
Self-Test and Diagnosis for Self-Aware

Systems

Survey for Design & Test Special Issue on

“Self-Awareness in SoCs”

Kochte, Michael A.; Wunderlich, Hans-Joachim

IEEE Design & Test 13 October 2017

doi: https://doi.org/10.1109/MDAT.2017.2762903

Abstract: Self-awareness allows autonomous systems the dynamic adaptation to changing states of the hard-

ware platform and the optimal usage of available computing resources. This demands concurrent, periodical,

or on-demand monitoring and testing of the hardware structures to detect and classify deviations from the

nominal behavior and appropriate reactions. This survey discusses suitable self-test, self-checking, and selfdi-

agnosis methods for the realization of self-awareness and presents two case studies in which such methods are

applied at different levels.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic

reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form

to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

https://doi.org/10.1109/MDAT.2017.2762903

Self-Test and Diagnosis for Self-Aware Systems
Survey for Design & Test Special Issue on “Self-Awareness in SoCs”

Michael A. Kochte, Hans-Joachim Wunderlich

ITI, University of Stuttgart, Germany

kochte@iti.uni-stuttgart.de, wu@informatik.uni-stuttgart.de

Abstract—Self-awareness allows autonomous systems the

dynamic adaptation to changing states of the hardware platform

and the optimal usage of available computing resources. This

demands concurrent, periodical, or on-demand monitoring and

testing of the hardware structures to detect and classify deviations

from the nominal behavior and appropriate reactions. This survey

discusses suitable self-test, self-checking, and self-diagnosis

methods for the realization of self-awareness and presents two case

studies in which such methods are applied at different levels.

Keywords—Self-test, diagnosis, health monitoring, fault

management, on-chip infrastructure

I. INTRODUCTION

In addition to monitoring their environment, self-aware
systems also need to monitor their own state and the capabilities
of the underlying hardware platform [DJS15]. This comprises
for instance timing or voltage margins, error rates and locations,
or known faulty components. The knowledge of this hardware
fitness is a requirement for autonomous and qualified adaptation
to changing system states and graceful degradation in the
observe-decide-act loop in self-aware systems [DJS15].
Examples for such adaptation are voltage or frequency
calibration, use of available redundancies, or isolation of known
faulty modules. This has become a necessity in autonomous
safety-critical systems, found in automotive, industrial, or
medical application domains.

To capture the state of the hardware platform, a self-aware
system integrates instrumentation and sensors to monitor and to
examine the state of its hardware structures. The employed
instrumentation spans from design-for-test and diagnosis
features, fault-tolerant design, and different types of monitors to
the required control and access mechanisms that interconnect
them.

This article describes the connection between self-awareness
and self-test and self-diagnosis methods. The following section
provides a brief definition of the used terminology and a
classification of self-test methods. Section III details the
underlying principles, followed by methods for autonomous
diagnosis and self-test for health and aging assessment. Section
VI discusses the effectiveness and costs of such methods.
Section VII shows how the test and diagnostic information can
be used for fault management. Finally, two case studies of self-
aware systems are discussed in Section VIII.

II. TERMINOLOGY AND CLASSIFICATION

A. Terminology

A defect is an unintended deviation of the shape or structure
of the material of the circuit, i.e. additional, missing, or wrong
material at a location. This also comprises material impurities,
transistor oxide damages, or wrong dotation. Defects result from
manufacturing, imperfect materials, or stress and aging during
operation.

Defects and their effects on circuit behavior have a
continuous physical nature. A fault abstracts defective behavior
in a structural model of the circuit to allow algorithmic analysis
and processing. Examples for faults include stuck-at faults,
bridging faults, or delay faults. A fault model is a set of faulty
behaviors in a structural model. Faults can be modeled in
structural models at different abstraction levels, from electrical,
switch-level, gate or RT-level netlists up to the system structure.

A fault can be activated depending on the system state and
the system environment, for example the temperature. The
resulting effect is wrong information that propagates through the
circuit, called an error. Errors such as single event upsets do not
have a defect as root cause, but a transient event. If the error is
not masked internally and causes a violation of the specification,
a failure (malfunction) occurs. A failure of a module or
component can be considered a temporary or permanent fault in
the system comprising the component [ALRL04].

Test is an electrical experiment to check for the existence of
defects, consisting of the application of input stimuli and the
observation and comparison of responses of the circuit under
test. Test generation can be based on a structural fault model or
on exercising the functional behavior. In a structural fault model,
the number of faults is typically linear to the number of
components in the structural model and it is easy to quantify the
fault coverage or test quality. In contrast, defining a meaningful
coverage metric for functional testing is more difficult. Self-test
refers to the autonomous test execution for fault detection by the
system. Self-checking, in contrast, is a system’s capability to
detect errors during operation.

Diagnosis is the localization and classification of the root
cause of failures by analyzing the test responses or performing
additional diagnostic tests. The desired diagnostic resolution
depends on the application and level of abstraction. High
resolution increases the diagnosis cost but may allow to pin-
point to the root cause at a lower level, for example a defective
transistor or via even within a standard cell, compared to
resolving only to the defective cell or interconnect wire. Lower

levels of resolution are acceptable if it is sufficient to identify
the failing module.

A simple pass/fail test for a module can thus already provide
sufficient diagnostic information for a system-level adaptation
decision. As an example, we consider an electronic control unit
(ECU) in the automotive context, which requires high
dependability. In the field, an ECU may autonomously perform
a power-on self-test and periodic tests of its components during
the operation. Additionally, for critical parts a self-checking
design can be implemented, for instance by error detecting codes
in busses or memory arrays. Upon detection of an error in the
field, tests are performed to diagnose the fault location at module
level and decide on fault handling. Relevant failure data is stored
in a log. In the workshop, an engineer performs a thorough test
to determine whether the unit needs to be replaced. Failed ECUs
are returned to the original equipment manufacturer (OEM) that
tries to reproduce and diagnose the failure from chip to core and
netlist level and further down to the location of the root cause in
the chip material.

B. Classification of Self-Test Methods

A wide variety of different methods for self-test and self-
checking exists, each with unique characteristics such as cost in
hardware, energy, or performance, or also coverage of faults and
fault detection latency, i.e. the time between the emergence of a
fault and its detection. In contrast to offline testing, which
typically uses external support and equipment, online self-test
methods are applied in the field and the system is not shut-down.

The methods can be classified according to when a test or
check takes place in the system as shown in Figure 1. Tests for
self-awareness must be conducted online in the field, either in a
non-concurrent or concurrent fashion. The non-concurrent
activation is intrusive and typically alters the state of the module
or component under test, which requires a suspension of the
computation or service for the duration of the test. In multi-core
systems, this disruption can be hidden by migrating running
tasks to other available resources before test execution.

Figure 1. Classification of self-test and self-checking methods

Examples of non-concurrent self-tests are shown in the
lower left part of the figure. These methods can be further
partitioned into structure-oriented tests and functional tests.

The second class of methods are non-intrusive and active
concurrent to the system operation. Such concurrent approaches
monitor the system behavior for emergence of faults and errors,
the divergence of functional behavior from the specification, or
for non-functional observables such as temperature, radiation, or
aging effects.

Self-aware systems require a combination of these methods
to ensure that unexpected behavior is detected during operation
and subsequently classified by test and diagnosis as illustrated
in Figure 2.

Figure 2. Error detection followed by test and diagnosis

III. SELF-TEST AND SELF-CHECKING STRATEGIES

Non-concurrent self-test interrupts the operation of the
component or part under test for the duration of the test. The
quality of the test, i.e. its fault coverage, depends on the applied
test stimuli. System constraints such as the access to design-for-
test infrastructure or the acceptable test time and hardware
overhead, restrict the way, type and quantity of applied stimuli.

In conventional built-in self-test (BIST) pseudo-random test
stimuli are generated on chip by a linear feedback shift register
or linear automaton and applied to the logic using scan chains
[BardMS87]. Test responses are highly compacted over space
and time into a small response signature. Depending on the
design, it may be necessary to increase fault coverage by
targeting random pattern resistant faults using weighted random
patterns, the insertion of test points, or mixed-mode BIST using
different LFSR polynomials or with embedded deterministic test
patterns. While such approaches increase the hardware cost,
they improve the test quality and can also reduce the required
test time.

If the system possesses non-volatile memory, high-quality
deterministic test stimuli can be stored in the system and applied
via the scan chains on-demand or periodically [LCH05], reusing
existing design-for-test infrastructure. This provides very high
fault coverage also for delay faults and incurs the lowest test
duration since only relevant patterns are applied. This idea has
been adopted in [LMM08] for multi-core systems, also
discussing the test setup including core isolation, test execution
and state restoration after test completion. If non-volatile
memory is not available, deterministic patterns can also be

Self-test and self-checking methods

Online (System not shut-down and not
removed from operation environment)

Non-concurrent Concurrent

(No impact on state or
functional behavior)

Power-on On-
demand

Periodical

BIST (random
or embedded

deterministic

patterns)

Memory BIST
Software-based
self-test (SBST)

Self-test using
stored deter-

ministic patterns

Concurrent
BIST

Self-checking design /
Concurrent error

detection

Non-functional
monitors (aging, IR-

drop, temperature)

Synthesized
assertions W

a
tc

h
d

o
g Algorithm-

based fault

tolerance

(ABFT)

F
u

n
c
ti
o

n
a

l
S

tr
u

c
tu

ra
l

Self-testing Self-checking

Lockstep
execution

Detected error

Error handling
(containment,

rollback /recovery)S
e

lf
-

c
h

e
c
k
in

g

Test of suspected
components/modules

Test response
evaluation

Fault handling

S
e

lf
-t

e
s
t
a

n
d

d

ia
g

n
o

s
is

Functional or
structural tests

Signature check, fault
dictionary lookup

Calibration, disable
module, graceful

degradation

recorded in scan chains with only marginal hardware cost
[LTK16].

Self-tests are applied online and may not violate the
functional power budget. Since conventional structural tests
create a very high switching activity both during scanning of test
data and test application, dedicated low-power BIST approaches
have been developed. These comprise for instance test
scheduling of modules, scan chain segmentation and scan clock
control, or masking of switching activity [GNW10].

If the access to scan chains of a component is not possible, it
can be exercised by applying functional test stimuli. If the
stimuli are applied by a processor or programmable core in the
system, the test is called software-based self-test (SBST)
[PGSS10]. Apart from testing the processor, SBST is also
applied to test caches, memory arrays, and IP cores attached to
the processor or the system bus [KLCD02]. While the fault
coverage achieved by SBST is typically lower than in a scan-
based test, the application is less intrusive. The state of the tested
component can be saved before and restored after the test via the
functional access. Functional and high-quality structural tests
are combined in [CMAB07] using a software-assisted access to
the scan chain infrastructure by dedicated test instructions. This
achieves very high fault coverage even for complex processor
components with hidden state. SBST programs can be generated
targeting different objectives such as low test time [GRP15], low
power dissipation [ZhWu06], or detection of delay faults
[RCS+14].

Memory arrays constitute a significant part of the hardware
area of systems-on-chip and suffer proportionally to their area
from defects in the read/write logic, the address decoder, and the
actual memory cells. Apart from stuck-at faults, dedicated
memory fault models comprise coupling faults, pattern-sensitive
faults, and faults in the address decoder and read/write logic
[GoVe90]. Memory test is performed by functional read and
write accesses to the cells in a particular sequence, either by a
processor or by memory BIST logic, which can also be micro-
coded. Cyclic test sequences for memory restore the start state
after test completion and enable transparent memory test
[Nico92].

In safety-critical systems, emerging faults and resulting
errors must be detected quickly to avoid hazardous system
behavior. This requires a high frequency of periodic self-tests to
reduce the fault detection latency or self-checking design to
concurrently check the computational results for errors. The
principal operation of self-checking design is illustrated in
Figure 3. The behavior of the mission logic or parts thereof is
predicted and checked by additional hardware. The type of the
implemented check determines both the hardware overhead and
coverage of errors.

The checking function can duplicate the computation and
compare all outputs or predict a parity-based or arithmetic
check-sum of the computation. Duplication using a diversified
design offers higher error coverage since it avoids common
mode errors. The area overhead is about 120% of the mission
logic and only marginally higher compared to parity or other
code based approaches [MiMc00].

Figure 3. Self-checking design

This overhead can be reduced if the checking is reduced to a
set of likely or critical faults. In so called concurrent BIST
approaches, the checking logic is derived from a set of test
patterns for such faults [KZW09, VoEf14].

The erroneous behavior for which a check is performed can
also be derived from the design specification. Watchdog timers,
control flow checking, or synthesized assertions are examples of
concurrent functional error checks, that are implemented either
in hardware or in software [MaMc88, OSM02, BCZ07]. The
area and performance overhead depends on the number and
types of critical behaviors to be checked during operation.

Self-checking the mission logic in hardware minimizes the
error detection latency. If a higher latency is acceptable, the
checking can also be implemented at a higher system level in
software. General approaches exploit time or structural
redundancy by duplicating and comparing the execution of
threads. Examples are lockstep execution or redundant multi-
threading with loose lockstepping. An overview of such
software-implemented checking approaches is given in
[GPA+11]. The checking can also be tailored to specific
algorithms or operations employing algorithm-based fault
tolerance (ABFT, HuAb84). In ABFT, the operands of an
operation are encoded before computing, often by extension
with a check-sum. The encoded results allow for detection of
errors during the computation. The applicability of ABFT for
self-awareness and the related performance overhead depends
on the application, but can be, for instance, as low as 0.04% for
preconditioned conjugate gradient solvers [SBK+15].

For memory elements, error detection relies on encoding and
information redundancy. For arrays, the linear codes used to
detect and correct a low number of errors incur only a small
memory overhead. For distributed flip-flops or registers, error
checking for timing and transient faults can be implemented by
use of shadow latches for flip-flops with delayed clock and
comparing the signal values [EKD+03, ZMM+06, Nico07]. In
case of mismatches, correction is implemented by replaying the
values from these shadow flip-flops. In [ImWu14], the high
overhead of shadow latches is avoided by computing an error
detecting and correcting address characteristic over the
distributed registers. The resulting fault tolerant structure can
also be reused for manufacturing test.

Input

Mission logic
Output

prediction

Comparison

Output Error
indication

Self-
checking
design

Self-checking needs to be complemented with periodic self-
testing to prevent fault accumulation both in the mission logic
and in the logic for self-checking and fault tolerance, since fault
accumulation threatens the effectiveness of fault tolerance
measures. Once an error or fault is detected, a self-aware system
must locate its cause by diagnosis to determine an appropriate
reaction.

IV. FROM SELF-TEST TO SELF-DIAGNOSIS

Diagnosis locates and classifies the root cause of a failure.
The information provided by diagnosis is required in self-aware
systems to determine the appropriate system reaction, as for
instance, adjusting the workload of a module to reduce the
temperature, reducing the frequency of a module to tolerate
timing marginalities, or disabling a module in case of an
intolerable permanent fault. While volume diagnosis can rely on
external test equipment, adaptive refinement of diagnostic
resolution, and offline analysis of failure data, self-diagnosis has
to be performed autonomously with the available test
infrastructure on chip and the limited computational capabilities
of the system for data analysis.

Diagnosis can be performed at different levels of granularity
with different resolution. At module level, the passing or failing
of a module test is a first diagnostic result that may be sufficient
for a system level decision for online adaptation. In that case, a
compacted test response signature is simply compared with the
expected value. For higher resolution, the analysis of responses
is more elaborate and typically performed offline.

Diagnosis methods can be classified as cause-effect or
effect-cause approaches. In the first case, different causes, i.e.
fault or defect candidates, are analyzed to determine their effects
for comparison with the responses observed in the actual design
under diagnosis, often employing a fault dictionary mapping
effects to fault candidates. In the second case, the observed
effects are analyzed to infer possible compatible candidates,
often by back-tracing in the netlist.

The diagnostic quality increases with the quality of the test
stimuli and the available test responses. Diagnosis with high
resolution, e.g. at gate level, requires dedicated test stimuli in
scan-based test [GMK91] or SBST [BSS+06]. Performing a
high-resolution diagnosis online is not practical because of
increased test time and memory requirements, large fault
dictionaries, or high computational requirements of the
diagnosis algorithms. On the other hand, failures in the field may
depend on environmental conditions and system states for fault
activation that are not known or cannot be reproduced in a
failure analysis lab, causing a classification as “no-trouble-
found”.

A compromise in self-aware systems is to support in-field
diagnosis at moderate resolution and to make detailed diagnostic
data available for later analysis at higher system level or offline
analysis. This is achieved by design-for-diagnosis and tailored
diagnosis algorithms. In [BeBl12], for instance, the size of the
fault dictionary is minimized to allow online localization of a
fault to the level required by the actual fault handling procedure.
Built-in self-diagnosis architectures such as [ElWu10] support
the storage of passing patterns and relevant failure data during a
test session on chip, employing extreme compaction in space

and time. The self-checking architecture in [KDB+15] stores a
small amount of functional inputs and error signatures observed
during operation to facilitate diagnosis and distinguish transient
and intermittent failure causes.

V. BIST AND MONITORING FOR HEALTH PREDICTION

Testing the hardware for faults or checking it for errors
allows the detection of faulty behavior that already violates the
nominal specification. Health assessment and prediction, on the
other hand, aims at detecting a deviation of the hardware
behavior before it impacts the nominal function. This can be
achieved by measuring the functional and non-functional factors
that cause the deviation or by measuring the actual deviations
with sufficient accuracy.

Non-functional observables, such as for example temper-
ature, power-noise, or radiation, impact dependable system
operation and must be monitored during operation.
Environmental indicators, such as radiation levels, can be
derived from the observed memory error rate. Together with
timing uncertainties and margins, these observables are
indicators of the hardware fitness [FRJ+07] and can serve as
inputs to system-wide calibration and adaptation.

Among these observables, temperature and specific stress
patterns imposed by the workload are factors that cause or
accelerate circuit aging. Workload can be monitored at different
resolutions in the system, for instance by tracking the duration
of usage of modules. The gate level workload monitor of
[BCI+13] allows fine-grained observation of stress patterns in
critical circuit structures.

The actual deviation of behavior can be measured by
dedicated sensors, such as aging monitors or stability checkers
[APZM07], or by conducting in-field self-tests for delay faults.
Such tests must have higher sensitivity so that small deviations
become detectable. Often, built-in test structures are reused to
facilitate the test with low hardware overhead. In [SGH+07],
processor cores are tested with functional patterns under
increasingly stressful conditions until the timing guardband is
exceeded. A signature register captures the responses and
internal state at speed for comparison with the expected value.
To increase the stress, the voltage is reduced and the frequency
is increased.

The authors of [BaMi09] propose to select a small number
of paths that turn critical after aging. The corresponding path
delay faults are tested in-field. For memory arrays, a BIST-based
measurement of aging degradation has been demonstrated in
[AM10]. The Dependable Architecture with Reliability Testing
(DART) [SKY+12] efficiently integrates logic and memory
self-tests for health prediction and their control into the existing
DFT and BIST infrastructure of a system. A DART controller
orchestrates the self-tests in different test sessions in the system,
setups the test conditions, such as increased frequency, and
gathers test results for evaluation. Since the controller tracks the
delay changes measured during the tests over the system
lifetime, threatening deviations can be detected and counter-
measures applied before an actual failure occurs. Monitors for
non-functional observables, like temperature and voltage, are
used to increase the accuracy of the tests or may serve as

standalone indicators of the stress, as in the health monitoring
architecture of [ZhKe14].

If self-tests are executed faster-than-at-speed in order to
uncover small delay faults, a flexible handling of the high and
frequency-dependent ratio of unknown values in the test
responses is required [SHQ10, HIK+14]. Alternatively, aging
monitors can be reused during such a delay test if already present
in the circuit [LKW17].

The information obtained from self-tests and health
monitoring is input to an online dependability manager, which
reasons about emerging failures and means of appropriate
mitigation, for instance based on static policies [TKD+07] or
dynamic ones [SCT+16].

VI. TRADEOFFS IN SELF-TESTING AND SELF-CHECKING

The methods classified in Figure 1 and described in Section
III exhibit different characteristics in terms of effectiveness
(fault coverage, fault detection latency, diagnostic resolution)
and incurred cost (test time, performance impact, area / memory
/ power overhead). A qualitative comparison is given in Table 1.

 The achievable fault and error coverage of the approaches
can be traded off with area and energy overhead as well as test
time or performance overhead. For pseudo-random BIST, for
instance, additional test points can be inserted in the module
under test, the number of applied patterns can be increased, or
different seeds or polynomials can be used for on-chip pattern
generation. The fault detection latency of self-tests depends on
the frequency of the tests, which is also influenced by the test
time and resulting performance impact. If the test application
time is too long, the test can be split up into multiple shorter test
sessions to avoid a long suspension of the module operation.
Test in general and BIST in particular dissipate a lot of power,
which can be controlled by additional design effort or higher test
time. For deterministic patterns, the test power can be adjusted
at a fine-grained level.

Error coverage and detection latency of self-checking design
and software- and algorithm-based fault tolerance can be
improved by more fine-grained checking, e.g., instrumenting
each operation of an algorithm with checks up to duplicate
execution. This also impacts the required area for self-checking
and performance for algorithm-based fault tolerance and in
general increases energy dissipation.

VII. FAULT AND FAILURE MANAGEMENT

In self-aware systems, the data sampled in the on-chip
instrumentation must be aggregated and evaluated on chip. This
requires both access mechanisms to the instruments and a central
or distributed resource management. Resource management can
be implemented on a processor by firmware or as a hardware
unit [TBH+10].

Serial scan-based access, based on the popular JTAG
boundary scan standard, has been widely adopted to connect
instruments on chip. However, the increasing number and
diversity of instruments lead to the development of more flexible
and scalable access mechanisms based on reconfigurable scan
networks (RSNs) and their recent standardization in IEEE Std
1149.1-2013 and IEEE Std 1687-2014. In RSNs, the path

through which data is shifted can be reconfigured, for instance
for minimum access latency to a set of targeted instruments.

These scan-based access mechanisms have been used to
construct comprehensive access architectures for system and
reliability management [JDS13, HeTe14, ZNL16]. Such
architectures support self-aware systems by well-defined
(instead of ad-hoc) interfaces, access procedures, and shared
resources for instrument management such as for calibration,
start and control of measurements, local response storage, or
event-based signaling. Figure 4 shows the architecture proposed
in [JDS13] to gather data from instruments spread over the
resources in the system. The instrument manager decouples the
details of the RSN-based communication to instruments in the
hardware resources from the fault manager, which maintains the
state of the resources as part of the operating system. The
obtained data can serve as input to predictive health models. The
flexible, self-reconfiguring scan network described in [ZNL16]
provides low-latency error signaling for concurrent checkers and
monitors and also an efficient error localization.

Figure 4. Fault management architecture according to [JDS13]

With the increasing importance of the on-chip infrastructure
in self-aware systems, secure infrastructure access must be
provided to prevent leakage or manipulation of sensitive
instrument data or side-channel based attacks. This level of
security is especially important in safety-critical systems, where
an attack may cause unsafe system behavior. This requires a
design methodology beyond ad-hoc solutions that incorporates
access privileges and protection and secure data transmission at
infrastructure level [KSG+17]. Secondly, flexible, scalable, and
secure infrastructure access architectures must be designed and
verified, both for JTAG-based as well as emerging
reconfigurable scan-based access [RoKa10, BKW15].

VIII. CASE STUDIES

The following two case studies, an adaptive network-on-chip
and a runtime-reconfigurable architecture, illustrate the
implementation of self-awareness by self-test and self-diagnosis
for dependable and adaptive operation.

A. Networks-on-Chip

A network-on-chip (NOC) is a scalable communication
architecture for many-core systems. It employs interconnected
routers to route data packets from their source to the destination
node. The structure of a router is shown in Figure 5. To ensure
high reliability and availability of the communication, self-
aware systems monitor the state of the NOC, comprising self-
checking for errors, thorough self-test, and in-field diagnosis for
adaptation to impaired NOC routers or links.

Operating system

Fault

manager

Resource map

Instrument

manager

R
e

s
o

u
rc

e

1

R
e

s
o

u
rc

e

2

R
e

s
o

u
rc

e

N…

Data /
interrupts

Access Port

Instrumentation

and monitoring

network

System
bus

Figure 5. Structure of a NOC router with network interface and

four ports

Domain-specific implementations of self-checking design
may incur much lower overhead than generic implementations
based on duplication with comparison or parity prediction. For
NOCs, an efficient hybrid error detection scheme has been
proposed in [DKW14], which combines parity-based error
checking of transmitted data in the links with a dedicated error
checking logic synthesized for yet uncovered errors in the router.
This combination results in a low area overhead of only 52%
and covers errors resulting from all single combinational and
transition delay faults of the links and routers in the
communication structure of the NOC.

While this self-checking detects errors with low latency, it
does not provide diagnostic information. An in-field self-test of
the NOC is required to determine if a detected error had a
permanent or transient cause. Scan-based application of the test
disrupts the operation of parts or even the whole NOC and is not
desirable [TBH+10]. In [DaWu16], functional test stimuli are
generated based on a structural fault model, which detect all
testable faults and can be easily applied in the field without
access to scan chains, e.g. by a processor.

Reconfigurable NOCs allow fine-grained management of
their hardware resources, for example by disabling known faulty
parts for graceful degradation. A challenge is, however, to
decide whether an observed error is caused by a fault that merely
affects a single link or port of a router or multiple parts. In the
former case, the affected part can be disabled, and the remaining
functionality of the NOC can be still used. For the location and
classification of faults, functional tests with unique failure
signatures for faults affecting only single resources are
generated. The signatures of faults that can be masked by
disabling a port or link of a router are then stored in the system
for autonomous in-field diagnosis and NOC reconfiguration
[DaWu16].

B. Runtime-Reconfigurable Architectures

FPGA-based runtime-reconfigurable architectures offer a
high potential for energy-efficient acceleration of complex
applications [CaHu11]. Their reconfigurability has also been
exploited to adapt to the environment and hardware state for
increased dependability. The architecture in [ZKI+14, ZBK+16]
is an example of a self-aware system that dynamically schedules
self-test and self-checking methods tailored for FPGAs: A

resource manager monitors the state and usage of the
computational resources and autonomously triggers self-tests,
selects the required level of concurrent checking for errors, and
balances the workload to increase system lifetime. The involved
components and interactions are shown in Figure 6.

Figure 6. Self-aware resource management in a runtime

reconfigurable system [ZKI+14, ZBK+16]

The regularity of the fabric, consisting of reconfigurable
interconnect as well as combinational and sequential
components, lends itself for efficient self-tests and in-field
diagnosis [ASE04]. Periodic and on-demand execution of
structural and functional self-tests achieve a high fault coverage
and low fault detection latency with negligible performance
impact [BBI+13].

If permanent faults are detected and localized, special
module configurations with diversified resource usage are
employed, which are generated at design time such that certain
fault types are tolerated in at least one configuration [ZBK+16].
In addition, the diversity of used resources in such
configurations can also be exploited to balance the stress
induced by their operation [SKM+08]. The resource manager
tracks at runtime for each resource the frequency, duration and
type of usage to select the most appropriate module
configuration such that the maximum stress in all resources is
minimized [ZBK+16].

If the runtime-reconfigurable system is aware of the environ-
mental radiation, e.g. by external sensors or by monitoring the
error rate in protected memory arrays, the level of self-checking
can be adjusted to the required degree of reliability. The resource
manager dynamically determines the optimal implementation of
configured modules, resorting to duplication or triplication only
for the most vulnerable parts and time periods with high
radiation. Since this avoids over-protection, the resulting system
maximizes application performance and minimizes energy
dissipation [ZKI+14].

P
o

rt

N
o

rt
h

Port South

P
o

rt
 W

e
s
t

Port

East

Switch

Links

Generation /
characterization

of diversified

configurations

Test and
diagnosis

Accelerator selection &
placement based on

avail. resources, stress,

error rate, R

Configurations,
profiles

Runtime analysis and
resource management

Accelerator 1

Accelerator 2

Accelerator 3

HW
state

A
p

p
li

c
a

t
io

n

A
c
c
e

le
r
a

t
o

r
c
o

n
fi

g
u

r
a

t
io

n
s

A
c
c
e

le
r
a

t
o

r

d
a

t
a

b
a

s
e

..
.

P
r
o

fi
li

n
g

S
t
r
e

s
s

e
s
t
im

a
t
io

n

A
c
c
e

le
r
a

t
o

r
e

x
e

c
.

&
 s

t
r
e

s
s

p
r
o

fi
le

s
A

c
c
e

le
r
a

t
o

r

e
x
e

c
u

t
io

n
 &

 i
d

le
 c

y
c
le

s

R
e

c
o

n
fi

g
u

r
a

t
io

n

S
y

n
t
h

e
s
is

 t
im

e
 (

o
ff

li
n

e
)

R
u

n
t
im

e
 (

o
n

li
n

e
)

R
e

c
o

n
fi

g
u

r
a

b
le

 F
a

b
r
ic

O
n

li
n

e
 M

o
n

it
o

r
in

g

A
c

c
e

le
r
a

t
o

r

P
la

c
e

m
e

n
t

(S
e

c
t
io

n
 5

)

R
e

c
o

n
fi

g
u

r
a

b
le

 R
e

g
io

n
s

A
c

c
e

le
r
a

t
o

r

D
iv

e
r
s
if

ic
a

t
io

n

(
S

e
c

t
io

n
 4

)

A
c
c
e

le
r
a

t
o

r
 e

x
e

c
.

p
r
o

fi
le

s

Accelerator
stress profiles

A
p

p
li

c
a

t
io

n

A
c
c
e

le
r
a

t
o

r
c
o

n
fi

g
u

r
a

t
io

n
s

A
c
c
e

le
r
a

t
o

r

d
a

t
a

b
a

s
e

..
.

P
r
o

fi
li

n
g

S
t
r
e

s
s

e
s
t
im

a
t
io

n

A
c
c
e

le
r
a

t
o

r
e

x
e

c
.

&
 s

t
r
e

s
s

p
r
o

fi
le

s
A

c
c
e

le
r
a

t
o

r

e
x
e

c
u

t
io

n
 &

 i
d

le
 c

y
c
le

s

R
e

c
o

n
fi

g
u

r
a

t
io

n

S
y

n
t
h

e
s
is

 t
im

e
 (

o
ff

li
n

e
)

R
u

n
t
im

e
 (

o
n

li
n

e
)

R
e

c
o

n
fi

g
u

r
a

b
le

 F
a

b
r
ic

O
n

li
n

e
 M

o
n

it
o

r
in

g

A
c

c
e

le
r
a

t
o

r

P
la

c
e

m
e

n
t

(S
e

c
t
io

n
 5

)

R
e

c
o

n
fi

g
u

r
a

b
le

 R
e

g
io

n
s

A
c

c
e

le
r
a

t
o

r

D
iv

e
r
s

if
ic

a
t
io

n

(
S

e
c

t
io

n
 4

)

A
c
c
e

le
r
a

t
o

r
 e

x
e

c
.

p
r
o

fi
le

s

Accelerator
stress profiles

A
p

p
li

c
a

t
io

n

A
c
c
e

le
r
a

t
o

r
c
o

n
fi

g
u

r
a

t
io

n
s

A
c
c
e

le
r
a

t
o

r

d
a

t
a

b
a

s
e

..
.

P
r
o

fi
li

n
g

S
t
r
e

s
s

e
s
t
im

a
t
io

n

A
c
c
e

le
r
a

t
o

r
e

x
e

c
.

&
 s

t
r
e

s
s

p
r
o

fi
le

s
A

c
c
e

le
r
a

t
o

r

e
x
e

c
u

t
io

n
 &

 i
d

le
 c

y
c
le

s

R
e

c
o

n
fi

g
u

r
a

t
io

n

S
y
n

t
h

e
s
is

 t
im

e
 (

o
ff

li
n

e
)

R
u

n
t
im

e
 (

o
n

li
n

e
)

R
e

c
o

n
fi

g
u

r
a

b
le

 F
a

b
r
ic

O
n

li
n

e
 M

o
n

it
o

r
in

g

A
c

c
e

le
r
a

t
o

r

P
la

c
e

m
e

n
t

(S
e

c
t
io

n
 5

)

R
e

c
o

n
fi

g
u

r
a

b
le

 R
e

g
io

n
s

A
c

c
e

le
r
a

t
o

r

D
iv

e
r
s
if

ic
a

t
io

n

(S
e

c
t
io

n
 4

)

A
c
c
e

le
r
a

t
o

r
 e

x
e

c
.

p
r
o

fi
le

s

Accelerator
stress profiles

A
c
ti
v
it
y
 &

e

rr
o

r
tr

a
c
k
in

g

Reconfigurable regions

Reconfiguration

Stress,
vulnerability

R
e

q
u

ir
e

d
 r

e
lia

b
ili

ty
 R

IX. CONCLUSIONS

In-field detection and diagnosis of errors in self-aware
systems and their causes in the hardware platform require self-
checking, test and diagnosis at different levels. The overhead in
terms of area, power, and performance is determined by the
required error detection latency and diagnostic resolution. Two
case studies demonstrate the application of these methods in the
context of a network-on-chip and a runtime reconfigurable
system.

ACKNOWLEDGMENT

This work is supported in parts by the German Research
Foundation (DFG) under grant WU 245/17-1 (ACCESS) and as
part of the priority program “Dependable Embedded Systems”
(SPP 1500 – http://spp1500.itec.kit.edu).

REFERENCES

[ALRL04] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr: Basic Concepts
and Taxonomy of Dependable and Secure Computing. IEEE Trans. Dep.
Secure Computing, Vol. 1(1), pp. 11-33, Jan. 2004.

[AM10] F. Ahmed, L. Milor: Reliable cache design with on-chip monitoring of
NBTI degradation in SRAM cells using BIST. Proc. IEEE VLSI Test
Symposium (VTS), 2010, pp. 63-68.

[APZM07] M. Agarwal, B. Paul, M. Zhang, S. Mitra: Circuit Failure Prediction
and Its Application to Transistor Aging. Proc. IEEE VLSI Test
Symposium (VTS), 2007, pp. 277-286.

[ASE04] M. Abramovici, C. E. Stroud, J. M. Emmert: Online BIST and BIST-
based diagnosis of FPGA logic blocks. IEEE Trans. Very Large Scale
Integration (VLSI) Systems, vol. 12(12), pp. 1284-1294, Dec. 2004.

[BaMi09] A. Baba, S. Mitra: Testing for Transistor Aging. Proc. IEEE VLSI
Test Symposium (VTS), 2009, pp. 215-220.

[BardMS87] P. Bardell, W. H. McAnney, J. Savir: Built-in Test for VLSI:
Pseudorandom Techniques, Wiley, 1987.

[BBI+13] L. Bauer, C. Braun, M. E. Imhof, M. A. Kochte, E. Schneider, H.
Zhang, J. Henkel, H.-J. Wunderlich: Test Strategies for Reliable Runtime
Reconfigurable Architectures. IEEE Transactions on Computers, Vol.
62(8), August 2013, pp. 1494-1507.

[BCI+13] R. Baranowski, A. Cook, M.E. Imhof, C. Liu, H.-J. Wunderlich:
Synthesis of Workload Monitors for On-Line Stress Prediction. Proc.
IEEE Symp. Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), 2013, pp. 137-142.

[BCZ07] M. Boule, J. S. Chenard, Z. Zilic: Assertion Checkers in Verification,
Silicon Debug and In-Field Diagnosis. Proc. IEEE International
Symposium on Quality Electronic Design (ISQED), 2007, pp. 613-620.

[BeBl12] M. Beckler, R. D. Blanton: On-chip diagnosis for early-life and wear-
out failures. Proc. IEEE International Test Conference (ITC), pp. 1-10,
2012.

[BKW15] R. Baranowski, M. A. Kochte, H.-J. Wunderlich: Fine-Grained
Access Management in Reconfigurable Scan Networks. IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
Vol. 34(6), June 2015, pp. 937-946.

 [BSS+06] P. Bernardi, E. Sanchez, M. Schillaci, G. Squillero, M. S. Reorda:
An Effective Technique for Minimizing the Cost of Processor Software-
Based Diagnosis in SoCs. Proc. Design Automation & Test in Europe
Conference (DATE) 2006, pp. 1-6.

[CaHu11] J. Cardoso, M. Huebner: Reconfigurable Computing: From FPGAs
to Hardware/Software Codesign. Springer, 2011.

[CMAB07] K. Constantinides, O. Mutlu, T. Austin, V. Bertacco. Software-
Based Online Detection of Hardware Defects Mechanisms, Architectural
Support, and Evaluation. Proc. IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2007, pp. 97-108.

[DaWu16] A. Dalirsani, H.-J. Wunderlich: Functional Diagnosis for Graceful
Degradation of NoC Switches. Proc. IEEE Asian Test Symposium
(ATS'16), 21-24 November 2016.

[DJS15] N. Dutt, A. Jantsch, S. Sarma: Self-Aware Cyber-Physical Systems-
on-Chip, Proc. IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pp. 46-50, 2015.

[DKW14] A. Dalirsani, M. A. Kochte, H.-J. Wunderlich: Area-Efficient
Synthesis of Fault-Secure NoC Switches. Proc. IEEE International On-
Line Testing Symposium (IOLTS), 7-9 July 2014, pp. 13-18.

[EKD+03] D. Ernst, N. Kim, et al.: Razor: a low-power pipeline based on
circuit-level timing speculation. Proc. IEEE/ACM International
Symposium on Microarchitecture, pp. 7–18, 2003.

[ElWu10] M. Elm, H.-J. Wunderlich: BISD: Scan-Based Built-In Self-
Diagnosis. Proc. ACM/IEEE Design Automation and Test in Europe
(DATE), 2010, pp. 1243-1248.

[FRJ+07] R. Franch, P. Restle, N. James, W. Huott, J. Friedrich, R. Dixon, S.
Weitzel, K. Van Goor, G. Salem: On-chip timing uncertainty
measurements on IBM microprocessors. Proc. IEEE International Test
Conference (ITC), 2007, pp. 1-7.

[GMK91] T. Grüning, U. Mahlstedt, H. Koopmeiners: DIATEST: a fast
diagnostic test pattern generator for combinational circuits. Proc. IEEE
International Conference on Computer-Aided Design (ICCAD), 1991, pp.
194-197.

[GNW10] P. Girard, N. Nicolici, X. Wen (Eds.): Power-Aware Testing and
Test Strategies for Low Power Devices. Springer, 2010.

[GoVe90] A. J. van de Goor, C. A. Verruijt: An Overview of Deterministic
Functional RAM Chip Testing. ACM Computing Surveys, Vol. 22(1),
March 1990, pp. 5-33.

[GPA+11] D. Gizopoulos, M. Psarakis, S. V. Adve, P. Ramachandran, S. K. S.
Hari, D. Sorin, A. Meixner, A. Biswas, X. Vera: Architectures for online
error detection and recovery in multicore processors. Proc. Design,
Automation & Test in Europe (DATE), 2011, pp. 1-6.

[GRP15] M. Gaudesi, M. Sonza Reorda, I. Pomeranz: On Test Program
Compaction. Proc. IEEE European Test Symposium (ETS), 2015, pp. 1-
6.

[HeTe14] M. T. He, M. Tehranipoor: SAM: A comprehensive mechanism for
accessing embedded sensors in modern SoCs. Proc. IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), 2014, pp. 240-245.

[HIK+14] S. Hellebrand, T. Indlekofer, M. Kampmann, M. A. Kochte, C. Liu,
H.-J. Wunderlich: FAST-BIST: Faster-than-at-Speed BIST targeting
hidden delay defects. Proc. IEEE International Test Conference (ITC),
2014, paper 29.3.

[HuAb84] K.-H. Huang and J. A. Abraham: Algorithm-Based Fault Tolerance
for Matrix Operations," in IEEE Transactions on Computers, vol. C-33,
no. 6, pp. 518-528, June 1984.

[ImWu14] M. E. Imhof, H.-J. Wunderlich: Bit-Flipping Scan - A Unified
Architecture for Fault Tolerance and Offline Test. Proc. ACM/IEEE
Design Automation and Test in Europe (DATE), 2014, pp. 1-6.

[JDS13] A. Jutman, S. Devadze, K. Shibin: Effective Scalable IEEE 1687
Instrumentation Network for Fault Management. IEEE Design & Test of
Computers, 2013, Vol. 30, No. 5, pp. 26-35.

[KDB+15] M. A. Kochte, A. Dalirsani, A. Bernabei, M. Omana, C. Metra, H.-
J. Wunderlich: Intermittent and Transient Fault Diagnosis on Sparse Code
Signatures. Proc. IEEE Asian Test Symposium (ATS'15), 22-25
November 2015, pp. 157-162.

[KLCD02] A. Krstic, Wei-Cheng Lai, Kwang-Ting Cheng, L. Chen, S. Dey:
Embedded software-based self-test for programmable core-based designs.
IEEE Design & Test of Computers, vol. 19, no. 4, pp. 18-27, 2002.

[KSG+17] M. A. Kochte, M. Sauer, L. R. Gomez, P. Raiola, B. Becker, H.-J.
Wunderlich: Specification and Verification of Security in Reconfigurable
Scan Networks. Proc. IEEE European Test Symposium (ETS), 2017, pp.
1-6.

[KZW09] M. A. Kochte, C. G. Zoellin, H.-J. Wunderlich: Concurrent self-test
with partially specified patterns for low test latency and overhead. Proc.
IEEE European Test Symposium (ETS), 2009, pp. 53-58.

 [LCH05] K.-J. Lee, C.-Y. Chu, Y.-T. Hong: An embedded processor based
SOC test platform. Proc. IEEE International Symposium on Circuits and
Systems (ISCAS), 2005, pp. 2983-2986.

[LMM08] Y. Li, S. Makar, S. Mitra: CASP: Concurrent Autonomous Chip
Self-Test Using Stored Test Patterns. Proc. ACM/IEEE Design
Automation and Test in Europe (DATE), 2008, pp. 885-890.

[LKW17] C. Liu, M.A. Kochte, H.-J. Wunderlich: Aging Monitor Reuse for
Small Delay Fault Testing. Proc. IEEE VLSI Test Symposium (VTS),
2017.

[LTK16] K-J. Lee, P-H. Tang, M. Kochte: An On-Chip Self-Test Architecture
with Test Patterns Recorded in Scan Chains. Proc. IEEE International
Test Conference (ITC), 2016, Paper 16.3.

[MaMc88] A. Mahmood, E. J. McCluskey: Concurrent Error Detection Using
Watchdog Processors - A Survey. IEEE Transactions on Computers, vol.
37, pp. 160-174, Feb. 1988.

[MiMc00] S. Mitra, E. J. McCluskey: WHICH CONCURRENT ERROR
DETECTION SCHEME TO CHOOSE? Proc. IEEE International Test
Conference (ITC), 2000.

[Nico92] M. Nicolaidis: Transparent BIST for RAMs. Proc. IEEE International
Test Conference (ITC), 1992, pp. 598-607.

[Nico07] M. Nicolaidis: GRAAL: a new fault tolerant design paradigm for
mitigating the flaws of deep nanometric technologies. Proc. IEEE
International Test Conference (ITC), 2007, pp. 1–10.

[OSM02] N. Oh, P. P. Shirvani, E. J. McCluskey: Control Flow Checking by
Software Signatures. IEEE Transactions on Reliability, vol. 51, pp. 111-
122, Mar. 2002.

[RCS+14] A. Riefert, L. Ciganda, M. Sauer, P. Bernardi, M. S. Reorda, B.
Becker: An effective approach to automatic functional processor test
generation for small-delay faults. Proc. Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2014, pp. 1-6.

[PGSS10] M. Psarakis, D. Gizopoulos, E. Sanchez, M. Sonza-Reorda:
Microprocessor software-based self-testing. IEEE Design & Test of
Computers, vol. 27(3), 2010, pp. 4-19.

[RoKa10] K. Rosenfeld, R. Karri: Attacks and Defenses for JTAG. IEEE
Design & Test, Vol. 27(1), January 2010, pp. 36-47.

[SBK+15] A. Schöll, C. Braun, M. A. Kochte, H.-J. Wunderlich: Low-
Overhead Fault-Tolerance for the Preconditioned Conjugate Gradient
Solver. Proc. IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), 2015, pp. 60-65.

[SCT+16] M. Sadi, G. Contreras, D. Tran, J. Chen, L. Winemberg, M.
Tehranipoor: BIST-RM: BIST-assisted reliability management of SoCs
using on-chip clock sweeping and machine learning. Proc. IEEE
International Test Conference (ITC), 2016, paper 15.1.

[SGH+07] J. Smolens, B. Gold, J. Hoe, B. Falsafi, K. Mai: Detecting Emerging
Wearout Faults. IEEE Workshop on Silicon Errors in Logic – System
Effects (SELSE), 2007.

[SHQ10] A. Singh, C. Han, X. Qian: An Output Compression Scheme for
Handling X-States from Over-Clocked Delay Test. Proc. IEEE VLSI Test
Symposium (VTS), 2010, pp. 57-62.

[SKM+08] S. Srinivasan, R. Krishnan, et al.: Toward increasing FPGA
lifetime. IEEE Transactions on Dependable. and Secure Computing. vol.
5(2), pp. 115–127, 2008.

[SKY+12] Y. Sato, S. Kajihara, T. Yoneda, K. Hatayama, M. Inoue, Y. Miura,
S. Ohtake, T. Hasegawa, M. Sato, K. Shimamura: DART: Dependable
VLSI test architecture and its implementation. Proc. IEEE International
Test Conference (ITC), 2012, pp. 1-10.

[TBH+10] T. D. Ter Braak, S. T. Burgess, H. Hurskainen, H. G. Kerkhoff, B.
Vermeulen, X. Zhang: On-line dependability enhancement of
multiprocessor SoCs by resource management. Proc. International
Symposium on System on Chip, 2010, pp. 103-110.

[TKD+07] J. Tschanz, N. S. Kim, S. Dighe, et al.: Adaptive Frequency and
Biasing Techniques for Tolerance to Dynamic Temperature-Voltage
Variations and Aging. Proc. IEEE International Solid-State Circuits
Conference (ISSCC). 2007, pp. 292-604.

[VoEf14] I. Voyiatzis, C. Efstathiou: Input Vector Monitoring Concurrent
BIST Architecture Using SRAM Cells. IEEE Trans. Very Large Scale
Integration (VLSI) Systems, vol. 22, no. 7, pp. 1625-1629, July 2014.

[ZBK+16] H. Zhang, L. Bauer, M. A. Kochte, E. Schneider, H.-J. Wunderlich,
J. Henkel: Aging Resilience and Fault Tolerance in Runtime
Reconfigurable Architectures. IEEE Transactions on Computers, vol.
66(6), pp. 957-970, June 2017.

[ZhKe14] Y. Zhao, H. G. Kerkhoff: Design of an Embedded Health Monitoring
Infrastructure for Accessing Multi-processor SoC Degradation. Proc.
IEEE Euromicro Conference on Digital System Design (DSD), 2014, pp.
154-160.

[ZhWu06] J. Zhou, H.-J. Wunderlich: Software-Based Self-Test of Processors
under Power Constraints. Proc. ACM/IEEE Design Automation and Test
in Europe (DATE), 2006, pp. 430-435.

[ZMM+06] M. Zhang, S. Mitra, T. M. Mak. N. Seifert, N. Wang, Q. Shi, K.
Kim, N. Shanbhag, S. Patel: Sequential Element Design with Built-In Soft
Error Resilience. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 14, no. 12, pp. 1368-1378, Dec. 2006.

[ZNL16] F. G. Zadegan, D. Nikolov, E. Larsson: A self-reconfiguring IEEE
1687 network for fault monitoring. Proc. IEEE European Test
Symposium (ETS), 2016, pp. 1-6.

[ZKI+14] H. Zhang, M. A. Kochte, M. E. Imhof, L. Bauer, H.-J. Wunderlich,
J. Henkel: GUARD: GUAranteed Reliability in Dynamically
Reconfigurable Systems. Proc. ACM/EDAC/IEEE Design Automation
Conference (DAC), 1-5 June 2014.

Table 1: Qualitative comparison of self-testing and self-checking approaches for self-aware systems

Class Periodic / on-demand self-test Self-checking design & concurrent error detection

Type
Pseudo-
random
patterns

Compressed
deterministic
patterns

Memory
BIST

Software-
based
self-test
(SBST)

Concurrent
BIST

Self-
checking
design

Error
control
coding

Algorithm-based
fault-tolerance
(ABFT)

Targeted
structure

Logic Logic
Logic,
memory

Logic,
Memory

Logic Logic Memory Logic, memory

Fault coverage
Medium
to high

High High
Medium
to high

Medium
Medium to
high

High Medium to high

Fault / error
detection latency

Fault detection: Error detection:

Depending on test frequency Medium Low Low Low to medium

Diagnostic
resolution

Module-
level

Module-level High Low
Module-
level

Module-
/interface
level, high
temporal
resolution

Memory
location

Module/operation-
level, moderate
temporal
resolution

Test time
overhead

High Low Variable High N/A

Performance
overhead

Depending on test length and frequency, lower for
short interruptible / resumable test sessions.

Very low

Very low to
high (tradeoff
between time
/ structural
redundancy)

(Very)
low

Low to high
(depending on
coverage and
detection latency)

Area cost Low
Medium to
high

Low None Medium
Medium to
high

Low to
medium

None

Memory
requirements

Memory
for
seeds,
expected
signature

ROM or non-
volatile
memory for
pattern seeds,
signature

Memory
for test
programs

Memory
for test
programs

None None
Low to
medium

Low to medium

Power
overhead

Avg.
Medium
to high

Low to high
Functional
power

Functional
power

Low to
medium

Medium to
high

Low Low to medium

Peak
Medium
to high

Medium to
high

Author biographies and contact:

Michael A. Kochte received his Dr. rer. nat. (Ph.D.) degree from the University of Stuttgart, Germany, in 2014, where he currently
leads the research group for Dependable Hardware of the Institute for Computer Architecture and Computer Engineering. His research
interests include reconfigurable computing, hardware test and reliability, and hardware security.

kochte@iti.uni-stuttgart.de , Tel. +49-711- 685 88 361

Hans-Joachim Wunderlich is a full professor of computer science at the University of Stuttgart. He obtained his Ph.D. degree (Dr.
rer. nat.) from the University of Karlsruhe and studied mathematics and philosophy at the universities of Konstanz and Freiburg. His
research interests include design, test and fault tolerance of digital systems. He is a Fellow of IEEE.

wu@informatik.uni-stuttgart.de , Tel. +49-711- 685 88 391, Fax +49- 711 685 88 288

