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Abstract—Self-awareness allows autonomous systems the 

dynamic adaptation to changing states of the hardware platform 

and the optimal usage of available computing resources. This 

demands concurrent, periodical, or on-demand monitoring and 

testing of the hardware structures to detect and classify deviations 

from the nominal behavior and appropriate reactions. This survey 

discusses suitable self-test, self-checking, and self-diagnosis 

methods for the realization of self-awareness and presents two case 

studies in which such methods are applied at different levels.  
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I. INTRODUCTION 

In addition to monitoring their environment, self-aware 
systems also need to monitor their own state and the capabilities 
of the underlying hardware platform [DJS15]. This comprises 
for instance timing or voltage margins, error rates and locations, 
or known faulty components. The knowledge of this hardware 
fitness is a requirement for autonomous and qualified adaptation 
to changing system states and graceful degradation in the 
observe-decide-act loop in self-aware systems [DJS15]. 
Examples for such adaptation are voltage or frequency 
calibration, use of available redundancies, or isolation of known 
faulty modules.  This has become a necessity in autonomous 
safety-critical systems, found in automotive, industrial, or 
medical application domains.  

To capture the state of the hardware platform, a self-aware 
system integrates instrumentation and sensors to monitor and to 
examine the state of its hardware structures. The employed 
instrumentation spans from design-for-test and diagnosis 
features, fault-tolerant design, and different types of monitors to 
the required control and access mechanisms that interconnect 
them.  

This article describes the connection between self-awareness 
and self-test and self-diagnosis methods. The following section 
provides a brief definition of the used terminology and a 
classification of self-test methods. Section III details the 
underlying principles, followed by methods for autonomous 
diagnosis and self-test for health and aging assessment. Section 
VI discusses the effectiveness and costs of such methods. 
Section VII shows how the test and diagnostic information can 
be used for fault management. Finally, two case studies of self-
aware systems are discussed in Section VIII.  

II. TERMINOLOGY AND CLASSIFICATION 

A. Terminology 

A defect is an unintended deviation of the shape or structure 
of the material of the circuit, i.e. additional, missing, or wrong 
material at a location. This also comprises material impurities, 
transistor oxide damages, or wrong dotation. Defects result from 
manufacturing, imperfect materials, or stress and aging during 
operation.  

Defects and their effects on circuit behavior have a 
continuous physical nature. A fault abstracts defective behavior 
in a structural model of the circuit to allow algorithmic analysis 
and processing. Examples for faults include stuck-at faults, 
bridging faults, or delay faults. A fault model is a set of faulty 
behaviors in a structural model. Faults can be modeled in 
structural models at different abstraction levels, from electrical, 
switch-level, gate or RT-level netlists up to the system structure.   

A fault can be activated depending on the system state and 
the system environment, for example the temperature. The 
resulting effect is wrong information that propagates through the 
circuit, called an error. Errors such as single event upsets do not 
have a defect as root cause, but a transient event. If the error is 
not masked internally and causes a violation of the specification, 
a failure (malfunction) occurs. A failure of a module or 
component can be considered a temporary or permanent fault in 
the system comprising the component [ALRL04].  

Test is an electrical experiment to check for the existence of 
defects, consisting of the application of input stimuli and the 
observation and comparison of responses of the circuit under 
test. Test generation can be based on a structural fault model or 
on exercising the functional behavior. In a structural fault model, 
the number of faults is typically linear to the number of 
components in the structural model and it is easy to quantify the 
fault coverage or test quality. In contrast, defining a meaningful 
coverage metric for functional testing is more difficult. Self-test 
refers to the autonomous test execution for fault detection by the 
system. Self-checking, in contrast, is a system’s capability to 
detect errors during operation.  

Diagnosis is the localization and classification of the root 
cause of failures by analyzing the test responses or performing 
additional diagnostic tests. The desired diagnostic resolution 
depends on the application and level of abstraction. High 
resolution increases the diagnosis cost but may allow to pin-
point to the root cause at a lower level, for example a defective 
transistor or via even within a standard cell, compared to 
resolving only to the defective cell or interconnect wire. Lower 



levels of resolution are acceptable if it is sufficient to identify 
the failing module.  

A simple pass/fail test for a module can thus already provide 
sufficient diagnostic information for a system-level adaptation 
decision. As an example, we consider an electronic control unit 
(ECU) in the automotive context, which requires high 
dependability. In the field, an ECU may autonomously perform 
a power-on self-test and periodic tests of its components during 
the operation. Additionally, for critical parts a self-checking 
design can be implemented, for instance by error detecting codes 
in busses or memory arrays. Upon detection of an error in the 
field, tests are performed to diagnose the fault location at module 
level and decide on fault handling. Relevant failure data is stored 
in a log. In the workshop, an engineer performs a thorough test 
to determine whether the unit needs to be replaced. Failed ECUs 
are returned to the original equipment manufacturer (OEM) that 
tries to reproduce and diagnose the failure from chip to core and 
netlist level and further down to the location of the root cause in 
the chip material.  

B. Classification of Self-Test Methods 

A wide variety of different methods for self-test and self-
checking exists, each with unique characteristics such as cost in 
hardware, energy, or performance, or also coverage of faults and 
fault detection latency, i.e. the time between the emergence of a 
fault and its detection. In contrast to offline testing, which 
typically uses external support and equipment, online self-test 
methods are applied in the field and the system is not shut-down.  

The methods can be classified according to when a test or 
check takes place in the system as shown in Figure 1. Tests for 
self-awareness must be conducted online in the field, either in a 
non-concurrent or concurrent fashion. The non-concurrent 
activation is intrusive and typically alters the state of the module 
or component under test, which requires a suspension of the 
computation or service for the duration of the test. In multi-core 
systems, this disruption can be hidden by migrating running 
tasks to other available resources before test execution.  

  

Figure 1. Classification of self-test and self-checking methods 

Examples of non-concurrent self-tests are shown in the 
lower left part of the figure. These methods can be further 
partitioned into structure-oriented tests and functional tests.   

The second class of methods are non-intrusive and active 
concurrent to the system operation. Such concurrent approaches 
monitor the system behavior for emergence of faults and errors, 
the divergence of functional behavior from the specification, or 
for non-functional observables such as temperature, radiation, or 
aging effects.  

Self-aware systems require a combination of these methods 
to ensure that unexpected behavior is detected during operation 
and subsequently classified by test and diagnosis as illustrated 
in Figure 2.  

 

Figure 2. Error detection followed by test and diagnosis 

III. SELF-TEST AND SELF-CHECKING STRATEGIES 

Non-concurrent self-test interrupts the operation of the 
component or part under test for the duration of the test. The 
quality of the test, i.e. its fault coverage, depends on the applied 
test stimuli. System constraints such as the access to design-for-
test infrastructure or the acceptable test time and hardware 
overhead, restrict the way, type and quantity of applied stimuli. 

In conventional built-in self-test (BIST) pseudo-random test 
stimuli are generated on chip by a linear feedback shift register 
or linear automaton and applied to the logic using scan chains 
[BardMS87]. Test responses are highly compacted over space 
and time into a small response signature. Depending on the 
design, it may be necessary to increase fault coverage by 
targeting random pattern resistant faults using weighted random 
patterns, the insertion of test points, or mixed-mode BIST using 
different LFSR polynomials or with embedded deterministic test 
patterns. While such approaches increase the hardware cost, 
they improve the test quality and can also reduce the required 
test time.  

If the system possesses non-volatile memory, high-quality 
deterministic test stimuli can be stored in the system and applied 
via the scan chains on-demand or periodically [LCH05], reusing 
existing design-for-test infrastructure. This provides very high 
fault coverage also for delay faults and incurs the lowest test 
duration since only relevant patterns are applied. This idea has 
been adopted in [LMM08] for multi-core systems, also 
discussing the test setup including core isolation, test execution 
and state restoration after test completion. If non-volatile 
memory is not available, deterministic patterns can also be 
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recorded in scan chains with only marginal hardware cost 
[LTK16].  

Self-tests are applied online and may not violate the 
functional power budget. Since conventional structural tests 
create a very high switching activity both during scanning of test 
data and test application, dedicated low-power BIST approaches 
have been developed. These comprise for instance test 
scheduling of modules, scan chain segmentation and scan clock 
control, or masking of switching activity [GNW10].  

If the access to scan chains of a component is not possible, it 
can be exercised by applying functional test stimuli. If the 
stimuli are applied by a processor or programmable core in the 
system, the test is called software-based self-test (SBST) 
[PGSS10]. Apart from testing the processor, SBST is also 
applied to test caches, memory arrays, and IP cores attached to 
the processor or the system bus [KLCD02]. While the fault 
coverage achieved by SBST is typically lower than in a scan-
based test, the application is less intrusive. The state of the tested 
component can be saved before and restored after the test via the 
functional access. Functional and high-quality structural tests 
are combined in [CMAB07] using a software-assisted access to 
the scan chain infrastructure by dedicated test instructions. This 
achieves very high fault coverage even for complex processor 
components with hidden state. SBST programs can be generated 
targeting different objectives such as low test time [GRP15], low 
power dissipation [ZhWu06], or detection of delay faults 
[RCS+14].  

Memory arrays constitute a significant part of the hardware 
area of systems-on-chip and suffer proportionally to their area 
from defects in the read/write logic, the address decoder, and the 
actual memory cells. Apart from stuck-at faults, dedicated 
memory fault models comprise coupling faults, pattern-sensitive 
faults, and faults in the address decoder and read/write logic 
[GoVe90]. Memory test is performed by functional read and 
write accesses to the cells in a particular sequence, either by a 
processor or by memory BIST logic, which can also be micro-
coded. Cyclic test sequences for memory restore the start state 
after test completion and enable transparent memory test 
[Nico92].  

In safety-critical systems, emerging faults and resulting 
errors must be detected quickly to avoid hazardous system 
behavior. This requires a high frequency of periodic self-tests to 
reduce the fault detection latency or self-checking design to 
concurrently check the computational results for errors. The 
principal operation of self-checking design is illustrated in 
Figure 3. The behavior of the mission logic or parts thereof is 
predicted and checked by additional hardware. The type of the 
implemented check determines both the hardware overhead and 
coverage of errors.  

The checking function can duplicate the computation and 
compare all outputs or predict a parity-based or arithmetic 
check-sum of the computation. Duplication using a diversified 
design offers higher error coverage since it avoids common 
mode errors. The area overhead is about 120% of the mission 
logic and only marginally higher compared to parity or other 
code based approaches [MiMc00].  

 

 

 
Figure 3. Self-checking design 

This overhead can be reduced if the checking is reduced to a 
set of likely or critical faults. In so called concurrent BIST 
approaches, the checking logic is derived from a set of test 
patterns for such faults [KZW09, VoEf14].  

The erroneous behavior for which a check is performed can 
also be derived from the design specification. Watchdog timers, 
control flow checking, or synthesized assertions are examples of 
concurrent functional error checks, that are implemented either 
in hardware or in software [MaMc88, OSM02, BCZ07]. The 
area and performance overhead depends on the number and 
types of critical behaviors to be checked during operation.  

Self-checking the mission logic in hardware minimizes the 
error detection latency. If a higher latency is acceptable, the 
checking can also be implemented at a higher system level in 
software. General approaches exploit time or structural 
redundancy by duplicating and comparing the execution of 
threads. Examples are lockstep execution or redundant multi-
threading with loose lockstepping. An overview of such 
software-implemented checking approaches is given in 
[GPA+11]. The checking can also be tailored to specific 
algorithms or operations employing algorithm-based fault 
tolerance (ABFT, HuAb84). In ABFT, the operands of an 
operation are encoded before computing, often by extension 
with a check-sum. The encoded results allow for detection of 
errors during the computation. The applicability of ABFT for 
self-awareness and the related performance overhead depends 
on the application, but can be, for instance, as low as 0.04% for 
preconditioned conjugate gradient solvers [SBK+15].  

For memory elements, error detection relies on encoding and 
information redundancy. For arrays, the linear codes used to 
detect and correct a low number of errors incur only a small 
memory overhead. For distributed flip-flops or registers, error 
checking for timing and transient faults can be implemented by 
use of shadow latches for flip-flops with delayed clock and 
comparing the signal values [EKD+03, ZMM+06, Nico07]. In 
case of mismatches, correction is implemented by replaying the 
values from these shadow flip-flops. In [ImWu14], the high 
overhead of shadow latches is avoided by computing an error 
detecting and correcting address characteristic over the 
distributed registers. The resulting fault tolerant structure can 
also be reused for manufacturing test.  
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Self-checking needs to be complemented with periodic self-
testing to prevent fault accumulation both in the mission logic 
and in the logic for self-checking and fault tolerance, since fault 
accumulation threatens the effectiveness of fault tolerance 
measures. Once an error or fault is detected, a self-aware system 
must locate its cause by diagnosis to determine an appropriate 
reaction. 

IV. FROM SELF-TEST TO SELF-DIAGNOSIS  

Diagnosis locates and classifies the root cause of a failure. 
The information provided by diagnosis is required in self-aware 
systems to determine the appropriate system reaction, as for 
instance, adjusting the workload of a module to reduce the 
temperature, reducing the frequency of a module to tolerate 
timing marginalities, or disabling a module in case of an 
intolerable permanent fault. While volume diagnosis can rely on 
external test equipment, adaptive refinement of diagnostic 
resolution, and offline analysis of failure data, self-diagnosis has 
to be performed autonomously with the available test 
infrastructure on chip and the limited computational capabilities 
of the system for data analysis.   

Diagnosis can be performed at different levels of granularity 
with different resolution. At module level, the passing or failing 
of a module test is a first diagnostic result that may be sufficient 
for a system level decision for online adaptation. In that case, a 
compacted test response signature is simply compared with the 
expected value. For higher resolution, the analysis of responses 
is more elaborate and typically performed offline.  

Diagnosis methods can be classified as cause-effect or 
effect-cause approaches. In the first case, different causes, i.e. 
fault or defect candidates, are analyzed to determine their effects 
for comparison with the responses observed in the actual design 
under diagnosis, often employing a fault dictionary mapping 
effects to fault candidates. In the second case, the observed 
effects are analyzed to infer possible compatible candidates, 
often by back-tracing in the netlist.  

The diagnostic quality increases with the quality of the test 
stimuli and the available test responses. Diagnosis with high 
resolution, e.g. at gate level, requires dedicated test stimuli in 
scan-based test [GMK91] or SBST [BSS+06]. Performing a 
high-resolution diagnosis online is not practical because of 
increased test time and memory requirements, large fault 
dictionaries, or high computational requirements of the 
diagnosis algorithms. On the other hand, failures in the field may 
depend on environmental conditions and system states for fault 
activation that are not known or cannot be reproduced in a 
failure analysis lab, causing a classification as “no-trouble-
found”. 

A compromise in self-aware systems is to support in-field 
diagnosis at moderate resolution and to make detailed diagnostic 
data available for later analysis at higher system level or offline 
analysis. This is achieved by design-for-diagnosis and tailored 
diagnosis algorithms. In [BeBl12], for instance, the size of the 
fault dictionary is minimized to allow online localization of a 
fault to the level required by the actual fault handling procedure. 
Built-in self-diagnosis architectures such as [ElWu10] support 
the storage of passing patterns and relevant failure data during a 
test session on chip, employing extreme compaction in space 

and time. The self-checking architecture in [KDB+15] stores a 
small amount of functional inputs and error signatures observed 
during operation to facilitate diagnosis and distinguish transient 
and intermittent failure causes.  

V. BIST AND MONITORING FOR HEALTH PREDICTION 

Testing the hardware for faults or checking it for errors 
allows the detection of faulty behavior that already violates the 
nominal specification. Health assessment and prediction, on the 
other hand, aims at detecting a deviation of the hardware 
behavior before it impacts the nominal function. This can be 
achieved by measuring the functional and non-functional factors 
that cause the deviation or by measuring the actual deviations 
with sufficient accuracy.  

Non-functional observables, such as for example temper-
ature, power-noise, or radiation, impact dependable system 
operation and must be monitored during operation. 
Environmental indicators, such as radiation levels, can be 
derived from the observed memory error rate. Together with 
timing uncertainties and margins, these observables are 
indicators of the hardware fitness [FRJ+07] and can serve as 
inputs to system-wide calibration and adaptation.  

Among these observables, temperature and specific stress 
patterns imposed by the workload are factors that cause or 
accelerate circuit aging. Workload can be monitored at different 
resolutions in the system, for instance by tracking the duration 
of usage of modules. The gate level workload monitor of 
[BCI+13] allows fine-grained observation of stress patterns in 
critical circuit structures.   

The actual deviation of behavior can be measured by 
dedicated sensors, such as aging monitors or stability checkers 
[APZM07], or by conducting in-field self-tests for delay faults. 
Such tests must have higher sensitivity so that small deviations 
become detectable. Often, built-in test structures are reused to 
facilitate the test with low hardware overhead. In [SGH+07], 
processor cores are tested with functional patterns under 
increasingly stressful conditions until the timing guardband is 
exceeded. A signature register captures the responses and 
internal state at speed for comparison with the expected value.  
To increase the stress, the voltage is reduced and the frequency 
is increased.  

The authors of [BaMi09] propose to select a small number 
of paths that turn critical after aging. The corresponding path 
delay faults are tested in-field. For memory arrays, a BIST-based 
measurement of aging degradation has been demonstrated in 
[AM10]. The Dependable Architecture with Reliability Testing 
(DART) [SKY+12] efficiently integrates logic and memory 
self-tests for health prediction and their control into the existing 
DFT and BIST infrastructure of a system. A DART controller 
orchestrates the self-tests in different test sessions in the system, 
setups the test conditions, such as increased frequency, and 
gathers test results for evaluation. Since the controller tracks the 
delay changes measured during the tests over the system 
lifetime, threatening deviations can be detected and counter-
measures applied before an actual failure occurs. Monitors for 
non-functional observables, like temperature and voltage, are 
used to increase the accuracy of the tests or may serve as 



standalone indicators of the stress, as in the health monitoring 
architecture of [ZhKe14]. 

If self-tests are executed faster-than-at-speed in order to 
uncover small delay faults, a flexible handling of the high and 
frequency-dependent ratio of unknown values in the test 
responses is required [SHQ10, HIK+14]. Alternatively, aging 
monitors can be reused during such a delay test if already present 
in the circuit [LKW17]. 

The information obtained from self-tests and health 
monitoring is input to an online dependability manager, which 
reasons about emerging failures and means of appropriate 
mitigation, for instance based on static policies [TKD+07] or 
dynamic ones [SCT+16]. 

VI. TRADEOFFS IN SELF-TESTING AND SELF-CHECKING 

The methods classified in Figure 1 and described in Section 
III exhibit different characteristics in terms of effectiveness 
(fault coverage, fault detection latency, diagnostic resolution) 
and incurred cost (test time, performance impact, area / memory 
/ power overhead). A qualitative comparison is given in Table 1.    

 The achievable fault and error coverage of the approaches 
can be traded off with area and energy overhead as well as test 
time or performance overhead. For pseudo-random BIST, for 
instance, additional test points can be inserted in the module 
under test, the number of applied patterns can be increased, or 
different seeds or polynomials can be used for on-chip pattern 
generation. The fault detection latency of self-tests depends on 
the frequency of the tests, which is also influenced by the test 
time and resulting performance impact. If the test application 
time is too long, the test can be split up into multiple shorter test 
sessions to avoid a long suspension of the module operation. 
Test in general and BIST in particular dissipate a lot of power, 
which can be controlled by additional design effort or higher test 
time. For deterministic patterns, the test power can be adjusted 
at a fine-grained level. 

Error coverage and detection latency of self-checking design 
and software- and algorithm-based fault tolerance can be 
improved by more fine-grained checking, e.g., instrumenting 
each operation of an algorithm with checks up to duplicate 
execution. This also impacts the required area for self-checking 
and performance for algorithm-based fault tolerance and in 
general increases energy dissipation.  

VII. FAULT AND FAILURE MANAGEMENT 

In self-aware systems, the data sampled in the on-chip 
instrumentation must be aggregated and evaluated on chip. This 
requires both access mechanisms to the instruments and a central 
or distributed resource management. Resource management can 
be implemented on a processor by firmware or as a hardware 
unit [TBH+10].  

Serial scan-based access, based on the popular JTAG 
boundary scan standard, has been widely adopted to connect 
instruments on chip. However, the increasing number and 
diversity of instruments lead to the development of more flexible 
and scalable access mechanisms based on reconfigurable scan 
networks (RSNs) and their recent standardization in IEEE Std 
1149.1-2013 and IEEE Std 1687-2014. In RSNs, the path 

through which data is shifted can be reconfigured, for instance 
for minimum access latency to a set of targeted instruments.  

These scan-based access mechanisms have been used to 
construct comprehensive access architectures for system and 
reliability management [JDS13, HeTe14, ZNL16]. Such 
architectures support self-aware systems by well-defined 
(instead of ad-hoc) interfaces, access procedures, and shared 
resources for instrument management such as for calibration, 
start and control of measurements, local response storage, or 
event-based signaling. Figure 4 shows the architecture proposed 
in [JDS13] to gather data from instruments spread over the 
resources in the system. The instrument manager decouples the 
details of the RSN-based communication to instruments in the 
hardware resources from the fault manager, which maintains the 
state of the resources as part of the operating system. The 
obtained data can serve as input to predictive health models. The 
flexible, self-reconfiguring scan network described in [ZNL16] 
provides low-latency error signaling for concurrent checkers and 
monitors and also an efficient error localization.  

  
Figure 4. Fault management architecture according to [JDS13] 

With the increasing importance of the on-chip infrastructure 
in self-aware systems, secure infrastructure access must be 
provided to prevent leakage or manipulation of sensitive 
instrument data or side-channel based attacks. This level of 
security is especially important in safety-critical systems, where 
an attack may cause unsafe system behavior. This requires a 
design methodology beyond ad-hoc solutions that incorporates 
access privileges and protection and secure data transmission at 
infrastructure level [KSG+17]. Secondly, flexible, scalable, and 
secure infrastructure access architectures must be designed and 
verified, both for JTAG-based as well as emerging 
reconfigurable scan-based access [RoKa10, BKW15].  

VIII. CASE STUDIES 

The following two case studies, an adaptive network-on-chip 
and a runtime-reconfigurable architecture, illustrate the 
implementation of self-awareness by self-test and self-diagnosis 
for dependable and adaptive operation.  

A. Networks-on-Chip 

A network-on-chip (NOC) is a scalable communication 
architecture for many-core systems. It employs interconnected 
routers to route data packets from their source to the destination 
node. The structure of a router is shown in Figure 5. To ensure 
high reliability and availability of the communication, self-
aware systems monitor the state of the NOC, comprising self-
checking for errors, thorough self-test, and in-field diagnosis for 
adaptation to impaired NOC routers or links. 
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Figure 5. Structure of a NOC router with network interface and 

four ports  

Domain-specific implementations of self-checking design 
may incur much lower overhead than generic implementations 
based on duplication with comparison or parity prediction. For 
NOCs, an efficient hybrid error detection scheme has been 
proposed in [DKW14], which combines parity-based error 
checking of transmitted data in the links with a dedicated error 
checking logic synthesized for yet uncovered errors in the router. 
This combination results in a low area overhead of only 52% 
and covers errors resulting from all single combinational and 
transition delay faults of the links and routers in the 
communication structure of the NOC.  

While this self-checking detects errors with low latency, it 
does not provide diagnostic information. An in-field self-test of 
the NOC is required to determine if a detected error had a 
permanent or transient cause. Scan-based application of the test 
disrupts the operation of parts or even the whole NOC and is not 
desirable [TBH+10]. In [DaWu16], functional test stimuli are 
generated based on a structural fault model, which detect all 
testable faults and can be easily applied in the field without 
access to scan chains, e.g. by a processor. 

Reconfigurable NOCs allow fine-grained management of 
their hardware resources, for example by disabling known faulty 
parts for graceful degradation. A challenge is, however, to 
decide whether an observed error is caused by a fault that merely 
affects a single link or port of a router or multiple parts. In the 
former case, the affected part can be disabled, and the remaining 
functionality of the NOC can be still used. For the location and 
classification of faults, functional tests with unique failure 
signatures for faults affecting only single resources are 
generated. The signatures of faults that can be masked by 
disabling a port or link of a router are then stored in the system 
for autonomous in-field diagnosis and NOC reconfiguration 
[DaWu16]. 

B. Runtime-Reconfigurable Architectures 

FPGA-based runtime-reconfigurable architectures offer a 
high potential for energy-efficient acceleration of complex 
applications [CaHu11]. Their reconfigurability has also been 
exploited to adapt to the environment and hardware state for 
increased dependability. The architecture in [ZKI+14, ZBK+16] 
is an example of a self-aware system that dynamically schedules 
self-test and self-checking methods tailored for FPGAs: A 

resource manager monitors the state and usage of the 
computational resources and autonomously triggers self-tests, 
selects the required level of concurrent checking for errors, and 
balances the workload to increase system lifetime. The involved 
components and interactions are shown in Figure 6. 

 
Figure 6. Self-aware resource management in a runtime 

reconfigurable system [ZKI+14, ZBK+16] 

The regularity of the fabric, consisting of reconfigurable 
interconnect as well as combinational and sequential 
components, lends itself for efficient self-tests and in-field 
diagnosis [ASE04]. Periodic and on-demand execution of 
structural and functional self-tests achieve a high fault coverage 
and low fault detection latency with negligible performance 
impact [BBI+13]. 

If permanent faults are detected and localized, special 
module configurations with diversified resource usage are 
employed, which are generated at design time such that certain 
fault types are tolerated in at least one configuration [ZBK+16]. 
In addition, the diversity of used resources in such 
configurations can also be exploited to balance the stress 
induced by their operation [SKM+08]. The resource manager 
tracks at runtime for each resource the frequency, duration and 
type of usage to select the most appropriate module 
configuration such that the maximum stress in all resources is 
minimized [ZBK+16]. 

If the runtime-reconfigurable system is aware of the environ-
mental radiation, e.g. by external sensors or by monitoring the 
error rate in protected memory arrays, the level of self-checking 
can be adjusted to the required degree of reliability. The resource 
manager dynamically determines the optimal implementation of 
configured modules, resorting to duplication or triplication only 
for the most vulnerable parts and time periods with high 
radiation. Since this avoids over-protection, the resulting system 
maximizes application performance and minimizes energy 
dissipation [ZKI+14]. 
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IX. CONCLUSIONS 

In-field detection and diagnosis of errors in self-aware 
systems and their causes in the hardware platform require self-
checking, test and diagnosis at different levels. The overhead in 
terms of area, power, and performance is determined by the 
required error detection latency and diagnostic resolution. Two 
case studies demonstrate the application of these methods in the 
context of a network-on-chip and a runtime reconfigurable 
system.  
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Table 1: Qualitative comparison of self-testing and self-checking approaches for self-aware systems 

Class Periodic / on-demand self-test Self-checking design & concurrent error detection 

Type 
Pseudo-
random 
patterns 

Compressed 
deterministic 
patterns 

Memory 
BIST 

Software-
based 
self-test 
(SBST) 

Concurrent 
BIST 

Self-
checking 
design 

Error 
control 
coding 

Algorithm-based 
fault-tolerance 
(ABFT) 

Targeted 
structure 

Logic Logic 
Logic, 
memory 

Logic, 
Memory 

Logic Logic Memory Logic, memory 

Fault coverage 
Medium 
to high 

High High 
Medium 
to high 

Medium 
Medium to 
high 

High Medium to high 

Fault / error 
detection latency 

Fault detection:  Error detection: 

Depending on test frequency Medium Low Low Low to medium 

Diagnostic 
resolution 

Module-
level 

Module-level High Low 
Module-
level 

Module-
/interface 
level, high 
temporal 
resolution 

Memory 
location 

Module/operation-
level, moderate 
temporal 
resolution 

Test time 
overhead 

High Low Variable High N/A 

Performance 
overhead 

Depending on test length and frequency, lower for 
short interruptible / resumable test sessions. 

Very low 

Very low to 
high (tradeoff 
between time 
/ structural 
redundancy) 

(Very) 
low 

Low to high 
(depending on 
coverage and 
detection latency) 

Area cost Low 
Medium to 
high 

Low None Medium 
Medium to 
high 

Low to 
medium 

None 

Memory 
requirements 

Memory 
for 
seeds, 
expected 
signature 

ROM or non-
volatile 
memory for 
pattern seeds, 
signature 

Memory 
for test 
programs 

Memory 
for test 
programs 

None None 
Low to 
medium 

Low to medium 

Power 
overhead 

Avg. 
Medium 
to high 

Low to high 
Functional 
power 

Functional 
power 

Low to 
medium 

Medium to 
high 

Low Low to medium 

Peak 
Medium 
to high 

Medium to 
high 
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