermediate node,

the fault is located between sender and intermediate. In this

case, the intermediate node discards the packet and sends

a negative acknowledgement to the sender. The sender now

selects another intermediate node that is situated halfway to

the old intermediate node.

An example of locating permanent faults on links and

crossbar connections is shown in Figure 2: A packet is sent by

sender S to receiver R using XY routing. Because of an undis-

covered permanent fault on the link between network nodes

2/3 and 3/3 the packet becomes corrupted and thus, upon

receipt, R sends back NACK. After a number of unsuccessful

retransmissions, the diagnosis protocol is activated. The sender

determines the first intermediate node I1 situated in the middle

of the path between S and R. As the packet passes the faulty

link, it is corrupted again. At I1, the packet is consumed,

checked, and a NACK is sent back to S. Due to the fault, the

NACK gets corrupted and is not considered at S. Thus, time tδ
has to elapse before the packet is retransmitted. S determines

I2 to be the next intermediate node. This time, the packet

arrives at I2 without errors, is stored in I2’s retransmission

buffer, and an ACK is sent back to S. Source S removes

the packet from its retransmission buffer, and I2 becomes

the new sender of the packet. Instead of further bisecting the

path between I2 and R, the packet is first sent to R. This is

necessary for our protocol to be able to locate switch-internal

faults. The reason for this is explained subsequently to this

example. When I2 receives a NACK from R, it bisects the

path and chooses first I3 and then I4 as next intermediate

6

nodes. The distance between I2 and I4 is only one hop. If a

NACK is received in this situation, it implies that the fault has

to be between I2 and I4.

We now explain the need for an intermediate node to send

the packet to receiver R first before further bisecting the path.

Assume that, instead of the link, the west-to-east crossbar

connection of node I2 is faulty. Thus a packet becomes

corrupted on its way from S to receiver R. The diagnosis

protocol is activated for this packet, and as a result of path

bisection, node I2 becomes an intermediate node eventually.

However, this causes the fault to be bridged because node I2
uses crossbar connection west-to-local to consume the packet

and crossbar connection local-to-east to re-inject the packet.

Thus, the fault has no impact on the packet. If in the following

the path is continuously bisected, the packet will be forwarded

to further intermediate nodes and will arrive at R without faults

eventually. The fault, however, is not localized.

To detect a fault on a crossbar connection, an intermediate

node always sends a packet to its designated destination

R first, before possibly further bisecting the path. If the

intermediate node now receives an ACK from the receiver it

can conclude that its switch must have a crossbar fault. This

conclusion is based on the following statements:

1) The intermediate node has accepted the packet earlier,

thus, the path between the sending node and intermediate

node has to be fault-free.

2) As the intermediate node receives an ACK from the

receiver, the path between intermediate node and receiver

has to be fault-free.

3) Since the diagnosis protocol was activated, at least one

fault must exist on the path from sender to receiver.

When combined with the FD or SD techniques, protocol DP

maps a link or crossbar fault to the corresponding switch. The

reason for this is that FD and SD always have to be carried

out for an entire switch. In case of a link fault, ΦDP is the

neighbor of the switch that has diagnosed the fault. Thus, the

faulty link is identified with its destination node: in the above

example ΦDP := {I4}. If a crossbar fault has been diagnosed,

ΦDP is the switch that has diagnosed and contains the fault

(ΦDP := {I2}).

V. FUNCTIONAL DIAGNOSIS

Functional diagnosis (FD) is performed on the network layer

in order to identify more precisely the switch functionality

affected by a fault. To this end, FD considers six functional

failure classes as defined in [30]:

1) Misrouting: A packet is routed to a wrong output port.

2) Data corruption: Data within one or more flits is altered.

3) Packet loss: At least one packet is lost on its way from

the input port to an output port of a switch.

4) Garbage packet: A new packet is generated and for-

warded to an output port. This includes packet duplica-

tion.

5) Flit loss: At least one flit of a packet is lost on its way

from the input port to an output port of a switch.

6) Garbage flit: A new flit is generated and forwarded to an

output port.

Some structural faults result in none of the above functional

failures. These faults constitute the residue class. For all faults

of this class, FD cannot identify the affected switch function

and the complete switch is considered to be faulty.

FD is carried out online with the exception of the switch

under diagnosis (SUD), which is set offline. All other switches

in the network remain operative and continue transmitting data

packets. The NoC itself is used as test access mechanism

(TAM), thus avoiding the cost of a dedicated TAM. The

online diagnosis process of FD is described in detail in

Subsection V-A.

At design time, structural faults are classified according

to the functional failure(s) they cause. Appropriate func-

tional test patterns are generated to diagnose these functional

failures with a high structural fault coverage. Both, fault

classification and pattern generation, are described in detail

in Subsection V-B. Additional input constraints are presented

in Subsection V-C. They ensure that test patterns conform to

the format of a valid packet. We refer to such patterns as test

packets in the following.

A. Functional Online Diagnosis

In combination with the diagnosis protocol DP, FD is per-

formed only for an individual switch reported potentially faulty

by DP. For the diagnosis of the SUD, all adjacent switches

are involved, sending test packets to the SUD’s input ports.

Additionally, the SUD receives test packets via its local port

from the local processing element. While sending test packets,

the neighbor switches remain operative and can transmit data

packets via their other ports that are not connected to the SUD.

If FD is implemented without DP, all switches have to be

considered as potentially faulty. Therefore, FD has to be per-

formed for the complete network. Obviously, all switches of a

network can be diagnosed consecutively, but this would result

in significant latency. To reduce latency, as many switches as

possible should be diagnosed in parallel. As neighbors of an

SUD supply the test packets, they cannot be diagnosed at the

same time. Hence, a scheduling is required that specifies the

diagnosis start for each switch. We constrain the scheduling so

that each node may only send packets to one SUD at a time.

The resulting diagnosis schedule for an 8x8 mesh is depicted

in Figure 3. The number shown for each switch corresponds

to the iteration in which it is diagnosed. In total the schedule

consists of five iterations. Note that the number of iterations

does not increase for larger mesh networks.

As result of FD, out of the set of all diagnosed switches

(set Φ) the faulty switches and their affected functions are

determined. If a diagnosed switch by DP is not faulty, the

switch is part of the set of false positives (set ∆). Any false

positives are reported back to DP in order to reduce DP’s

pessimism. If FD is used without DP, multiple faulty switches

can be determined by FD at the same time; however, it is

unlikely that multiple permanent faults emerge simultaneously

during operation.

B. Fault Classification and Pattern Generation Method

1) Overview: We make use of the satisfiability solver (SAT)

based offline method presented in [30] to generate patterns

7

4

15

3

2

4

15

3

2

15

3

2 3

4

15

3

2

4

15

3

2

4

15

3

2

5

4

15

3

2

4

15

3

2

4

15

3

4

4

15 2

5

4

1

3

2

4

15 2

1

3

2 3

2

Fig. 3. Diagnosis scheduling for functional diagnosis.

for FD. An overview of the structural fault classification and

pattern generation method is shown in Figure 4. For this work,

we have enhanced the pattern generation so that the NoC can

be used as TAM concurrently with regular network operation.

Our method makes use of SAT instances of the fault-free

switch and of the faulty switch. The faulty switch is a copy

of the fault-free one including the literals for the injected

structural fault. To model a functional failure of a switch, we

add appropriate clauses that identify a functional mismatch

between the fault-free and faulty switch. Using this extended

SAT instance, the fault classification algorithm iteratively

searches for primary input assignments that make injected

structural faults observable through functional failures.

2) Modeling of Functional Failures: A structural fault

f is testable if an input sequence exists for which, under

consideration of the primary input constraints of the switch, a

defined functional mismatch is observable. A functional failure

is modeled as characteristic boolean functions that capture

input constraints, fin, and the output mismatch, fout, by which

the failure class can be identified, over a number of cycles T .

The corresponding SAT instance ΦT
FF is a conjunction of the

CNF of fin and fout:

ΦT
FF = CNF (fin) ∧ CNF (fout). (2)

Function fin specifies the input constraints for the duration

of T for the primary inputs of the switch. Hence, fin for input

port p ∈ Ports is defined as:

fin(p, t) = f(Dinp,t,HSinp,t) (3)

where Dinp,t and HSinp,t are the input data lines and hand-

shake signals of port p at cycle 1 ≤ t ≤ T .

The output characteristic function fout defines the func-

tional mismatch of the switch for the primary outputs. This

Fault free switch

instance

Faulty switch

instance

Functional failure

description

SAT instance

Functional

inputs
Fault classification

Functional test pattern

generation

Fig. 4. Overview of pattern generation and fault classification method.

function takes the functional circuit responses of the fault-free

switch and those of the switch with fault f as parameters:

fout(p, t) = f(Doutp,t, Doutfp,t,HSoutp,t,HSoutfp,t) (4)

where Doutp,t and HSoutp,t are the data lines and handshake

signals of the fault-free copy of the switch, and Doutfp,t and

HSoutfp,t belong to the faulty copy. For modeling the six

functional fault classes introduced at the beginning of this

chapter, we consider a send signal being used as handshake

signal HS which we denote sendp,t. The output characteristic

functions for the functional fault classes are listed in Table I.

3) Fault Classification: The relation between the functional

failure classes and structural faults is established by a fault

classification step. The classification algorithm receives the

target functional failure class F and the list of structural faults

as inputs. It then creates the SAT instances of the sequential

fault-free switch ΦT
s and of the targeted functional failure class

ΦT
FF . The algorithm iteratively picks a structural fault f from

the fault list and creates the corresponding instance of the

faulty switch Φf,T
SF . By conjunction of these three parts, the

fault classification SAT instance ΦR is constructed:

ΦR = ΦT
FF ∧ ΦT

s ∧ Φf,T
SF (5)

The algorithm searches for an input assignment that satisfies

ΦR, i.e. the targeted functional failure F becomes observable.

If an assignment is found, fault f causes the functional failure

and thus f is related to the corresponding functional failure

class. A structural fault may belong to multiple functional

failure classes. If a fault cannot be related to any of the classes,

the fault is part of the residue class. Upon termination of

the algorithm, the subset of structural faults that cause F is

known. The classification results for all the defined functional

failure classes constitute what we call the golden classification

reference.

If an input assignment leads to an observable functional

failure for a structural fault f , it can be used as test pattern.

However, this would result in a large pattern set that contains

one pattern per structural fault f for each functional failure F .

TABLE I
OUTPUT CHARACTERISTICS OF THE FUNCTIONAL FAILURE CLASSES

Functional Failure Class fout

Misrouting

∨
p,q∈Ports,

p 6=q

T∧
t=ch

(sendp,t ∧ send
f
p,t)

∧(sendq,t ∧ send
f

q,t)

∧(Doutp,t = Dout
f
q,t)

where ch = T − num flits+ 1

Data corruption

∨
p∈Ports

∨T

t=1
(Doutp,t 6= Dout

f
p,t)

∧(sendp,t ∧ send
f
p,t)

Flit loss
∨

p∈Ports

∨T

t=1
(sendp,t ∧ send

f

p,t)

Packet loss Flit loss holds for the packet length

Garbage flit
∨

p∈Ports

∨T

t=1
(sendp,t ∧ send

f
p,t)

Garbage packet Garbage flit holds for the packet length

8

As diagnosis performance relates to the number of test patterns

it is favorable to remove redundant patterns. We employ fault

dropping to minimize the pattern set. However, it must be

ensured that the minimized pattern set does not change the

structural fault coverage of the functional failure classes.

C. Input Constraints for Functional Online Diagnosis

In order to use the NoC’s communication infrastructure as

TAM, test patterns determined by SAT have to meet the format

requirements on valid packets. In our case, a test packet must

start with a head flit and end with a tail flit. Between head and

tail, an arbitrary number of body flits may exist (fpp: number

of flits per packet):

∧

p∈Ports

T−fpp+1∧

t=1

(Dinp,t = head) ⇔ (Dinp,t+fpp−1 = tail)

(6)

During diagnosis, test packets have to be applied to the

inputs of an SUD in exactly the same way as determined by

the SAT solver. If this requirement is violated, the functional

failure may no longer be observable. This is a problem

especially for online diagnosis because it implies that all

neighbors of the SUD have to synchronize the injection of test

patterns so that they arrive at the SUD’s inputs at the correct

point in time. To avoid this issue, we constrain all switch input

ports p ∈ Ports but one, i.e. the test port ptest ∈ Ports, to

constant values and find a test packet for the test port that

causes the functional failure. For online diagnosis, this has the

effect that only one neighbor is sending an actual test packet

at a time and thus there is no time dependency between the

test packets of different neighbors. To find appropriate test

patterns, an additional clause (equivalence) is added to the

SAT instance that enforces constant flits and handshake control

signals at all non-test ports:

∀p 6= ptest, ∀t ∈ [2, T] : (bp,1 ∨ bp,t) ∧ (bp,1 ∨ bp,t) (7)

The clause ensures that all the bits bp,t of all flits arriving

at t ≥ 2 have the same value as the bits bp,1 in the first flit

at t = 1. The clauses to ensure that a pattern corresponds to

a valid packet and to enforce constant flits on non-test ports

are specified in the input characteristic function of the SAT

instance.

VI. STRUCTURAL DIAGNOSIS

On the physical layer, structural diagnosis (SD) is per-

formed, which is the most granular diagnosis approach in

our multi-layer scheme. In order to perform structural logic

diagnosis, the gate level structure of the switch, test patterns

targeting structural faults and their responses are required.

Scan design [14], the most widely used structural test method

also for NoCs [15][16], is employed and used for offline or

online testing. The test patterns are applied to the scan chains

via dedicated test ports, and a central test controller handles

the test scheduling for the shift-in, shift-out, and capture/load

phases. If a pure offline test is sufficient, the test control can

be executed by an external tester. An embedded built-in self-

test (BIST) controller is required for an online test strategy

which switches off only a part of the network for testing and

migrates tasks in a similar way as used in CASP (Concurrent

Autonomous Chip Self-Test Using Stored Test Patterns, [31]).

A. Structural Online Diagnosis

The purpose of structural diagnosis is identifying the re-

maining functionalities of a switch which has already been

recognized as faulty by the higher level approaches DP or FD.

A central diagnosis service point analyzes the test responses,

uses a dictionary created beforehand for defect location and

then extracts the remaining functionalities of the switch in

presence of this fault. The structural diagnosis approach helps

to remove the false positives of the multi-layer approach as

well. If the deterministic test patterns do not indicate a fault,

the switch belongs to the set of false-positives. This may

happen only if the software-based diagnosis approach (DP)

has erroneously indicated the switch as faulty.

B. Remaining Switch Functionality

Usually, failing test patterns and their responses are used

as input to a fault dictionary for fault location. The approach

presented here is based on [32], skips this step, but creates a

dictionary of affected functionalities beforehand. For a given

fault f, two failures may occur:

1) A routing path from input port A to output port B is

broken iff there exists a test pattern that makes the fault

observable at B while the routing path A → B has been

selected by the router.

2) An output port O is damaged iff there exists a test pattern

that makes the fault observable at O for at least one

routing path x → y, y 6= O.

The size of such a dictionary is limited by the number of faults

detected during constrained automatic test pattern generation

(ATPG). To identify an affected functionality, ATPG is con-

strained to the input and output ports involved and determines

those faults which corrupt a certain routing path or output

port. Input constraints specify the routing signals for each

routing path. In addition, all output ports except those on

which the fault effect should be observed, are masked by

constraints. When the ATPG is able to generate a test pattern,

the respective routing path and the output port are affected

by the fault and should be ruled out. The routing paths and

output ports which are not ruled out by the ATPG can be

used for normal operation [20]. A fault tolerant architecture

may support deactivation of defective switch functions or

ports so that the degraded switch with degraded functionality

and performance is used for normal operation. When only

deactivation of defective ports is supported, a vertex cover

algorithm [20] finds the minimum number of ports to avoid

the defective routings as well.

VII. EVALUATION

In this section, we evaluate each diagnosis technique and

their combinations with respect to diagnosis quality (Sub-

section VII-B) and impact on system performance (Subsec-

tion VII-C). The definition of both evaluation criteria is given

9

in the respective subsections. As they are in conflict with

each other, we investigate their tradeoff and determine pareto-

optimal solutions in Subsection VII-D.

For the quality evaluation of functional and structural di-

agnosis we have used the netlist synthesized from our RTL

design of a typical switch with wormhole switching, five in/out

ports, a crossbar, an XY router, and Stall/Go flow control.

For performance evaluation a SystemC model of the complete

NoC has been simulated, which includes a cycle-true switch

model. The simulation model is parameterized with NoC mesh

size, network load and traffic model. All simulations were

carried out for an 8x8 mesh with moderate network load (flit

injection rate 0.14 flits/node/cycle) 2 and high network load

(flit injection rate 0.28, close to saturation) using uniform

random traffic. Additional results are provided for varying

network load, with transposed traffic, and for a larger 16x16

NoC. Moreover, we have investigated the NoC in a system

context with application traffic.

The effect of faults is simulated by injecting permanent

faults during operation. Results are averaged over 25 ran-

domly generated fault patterns with 1 to 5 faults. Each fault

models the defect of a switch by corrupting the packets that

pass through the switch. Each fault pattern is simulated for

500,000 cycles. Within this period, the faults are injected one

after another at random points in time. Once a permanent

fault is diagnosed in the simulation, the faulty component

is shut down. During the diagnosis process, whose duration

is discussed subsequently (cf. Subsection VII-C2), further

packets may suffer from the faulty component. These packets

would be kept in their retransmission buffers until diagnosis is

finished. To bypass a shut down component, software routing

(cf. Section IV) is employed.

A. Cost breakdown

In this section we document the cost overhead of additional

logic (gate count) and memory required for our diagnostic

techniques:

• SD requires additional storage for 116,802 bit (approx.

14 kByte) of test patterns. These are applied by resources

(test controller, scan chain) that have to be implemented

for production test anyway, thus not causing additional

logic overhead.

• FD requires 2,972,299 bit (approx. 362 kByte) of storage

for the functional test program. Applying these patterns

requires no logic overhead as patterns are injected by the

processing elements attached to the NoC switches.

• DP requires a retransmission buffer of 10 packets (200

Byte) per network interface. The code size for the di-

agnostic protocol causes an overhead of 3.3 kByte of

object code, 9.7% of the total protocol code size of 33.9

kByte. Both, packet and code storage can be implemented

without additional memory instances using the local

memory of the processing element.

2Note that the injection rate includes the injection of data flits and
acknowledgement flits.

B. Diagnosis Quality

1) Evaluation methodology: Diagnosis quality is rated by

whether a fault can be detected and how accurately it can be

localized. It is composed of the following three characteristics:

a) the fault coverage, i.e. the ability to detect structural

faults,

b) localization and classification accuracy, i.e. the ability

to pinpoint the location of a fault and to classify its

functional effect, and

c) the occurrence of false positives.

While these individual characteristics can be assessed quanti-

tatively, overall quality has multiple dimensions and cannot be

measured with a single, easily comparable number. We there-

fore order diagnosis techniques according to their quantitative

performance with respect to the three criteria, and assign them

quality levels in the range from 1 (least quality) to 5 (highest

quality).

2) Layer-Specific Diagnosis Techniques: For functional di-

agnosis (FD) and structural diagnosis (SD), structural fault

coverage close to 100% can be achieved with our pattern

generation methods. This makes FD and SD superior com-

pared to DP. For both, FD and SD, accuracy depends only

on the test patterns used and is not affected by the network

load; thus the accuracy of both techniques is the same for

moderate and high load. In contrast to FD, which classifies

the functionality affected by a structural fault, SD can narrow

down a structural fault to a single signal or gate of the netlist

switch (cf. Section VI), thus achieving 100% localization

accuracy. Evaluation of FD [30] reveals that it succeeds in

mapping 79.8% of the structural faults to one of the functional

fault classes presented in Section V. For the remaining 20.2%

of faults, however, it can only be concluded that the switch

has a permanent fault but not which functionality is affected.

Therefore, FD has a lower localization accuracy than SD.

With valid test patterns, this technique does not produce false

positives. This is another indication of higher diagnosis quality

in comparison to DP.

The software-based diagnosis protocol, DP, can only di-

agnose faults that are functionally testable and that become

manifest in loss or corruption of data packets. Thus, from

the 79.8% of functionally testable faults, we have to subtract

the 8.5% of faults that only lead to a misrouting, yielding

71.3% of faults than can be covered (detected). Exactly these

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!!" '!!!" #!!!!" #'!!!" $!!!!" $'!!!" %!!!!" %'!!!" &!!!!"

!
"
#
$
%
&'
()
*+
%
',
-
+.
/
0
%
+'

/#%-"1'12''3454*%+6'

,-./012/"3-1." 4564"3-1."

Fig. 5. Number of false positives of DP.

10

TABLE II
DIAGNOSIS QUALITY

Criterion DP(high) DP(mod) DP+FD DP+SD DP+FD+SD FD FD+SD SD

coverage [%] 71.3 71.3 71.3 71.3 71.3 100 100 100

accuracy [%] 71.3 71.3 79.8 100 100 79.8 100 100

false positives 27...40 0 0 0 0 0 0 0

quality level 1 2 2 3 3 4 5 5

faults can be classified according the DP fault model, i.e. fault

classification accuracy also amounts to 71.3%. With respect to

false positives, the value of parameter tinit used to calculate

timeout tδ (cf. Equation 1) is crucial for DP’s diagnostic

quality. If the value is chosen too small, the diagnosis protocol

may be activated due to timeouts that are unrelated to faults.

This in turn may lead to a shutdown of an intact link or

crossbar connection. The number of diagnosed false positives

for different values of tinit is shown in Figure 5. For the

simulation it was assumed that timeout tδ can be increased

twice, i.e. lmax = 3. The results show that, for moderate

network load, no false positives are diagnosed by DP when a

proper value is chosen for tδ . For high network load, however,

DP produces false positives at all considered timeout values,

and reasonable settings lead to false positives in the range from

27 to 40. Since the diagnosis quality of DP depends on the

network load, we subsequently distinguish between moderate

load (DPmod) and high load (DPhigh).

In summary, quality of the individual diagnosis techniques

is ranked as follows: DPhigh < DPmod < FD < SD.

The quantitative assessment of the three criteria is included

in Table II.

3) Multi-Layer Diagnosis Techniques: We now assess the

diagnosis quality of the multi-layer combinations, DP+FD,

DP+SD, FD+SD, and DP+FD+SD. Due to the multi-layer

interaction (cf. Section III), the technique used on highest layer

identifies the faulty switch and reports it to the lower layer

technique. Thus, fault coverage is determined by the technique

on highest layer. On the other hand, accuracy is defined

by the technique on lowest layer. Simulations have shown

that combining DP with one of the lower layer techniques

reduces the number of false positives to zero. Although false

positives are still diagnosed by DP, in the experiments they

are identified and corrected by the lower layer technique. The

resulting quantiative assessment of the multi-layer techniques

is included in Table II.

The table also shows the assignment of quality levels from

1 (low) to 5 (high) to all individual techniques and their

multi-layer combinations. In this ranking, highest priority is

given to the ability to detect faults (fault coverage). The other

two criteria are used to differentiate cases of identical fault

coverage. The diagnostic quality of DP under high load is

inferior to all other techniques, and thus, we rank DPhigh

at the lowest quality level. Diagnostic quality benefits from

eliminating false positives, which is achieved by operating DP

at moderate load or by combining it with FD. Thus, DPmod

and and DP+FD are ranked at quality level 2, ignoring the

insignificant difference with respect to classification accuracy.

By further adding SD, accuracy is significantly improved.

Therefore, DP+SD (where SD additionally eliminates false

positives independent of network load) and DP+FD+SD are

ranked at the next higher quality level, 3. By removing DP

from the investigated combinations, faults undetectable by

DP are no longer masked from the more detailed diagnosis

techniques. Hence, taking also into account the relationship

between FD and SD established above, they are ranked at level

4 and 5, respectively. Note that this does not disqualify DP+

techniques since they offer a potentially reduced performance

impact, which will be investigated in the next subsection.

Finally, due to its high coverage and accuracy, the quality of

FD+SD is similar to SD. In summary, this results in the quality

ranking shown in Table II. We can conclude at this point that

a multi-layer combination of techniques always offers better

quality than the individual technique used on highest layer.

C. Performance Impact

1) Definitions: We define fault localization latency as time

between the occurrence (in simulation: injection) of a per-

manent fault and its localization by a diagnosis technique.

This includes all protocol and retransmission overhead as well

as the time required for EDC checking. Data throughput is

measured as the average number of flits received per node

and cycle. It takes into account only data flits, including

retransmissions, but no acknowledgement or protocol flits.

Thus, it is a fair measure of NoC payload throughput, and

does not count protocol overhead as useful data. The injection

rate is the average number of flits injected into the network

per node and cycle, including all acknowledgement / protocol

flits.

2) Fault Localization Latency: To evaluate the impact of

diagnosis techniques on system performance, we first inves-

tigate how long it takes each diagnosis technique to localize

a permanent fault in the network. For this purpose, we have

simulated the NoC under moderate and high network load.

For the first 20,000 cycles the network is filled with flits

before a single permanent fault is injected to the network. The

measured fault localization latencies are shown in Table III.

TABLE III
FAULT LOCALIZATION LATENCY [CYCLES]

Diagnosis technique Moderate load High load

DP 360 680

FD 32,610 32,880

SD 99,864 100,134

DP+FD 6,859 7,179

DP+SD 50,237 50,557

FD+SD 82,487 82,757

DP+FD+SD 56,736 57,056

11

!"

!#!$"

!#!%"

!#!&"

!#!'"

!#("

!#($"

!#(%"

(" $")" %" *"

!"
#$
%
&
"
'
%
!(
)*
+!
,-
.
$
/
0
-1
2
13
0
4(

.%560#($7(78%3!,(

+,"

-+"

.+"

+,/-+"

+,/.+"

-+/.+"

+,/-+/.+"

!"#$%

%

!"#&%

%

!"#%

%

!"!'%

%

!"!(%

%

!"!$%

%

!"!&%

%

!%

(a) Data throughput under moderate network load

!"

!#!$"

!#!%"

!#!&"

!#!'"

!#("

!#($"

!#(%"

(" $")" %" *"

!"
#$
%
&
"
'
%
!(
)*
+!
,-
.
$
/
0
-1
2
13
0
4(

.%560#($7(78%3!,(

+,"

-+"

.+"

+,/-+"

+,/.+"

-+/.+"

+,/-+/.+"

!"#$%

%

!"#&%

%

!"#%

%

!"!'%

%

!"!(%

%

!"!$%

%

!"!&%

%

!%

(b) Data throughput under high network load

Fig. 6. Data throughput achievable with the different diagnosis techniques in an 8x8 mesh under uniform random traffic.

The results show that localization latency generally in-

creases slightly for high network load. This is because a higher

latency of acknowledgements of the base protocol delays the

start of diagnosis. Among all diagnosis techniques, protocol

DP offers the least localization latency in both load situations.

Beside the reduced diagnosis effort, this can be attributed

to the limitation of diagnosis to the switches on the path

between sender and receiver. FD and SD in isolation, however,

have to be performed for the entire NoC. In case of FD,

latency is composed of the time required for the five diagnosis

iterations (cf. FD scheduling in Subsection V-A). The total

localization latency for SD is composed of the time required

to identify and test the faulty switches with test patterns

and the time to analyze the test responses. When FD or SD

are combined with DP, DP reduces the set Φ of potentially

faulty switches to a single one. As a result of this, the five-

iteration schedule for FD and the identification phase of SD

can be omitted and the localization latency is considerably

reduced for both load situations. The latency of DP+FD is

6,859 cycles for moderate load and 7,179 cycles for high

load. This corresponds to approximately 1/5 of the latency

required for FD, i.e. the latency for a single FD execution. For

DP+SD, fault localization latency is reduced by about 50% (in

comparison to SD) to 50,237 and 50,557 cycles, respectively.

This is because a single test run, instead of two, is sufficient

when the defective switch has already been identified. The

fault localization latencies of FD+SD and DP+FD+SD are

composed of:

• FD+SD: full FD + 50% SD.

• DP+FD+SD: DP + one iteration FD + 50% SD.

We can observe that, independent of network load, the com-

bination of a lower layer technique with one on higher layer

results in a reduction of localization latency compared to the

lower layer technique used in isolation.

3) Data Throughput: During diagnosis, for the duration

given by the fault localization latency, system performance

is reduced because, depending on the diagnosis technique(s)

used, a number of switches are not or not fully available for

payload data transmission. The impact on system performance

is measured in terms of the achievable data throughput. Results

are shown in Figure 6 for all diagnosis techniques.

Under moderate load (cf. Figure 6a), throughput generally

decreases with an increasing number of permanent faults. This

decrease is related to the quality level of a technique: Due to

larger fault localization latency, higher diagnosis quality cor-

relates with larger performance reduction. Comparing DP, FD,

and SD, the results show that DP offers the largest throughput

for any number of faults since its localization latency is

significantly smaller (cf. Subsection VII-C2). Furthermore, in

contrast to FD and SD, the throughput decreases just slightly

compared to the fault-free case when DP is used in isolation.

This is because DP involves only a limited number of switches

situated on a faulty path, while FD and SD are always per-

formed for the entire network. The large performance impact

of FD and SD can be mitigated by combining them with DP.

DP+FD and DP+SD offer better throughput compared to FD

and SD, respectively, because in their setting the costly lower

layer diagnosis is only performed for a single switch that

was identified as faulty by DP. The combination DP+FD+SD

provides less throughput than DP+FD or DP+SD due to the

sequential execution of FD and SD. However, for more than

one fault, DP+FD+SD still has a higher throughput than SD

because only individual switches are diagnosed each time a

fault occurs. The combination FD+SD also leads to better

throughput than SD alone because during a diagnosis iteration

of FD all switches but the diagnosed ones remain operative

and SD is only performed for individual switches identified as

faulty by FD.

The throughput results for high network load are shown in

Figure 6b. In this scenario, the DP no longer offers superior

performance. The reason for this is the increased number

of diagnosis protocol activations because more timeouts tδ
occur due to congestion. In our simulation setting, this results

in approximately 30 shutdowns of components erroneously

identified as faulty (cf. Subsection VII-B). Only when DP is

combined with FD or SD, these false positives are detected

so that the permanent shutdown of the corresponding compo-

nents can be avoided. With increasing number of faults, the

throughput of SD, FD+SD, and DP+FD+SD falls below DP’s

throughput due to SD’s long localization latency. FD, DP+FD

and DP+SD exhibit good throughput results and outperform

DP independent of the number of faults.

Future CMOS technologies will enable the production of

12

!"!#$

!"!%$

!"!&$

!"'$

!"'($

!"'#$

!"'%$

!"'&$

!)!*$!)'($!)'%$!)('$!)(#$ +,-$

!"
#$
%
&
"
'
%
!(
)*
+!
,-
.
$
/
0
-1
2
13
0
4(

+.5016$.(#7!0()*+!,-.$/0-121304(

./$

0.$

1.$

./20.$

./21.$

0.21.$

./20.21.$

!"#$%

%

!"#&%

%

!"#'%

%

!"#(%

%

!"#%

%

!"!$%

%

!"!&%

%

!"!'%

(a) Uniform random traffic

!"!#$

!"!%$

!"!&$

!"'$

!"'($

!"'#$

!"'%$

!"'&$

!)!*$!)'($!)'%$!)('$!)(#$ +,-$

!"
#$
%
&
"
'
%
!(
)*
+!
,-
.
$
/
0
-1
2
13
0
4(

+.5016$.(#7!0()*+!,-.$/0-121304(

./$

0.$

1.$

./20.$

./21.$

0.21.$

./20.21.$

!"#$%

%

!"#&%

%

!"#'%

%

!"#(%

%

!"#%

%

!"!$%

%

!"!&%

%

!"!'%

(b) Transposed traffic

Fig. 7. Data throughput over injection rate in an 8x8 mesh with a single fault.

!"

!#!$"

!#!%"

!#!&"

!#!'"

!#("

!#($"

!#(%"

(" $")" %" *"

!"
#$
%
&
"
'
%
!(
)*
+!
,-
.
$
/
0
-1
2
13
0
4(

.%560#($7(78%3!,(

+,"

-+"

.+"

+,/-+"

+,/.+"

-+/.+"

+,/-+/.+"

!"#$%

%

!"#&%

%

!"#%

%

!"!'%

%

!"!(%

%

!"!$%

%

!"!&%

%

!%

Fig. 8. Data throughput in a 16x16 mesh (uniform random traffic).

larger NoCs. Figure 8 shows throughput achievable under

faults in a 16x16 mesh, where the injection rate is 0.14,

close to saturation3. The relative performance of the diagnosis

techniques shows a trend similar to Figure 8, confirming their

applicability in larger NoCs. Throughput is slightly lower,

compared to the 8x8 case, because more nodes generate more

protocol packets that limit the bandwidth available for data

packet throughput. On the other hand, thoughput degradation

with increasing number of faults is less pronounced because

the larger number of nodes and alternative routes reduces the

relative impact of each fault.

The evolution of throughput with increasing injection rate is

depicted in Figure 7. For random uniform traffic (Figure 7a),

the protocol overhead (protocol packets) due to retransmis-

sions rises strongly as the injection rate approaches saturation

(sat), leading to a reduction of data packet throughput. With

transposed traffic (Figure 7b), where each node communicates

only with a single receiver, protocol overhead is reduced,

leading to slightly higher achievable throughput, whereas

general trends are similar to the other traffic model.

4) Application Execution Time: In addition to synthetic

traffic, we have simulated the diagnosis techniques with ap-

plication traffic using traffic patterns for an 8x8 mesh from

the MCSL Benchmark Suite [33]. The execution time and

the average throughput achieved with a fault-free network are

3In meshes, saturation rate is inversely proportional to the square root of
the number of nodes.

shown in Table IV for each application. For simulations with

faults, we have again used sets with five random permanent

faults (cf. Subsection VII-C3) and measured the average

overhead in execution time caused by diagnosis. The results

are shown in Figure 9. We conclude from these results that

the impact of diagnosis also depends on the traffic pattern. For

example, the overhead is negligible (below 1%) for the H264

decoder and Newton-Euler Control applications. This is due

to the high computation to communication ratio of these two

applications. There are long periods with very low network

load, thus, in these periods diagnosis has almost no impact

on the communication. For the other applications, however,

an overhead can be observed. This is the case especially for

the SD technique. As in the case of uniform random traffic,

again, the techniques DP, FD, and DP+FD generally exhibit

the smallest overhead.

TABLE IV
EXECUTION TIME AND THROUGHPUT

Application
Execution Time
[million cycles]

Throughput
[flits/node/cycle]

Reed-Solomon Encoder 28.83 0.018

Reed-Solomon Decoder 29.99 0.01

H264 Decoder 29.98 0.005

Newton-Euler Control 30.48 0.001

Spec95 Fpppp 29.91 0.015

Sparse Matrix Solver 29.95 0.01

!"

#!"

$!"

%!"

&!"

'!"

(!"

)*
"+
,-
"

)*
".
/-
"

0
$(
&"
.
/-
"

1
/2
34
,5
+6
7/
8"

9:
::
:"

*:
;8
</
"

!
"
!
#$
%
&
'
(%
)
!
(&
*
!
+,
!
-
.
(/
0
1(

.="

9."

*."

.=>9."

.=>*."

9.>*."

.=>9.>*."

Fig. 9. Overhead application execution time.

13

1

2

3

4

5

 0

 0
.0

2

 0
.0

4

 0
.0

6

 0
.0

8

 0
.1

 0
.1

2

 0
.1

4

d
ia

g
n

o
s
is

 q
u

a
lit

y
 l
e

v
e

l

throughput [flits/node/cycle]

DP

FD

SD

DP+FD

DP+SD

FD+SD

DP+FD+SD

(a) Moderate network load

1

2

3

4

5

 0

 0
.0

2

 0
.0

4

 0
.0

6

 0
.0

8

 0
.1

 0
.1

2

 0
.1

4

d
ia

g
n

o
s
is

 q
u

a
lit

y
 l
e

v
e

l

throughput [flits/node/cycle]

DP

FD

SD

DP+FD

DP+SD

FD+SD

DP+FD+SD

(b) High network load

Fig. 10. Diagnosis quality vs. throughput

D. Pareto Analysis

As detailed diagnosis takes time during which system

performance is degraded, the design goals of high diagnosis

quality and high performance are in conflict with each other.

This can also be seen from the experimental results: For

instance, DP offers the best performance under moderate

network load, but its diagnosis quality is limited. To identify

those diagnosis techniques which offer a preferable tradeoff

between quality and performance, we now perform a pareto

analysis. The design spaces spanned by quality and throughput

for moderate and high network load are shown in Figure 10.

Symbols represent the different combinations of diagnostic

techniques, where the arrow from a contour symbol to a solid

symbol represents the throughput trend from a single fault

to five faults. Square and circle symbols are used for better

differentiation between techniques with overlapping trendlines.

A symbol represents a pareto-optimal point (at a given number

of faults) if no other entry offers the same or better throughput

and diagnosis quality. The unachievable ideal design goal (best

performance and best diagnosis quality) is situated in the upper

right corner of the design space.

In both load situations, FD, DP+SD, and FD+SD are

pareto-optimal. For moderate load, additionally, protocol DP

is pareto-optimal. In comparison with the other techniques, DP

achieves a considerably higher throughput due to its reduced

diagnosis effort. However, for high load DP is no longer pareto

optimal due to the high number of false positives. As no

feedback from FD or SD is available when DP is employed in

isolation, links or crossbar connections erroneously diagnosed

as faulty are shut down, thus reducing the communication

resources of the NoC. The DP+FD combination, in which DP

can use feedback from FD, is a pareto optimum for high load.

If the load situation is unknown at design time, DP+FD should

be given preference over DP as the results of DP+FD and DP

are similar for moderate load.

Under both load scenarios, the throughput of all pareto

optimal techniques is similar for one permanent fault. If

the number of faults increases, however, the throughput gap

widens; in particular, FD and FD+SD suffer from reduced

throughput. For the techniques with protocol support, DP+SD

and DP+FD, system performance is considerably higher as

detailed diagnosis is only performed for individual switches.

From the results for both load situations we conclude that

the combination of two techniques leads to a performance

improvement, enabled by the reduction of the set of potentially

faulty switches Φ by the higher-layer technique. This comes,

however, at the expense of a reduced diagnosis quality. The

mutual benefit for combined techniques can be seen especially

for DP+FD and DP+SD. While DP reduces reduces set Φ, FD

or SD identify false positives and prevent the shutdown of the

corresponding components. This is also reflected in the results

of these techniques. While the performance is higher than with

FD and SD alone, the diagnosis quality is increased compared

to DP.

In summary, the results show that the combination of

protocol DP on transport layer with FD or SD on network

layer and physical layer, respectively, increases the system per-

formance noticeably compared to the techniques in isolation.

The choice of one of the pareto optimal techniques, however,

is application-dependent. For systems where performance is

of concern, those techniques with protocol support can be

applied. In safety-critical systems, the techniques with a higher

diagnosis quality, i.e. FD and FD+SD, should be used. For

systems that require the detection of latent faults, SD has to

be used despite its low performance.

VIII. CONCLUSION

The combination of layer-specific diagnosis techniques into

a multi-layer diagnosis approach is essential to find pareto-

optimal solutions that offer a good tradeoff between sys-

tem performance and diagnosis quality. The performance can

be increased by combining a lower layer technique with a

second one on higher layer. In this setting, the technique

on higher layer helps achieve good performance by limiting

the performance impact of diagnosis thanks to a reduced

fault localization effort. On the other hand, the technique

on lower layer ensures a high diagnostic quality, enabled by

the more detailed information available on the lower layer.

The combination of a software based diagnosis protocol on

transport layer with either functional diagnosis on network

layer or structural diagnosis on the physical layer turn out to

be the most promising multi-layer diagnosis techniques.

14

REFERENCES

[1] Intel Xeon Phi Coprocessor, visited March 2015. [Online]. Available:
https://software.intel.com/de-de/mic-developer

[2] International Technology Roadmap For Semiconductors, visited March
2015. [Online]. Available: http://www.itrs.net/

[3] W. Dally and B. Towles, “Route packets, not wires: on-chip intercon-
nection networks,” in Proc. of Design Automation Conf. (DAC), 2001,
pp. 684–689.

[4] S. Borkar, “Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation,” IEEE Micro,
vol. 25, no. 6, pp. 10–16, 2005.

[5] J. Lienig, “Electromigration and its impact on physical design in future
technologies,” in Proc. of ACM Int’l Symp. on Physical Design (ISPD),
2013, pp. 33–40.

[6] S. Shamshiri, A. Ghofrani, and K.-T. Cheng, “End-to-end error correc-
tion and online diagnosis for on-chip networks,” in Proc. of IEEE Int’l

Test Conf. (ITC), 2011, pp. 1–10.

[7] A. Garbade, S. Weis, S. Schlingmann, B. Fechner, and T. Ungerer, “Fault
localization in NoCs exploiting periodic heartbeat messages in a many-
core environment,” in Proc. of 27th IEEE Int’l Parallel and Distributed

Processing Symp. Workshops & PhD Forum (IPDPSW), 2013, pp. 791–
795.

[8] Z. Zhang, D. Refauvelet, A. Greiner, M. Benabdenbi, and F. Pecheux,
“Localization of damaged resources in NoC based shared-memory
MP2SOC, using a distributed cooperative configuration infrastructure,”
in Proc. of 29th IEEE VLSI Test Symp. (VTS), May 2011, pp. 229–234.

[9] D. Lee, R. Parikh, and V. Bertacco, “Brisk and limited-impact NoC
routing reconfiguration,” in Proc. of the Conf. on Design, Automation &

Test in Europe (DATE), 2014, pp. 306–306.

[10] R. Abdel-Khalek and V. Bertacco, “Post-silicon platform for the func-
tional diagnosis and debug of networks-on-chip,” ACM Trans. on Em-

bedded Computing Systems (TECS), vol. 13, no. 3s, pp. 1–25, Mar 2014.

[11] M. Kakoee, V. Bertacco, and L. Benini, “At-speed distributed functional
testing to detect logic and delay faults in NoCs,” IEEE Trans. on

Computers (TC), vol. 63, no. 3, pp. 703–717, March 2014.

[12] S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, J. Camacho,
F. Silla, and J. Duato, “Addressing manufacturing challenges with cost-
efficient fault tolerant routing,” in Proc. of the 4th ACM/IEEE Int’l Symp.

on Networks-on-Chip (NOCS), 2010, pp. 25–32.

[13] C. Liu, L. Zhang, Y. Han, and X. Li, “A resilient on-chip router design
through data path salvaging,” in Proc. of 16th IEEE Asia and South

PacificDesign Automation Conf. (ASP-DAC), 2011, pp. 437–442.

[14] M. Williams and J. Angell, “Enhancing testability of large-scale inte-
grated circuits via test points and additional logic,” IEEE Trans. on

Computers (TC), vol. C-22, no. 1, pp. 46–60, Jan 1973.

[15] M. Hosseinabady, A. Dalirsani, and Z. Navabi, “Using the inter- and
intra-switch regularity in NoC switch testing,” in Proc. of Design,

Automation & Test in Europe Conf. (DATE), 2007, pp. 1–6.

[16] M. Li, W.-B. Jone, and Q.-A. Zeng, “An efficient wrapper scan chain
configuration method for network-on-chip testing,” in in Proc. IEEE

Computer Society Annual Symp. on Emerging VLSI Technologies and

Architectures (ISVLSI), 2006, pp. 147–152.

[17] A. Amory, E. Briao, E. Cota, M. Lubaszewski, and F. Moraes, “A
scalable test strategy for network-on-chip routers,” in Proc. of IEEE

Int’l Test Conf. (ITC), Nov 2005, pp. 590–599.

[18] C. Grecu, P. Pande, A. Ivanov, and R. Saleh, “Bist for network-on-chip
interconnect infrastructures,” in Proc. of 24th IEEE VLSI Test Symp.

(VTS), 2006, pp. 6 pp.–35.

[19] T. Lehtonen, D. Wolpert, P. Liljeberg, J. Plosila, and P. Ampadu, “Self-
adaptive system for addressing permanent errors in on-chip intercon-
nects,” IEEE Trans. on Very Large Scale Integration Systems (VLSI),
vol. 18, no. 4, pp. 527–540, April 2010.

[20] A. Dalirsani, S. Holst, M. Elm, and H. Wunderlich, “Structural test for
graceful degradation of NoC switches,” in Proc. of 16th IEEE European

Test Symp. (ETS), 2011, pp. 183–188.

[21] C. Pinart, “A multilayer fault localization framework for IP over all-
optical multilayer networks,” IEEE Network, vol. 23, no. 3, pp. 4–9,
May 2009.

[22] J. Emmert, C. Stroud, and M. Abramovici, “Online fault tolerance for
fpga logic blocks,” IEEE Trans. on Very Large Scale Integration Systems

(VLSI), vol. 15, no. 2, pp. 216–226, Feb 2007.

[23] N. P. Carter, H. Naeimi, and D. S. Gardner, “Design techniques for
cross-layer resilience,” in Proc of the Conf. on Design, Automation and

Test in Europe (DATE), 2010, pp. 1023–1028.

[24] M. Dadashi, L. Rashid, K. Pattabiraman, and S. Gopalakrishnan,
“Hardware-software integrated diagnosis for intermittent hardware
faults,” in Proc. of 44th Annual IEEE/IFIP Int’l Conf. on Dependable

Systems and Networks (DSN), June 2014, pp. 363–374.
[25] M. Abramovici, C. Stroud, and J. Emmert, “Online BIST and BIST-

based diagnosis of FPGA logic blocks,” IEEE Trans. on Very Large

Scale Integration Systems (VLSI), vol. 12, no. 12, pp. 1284–1294, Dec
2004.

[26] A.-A. Ghofrani, R. Parikh, S. Shamshiri, A. DeOrio, K.-T. Cheng,
and V. Bertacco, “Comprehensive online defect diagnosis in on-chip
networks,” in Proc. of 30th IEEE VLSI Test Symp. (VTS), 2012, pp.
44–49.

[27] G. Schley, N. Batzolis, and M. Radetzki, “Fault localizing end-to-end
flow control protocol for networks-on-chip,” in Proc. of 21st Euromicro

Int’l Conf. on Parallel, Distributed and Network-Based Processing

(PDP), 2013, pp. 454–461.
[28] D. Bertozzi, L. Benini, and G. De Micheli, “Error control schemes

for on-chip communication links: The energy-reliability tradeoff,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems (TCAD), vol. 24, no. 6, pp. 818–831, 2005.
[29] A. Jantsch, R. Lauter, and A. Vitkowski, “Power analysis of link level

and end-to-end data protection in networks on chip,” in Proceedings of

the IEEE International Symposium on Circuits and Systems (ISCAS’05),
23-26 May 2005, pp. 1770–1773Vol.2.

[30] A. Dalirsani, N. Hatami, M. Imhof, M. Eggenberger, G. Schley,
M. Radetzki, and H.-J. Wunderlich, “On covering structural defects in
NoCs by functional tests,” in Proc. of 23rd IEEE Asian Test Symposium

(ATS), Nov 2014, pp. 87–92.
[31] Y. Li, S. Makar, and S. Mitra, “Casp: Concurrent autonomous chip self-

test using stored test patterns,” in Proc. of Design Automation and Test

in Europe (DATE), March 2008, pp. 885–890.
[32] S. Holst and H.-J. Wunderlich, “Adaptive debug and diagnosis without

fault dictionaries,” Journal of Electronic Testing, vol. 25, no. 4-5, pp.
259–268, 2009.

[33] W. Liu, J. Xu, X. Wu, Y. Ye, X. Wang, W. Zhang, M. Nikdast, and
Z. Wang, “A NoC traffic suite based on real applications,” in Proc. of

IEEE Computer Society Annual Symp. on VLSI (ISVLSI), 2011, pp. 66–
71.

Gert Schley received the Dipl-Ing (FH) degree in electrical engineering and
information technologies in 2007 and the M.S. degree in embedded systems
engineering in 2009 from the University of Applied Sciences, Pforzheim,
Germany. Since 2009, he has been a Research Scientist with the Embedded
Systems Group, University of Stuttgart. His research interests include hierar-
chical architectures and cross-layer fault tolerance for Network-on-Chip.

Atefe Dalirsani received her B.S. and M.S. degree in Computer Engineering
from University of Tehran, Iran, in 2005 and 2007, respectively, and her Ph.D.
from University of Stuttgart, Germany, in 2015. Her research interests include
self-diagnosis and self-test of NoCs, design for testability, reliability and fault
tolerance.

Marcus Eggenberger (S’13) received the Dipl.-Inform. degree from the
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, in 2012 and
is currently pursuing a Ph.D. degree at the University of Stuttgart, Germany.
His research interests include fast and accurate parallel simulation of network-
on-chip.

Nadereh Hatami received her M.Sc. from the University of Tehran in 2008
and received her Ph.D. degree from the University of Stuttgart in 2014 with
her thesis about Multi-level Analysis of Non-Functional Properties.

15

Hans-Joachim Wunderlich (F’09) is a full professor of Computer Science
at the University of Stuttgart in Germany and Director of the Institute of
Computer Architecture and Computer Engineering. His research interests
include test, reliability and fault tolerance of microelectronic systems. He
is a Fellow of IEEE.

Martin Radetzki (SM’12) is Professor of Embedded Systems Engineering
with the University of Stuttgart. He received the Dipl.-Inform. and Dr.-Ing.
degrees from the University of Oldenburg, Germany, in 1996 and 2000,
respectively. His research interests include modelling and parallel simulation
of embedded systems, design of robust systems, and architecture of fault-
tolerant networks-on-chip.

	xx

