
GPU-Accelerated Simulation of Small Delay

Faults

Schneider, Eric; Kochte, Michael A.; Holst, Stefan; Wen, Xiaoqing;

Wunderlich, Hans-Joachim

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD)

Vol. 36(5) May 2017

doi: http://dx.doi.org/10.1109/TCAD.2016.2598560

Abstract: Delay fault simulation is an essential task during test pattern generation and reliability assessment

of electronic circuits. With the high sensitivity of current nano-scale designs towards even smallest delay

deviations, the simulation of small gate delay faults has become extremely important. Since these faults have

a subtle impact on the timing behavior, traditional fault simulation approaches based on abstract timing models

are not sufficient. Furthermore, the detection of these faults is compromised by the ubiquitous variations in

the manufacturing processes, which causes the actual fault coverage to vary from circuit instance to circuit

instance, and makes the use of timing accurate methods mandatory. However, the application of timing

accurate techniques quickly becomes infeasible for larger designs due to excessive computational requirements.

In this work, we present a method for fast and waveformaccurate simulation of small delay faults on graphics

processing units with exceptional computational performance. By exploiting multiple dimensions of parallelism

from gates, faults, waveforms and circuit instances, the proposed approach allows for timing-accurate and

exhaustive small delay fault simulation under process variation for designs with millions of gates.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic

reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form

to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

http://dx.doi.org/10.1109/TCAD.2016.2598560

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEM, VOL. YYY, NO. ZZZ, MONTH YEAR 1

GPU-Accelerated Simulation of Small Delay Faults
Eric Schneider∗, Student Member, IEEE, Michael A. Kochte∗, Member, IEEE,

Stefan Holst†, Member, IEEE, Xiaoqing Wen†, Fellow, IEEE,

Hans-Joachim Wunderlich∗, Fellow, IEEE

Abstract—Delay fault simulation is an essential task during
test pattern generation and reliability assessment of electronic
circuits. With the high sensitivity of current nano-scale designs
towards even smallest delay deviations, the simulation of small
gate delay faults has become extremely important. Since these
faults have a subtle impact on the timing behavior, traditional
fault simulation approaches based on abstract timing models
are not sufficient. Furthermore, the detection of these faults is
compromised by the ubiquitous variations in the manufacturing
processes, which causes the actual fault coverage to vary from
circuit instance to circuit instance, and makes the use of timing
accurate methods mandatory. However, the application of timing
accurate techniques quickly becomes infeasible for larger designs
due to excessive computational requirements.

In this work, we present a method for fast and waveform-
accurate simulation of small delay faults on graphics processing
units (GPUs) with exceptional computational performance. By
exploiting multiple dimensions of parallelism from gates, faults,
waveforms and circuit instances, the proposed approach allows
for timing-accurate and exhaustive small delay fault simulation
under process variation for designs with millions of gates.

Index Terms—small gate delay faults, fault simulation, parallel,
GPU, timing-accurate, waveform, process variation

I. INTRODUCTION

MODERN nano-scale circuit manufacturing processes

involve many sources of random as well as systematic

variations [1], [2]. With high performance demands and strict

low-power requirements (i.e., near threshold), circuits are

operated close to their physical limits and thus become highly

sensitive to even slightest deviations in the physical shape of

gates or interconnects [3]. These deviations can cause resistive

open defects [4] and variations in the threshold voltages of

transistors [5] that lead to changes in the timing behavior

and result in so-called gate delay faults [6]. Gate delay faults

increase the delay of a signal by slowing down transitions

through the affected site by an additional amount of time.

In contrast to traditional gross delay fault models, such as

transition faults [7], the delay introduced by small (gate) delay

faults is much smaller than the clock period, yet it may still

cause a circuit to fail. Furthermore, their presence can be used

as an indication of initial signs of early life failures [8], [9],

which is why small delay faults cannot be ignored during

test [10], [11], [12] or diagnosis [13], [14].

∗E. Schneider, M. A. Kochte and H.-J. Wunderlich are with the
Institute of Computer Architecture and Computer Engineering, Univer-
sity of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany, Email:
{schneiec,kochte}@iti.uni-stuttgart.de and wu@informatik.uni-stuttgart.de.
†S. Holst and X. Wen are with the Department of Creative Informatics,

Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Japan,
Email: {holst,wen}@ci.kyutech.ac.jp.

Manuscript received March 7, 2016; revised July 15, 2016.

Delay fault simulation approaches can be categorized as

logic-based, static analyses and probabilistic approaches, each

of which uses a different abstraction of the timing behav-

ior of the circuit. Logic-based (zero-delay) simulation ap-

proaches [7], [15] are based on multi-valued logic alge-

bras [16] that allow to model the presence of signal transitions

such as rising and falling transitions as well as static and

dynamic hazards. Since the calculations of the logic-based

approaches rely solely on Boolean functions, their evaluation

is fast, but the accuracy suffers from both pessimistic and

optimistic predictions, as no circuit timing is considered at

all. Their use is limited to the evaluation of gross delay

fault models [7], [15], which only focus on the presence

of signal transitions at gates without considering when the

transitions actually occur. The static analyses on the other hand

allow to incorporate circuit timing data, such as individual

gate delays, but they constrain themselves to corner cases

that consider the calculation of the earliest arrival (EA) and

latest stabilization (LS) times of signals [17], [6], [18]. While

the use of intervals bounded by EA and LS times avoids

the necessity of evaluating every internal signal switch, it

may give a coarse estimate of the worst-case timing of a

circuit suffering from a fault. Since the actual signal value

within the interval is not known, uncertainty remains for

faults with a particular amount of delay. As for probabilistic

approaches [19], [20], the fault detection throughout the circuit

is estimated using statistical delay fault distributions, which

allows to determine, for example, the detection probability

of a given fault size along a certain path. However, both

static and probabilistic analyses are viable for small delay fault

simulation only in case of robust fault propagation due to the

lack of modeling all occurring switching events at a signal.

Yet, not all structures can be tested robustly, as reconvergent

paths can introduce glitches that cause the fault detection of

tests to be invalidated [21], [22], [23], which further lowers

the accuracy of these approaches.

For an accurate analysis of small delay faults, a more fine-

grained evaluation in the time domain is required in order to

ensure accurate signal timing and propagation, as well as to

track all occurring glitches that influence the fault detection in

the faulty and fault-free circuits. The authors of [24] proposed

a waveform-based small delay fault simulator to evaluate the

coverage of resistive open defects by simultaneous propagation

of detection intervals in the time domain. Yet, the evaluation

complexity during the calculation of the detection intervals

drastically increases for high numbers of signal switches and

fault propagation along reconvergent branches. Since all of

these algorithms were designed for the sole use on regular

CPUs, they entail very large runtimes even for small circuits

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEM, VOL. YYY, NO. ZZZ, MONTH YEAR

and quickly become inapplicable for larger problem sizes.

More importantly when considering smaller delay sizes,

zero delay simulation and abstract fault modeling based on

Boolean or higher-order logic [16], [15] are not sufficient to

reproduce the resulting subtle delay effects [19], [21]. For

example, a transition delay fault has more impact and much

higher detection probability compared to a small delay fault,

since the fault is assumed to be detected along all sensitized

propagation paths regardless of the actual path delays. There

are also cases as shown in Fig. 1, where a slow-to-fall small

delay fault of finite size is detected by a glitch. However, a

slow-to-fall transition fault at the same location would cause a

constant fault-free (high) output signal in zero delay simulation

and be undetected.

fault-free value: 1
faulty value: 0

t=0 +3

+2 +2
5 86

comb.
logic

+1

...

41

3

63

reconvergence

0
1

0
1

0
10

1

capture
time T=7

Fig. 1. Example of a slow-to-fall small delay fault at a reconvergent fanout
gate delaying a signal by 3 time units (marked by the ’✖’).

Concerning random and systematic circuit variation [2], the

detection of small delay faults is heavily compromised as the

actual timing behavior of each gate in a circuit differs from

circuit instance to circuit instance [10]. Hence, for circuits

under variations the fault coverage of a given test set has to

be expressed statistically [25], [26]. Considering variation in

Monte-Carlo experiments causes the simulation complexity to

rise quickly, as each fault has now to be evaluated not only for

each pattern, but also for multiple circuit instances. Since the

impact of variation on the delays is typically only a fraction of

a gate delay, accurate timing simulation is mandatory for the

evaluation, which poses a bottleneck due to its high runtime.

With the introduction of general purpose computing with

graphics processing units (GPU), the paradigm of the many-

core processing emerged [27]. GPUs contain many small

multi-processing elements and are able to execute thousands

to millions of threads of a program concurrently in a single-

instruction-multiple-data (SIMD) fashion. This way GPU de-

vices are capable of achieving very high throughput, which

has been exploited in electronic design automation applica-

tions, e.g. for acceleration of logic simulation [28], [29] as

well as parallel fault simulation [30], [31], [32], [33], [34].

However, all these algorithms focus solely on the acceleration

of zero-delay logic simulation and do not provide the accuracy

required for analyzing small delay faults.

In order to cope with the runtime complexity of the

timing-accurate simulation, a first GPU-accelerated solution

was presented in [35], which is capable of processing even

industrial-sized circuits in the time-domain with full waveform

histories. Although this simulator provides several orders of

magnitude speedup over traditional gate-level simulation, it

is still too slow to be practical for exhaustive small-delay

fault simulation, especially when taking into account large

numbers of different circuit instances [36]. The following core

contributions presented here overcome this limitation:

• Fault-parallelism: An efficient fault-grouping method to

simulate structurally independent faults in parallel in

combination with structural fault collapsing allowing to

reduce the simulation overhead drastically.

• An overhead-free fault injection method which maintains

the high performance of the core simulator while being

completely transparent during evaluation.

• Instance-parallelism: A novel approach for in-situ gener-

ation of circuit instances under variation, which reduces

memory requirements and communication overhead dras-

tically enabling efficient parallel simulation of arbitrary

circuit instances.

In combination with gate-parallelism and stimuli-parallelism

of the original simulator, the proposed approach provides

four independent dimensions of parallelism (gates, faults,

waveforms and variation instances) with marginal memory

overhead and negligible communication overhead in the simu-

lation core. This allows the simulator to fully occupy the GPU

resources and to provide the highest possible performance for

small delay fault simulation under variations. We confirm the

practicality of our simulator by applying it to large benchmark

circuits and show for the first time:

• While the transition delay fault coverage is generally

higher than small delay fault coverage, hazard-based de-

tection of small delay faults through non-robust activation

and propagation is indeed quite common in large designs.

• A detailed analysis of the gains and losses in small delay

fault coverage due to variation while considering non-

robust detections.

The following section briefly summarizes the characteristics

of current GPU-architectures and provides an overview of the

proposed simulator. Section III outlines the concept of the

proposed simulator for exploiting structural gate-parallelism.

In Section IV the modeling of small delay faults, the injection

mechanism as well as the partitioning into sets for parallel

injection are presented. The concept and organization of the

waveform-parallel evaluation is briefly explained in Section V,

which will be extended for modeling circuit variation and

parallel simulation of circuit instances with varying delays

in Section VI. Experimental results reported in Section VII

demonstrate that exploiting available dimensions of paral-

lelism and efficient organization enables exhaustive small

delay fault simulation even without fault dropping for multi-

million gate designs, allowing for accurate computation of

small delay fault coverage in presence of hazards, reconvergent

fanouts and variation.

II. BACKGROUND

A. GPU Architecture

With the data-parallel programming paradigm, GPU devices

can massively improve the computational throughput for accel-

eration of high-performance computing applications [27], [37].

However, this capability also comes with certain restrictions

which often pose major problems when mapping algorithms to

code (so called kernels) for the parallel execution with many

SCHNEIDER et al.: GPU-ACCELERATED SIMULATION OF SMALL DELAY FAULTS 3

threads. First of all, all threads have to share the same global

device memory on the GPU device, which is typically limited

to 4–12GB. The access to this memory is slow compared with

the execution of bare arithmetic instructions. Furthermore, the

amount of fast local memory that can be occupied by a single

thread is scarce and has to be used efficiently in order to avoid

frequent memory spilling. Care has to be taken such that each

thread can run independently on its own working set, since

information exchange between different threads can typically

be only achieved through expensive global memory accesses

and synchronization barriers. In accordance with the SIMD

execution paradigm, threads are being processed in batches

by the multi-processors, and all threads of a batch strongly

need to follow the same control flow by executing the same

instruction at any time. If a thread diverges from the batch, a

branch in the execution is caused, which is treated serially by

the thread scheduler until the control flow of the branches can

be merged again. This increases the execution time. Also, any

data transfers and communication between the host computer

and the GPU device are serious performance bottlenecks and

have to be minimized. Thus, efficient memory access and the

uniformity of the kernel execution are of utmost importance

for efficient parallelization [27].

B. Logic and Fault Simulation on GPUs

Recent GPU-accelerated approaches to simulate stuck-at

faults [30], [31], [32], [33], [34] are based on the concurrent

evaluation of independent structures in the netlist (structural-

parallelism) for multiple inputs, such as patterns and

faults (data-parallelism). As a general principle, each execu-

tion thread is assigned a certain structure (i.e., a single gate

or a fanout-free region) and some input data to work on inde-

pendently. The algorithms evaluate gates efficiently by using

look-up tables and bit-level parallelism within single threads

to increase data-parallelism. The authors of [28] presented a

circuit simulation approach, where the circuit netlist is par-

titioned into clusters for an independent evaluation of output

signals. By duplicating gates, each cluster can be simulated

concurrently by a separate block of threads, which process

the gates in parallel by exploiting structural independence

within the clusters. A first event-driven solution based on a

different circuit partitioning approach was presented in [29].

Here, connected gates of the netlist are partitioned into macro-

gates whose computation by a thread block is invoked upon

activation through input events at the respective structures.

However, this approach also utilizes duplication to allow an

independent parallel evaluation, which reduces the effective

global memory usage on the GPU.

C. Timing Simulation on GPUs

So far, the above-mentioned algorithms follow similar con-

cepts of exploiting parallelism in logic simulation, but without

the consideration of the actual circuit timing. In [38], a

statistical static timing analysis (SSTA) based on parallel

evaluation of Monte-Carlo instances on GPUs was proposed.

The approach accelerates delay computation by parallelized

generation and evaluation of pseudo random circuit instances.

However, SSTA performs a probabilistic analysis of the circuit

timing and does not consider the actual propagation of signal

transitions or hazards, which is not suitable for determining

whether a given small delay fault is detected in a specific

circuit instance. The accurate investigation of small delay

faults requires timing-accurate evaluation methods that model

all transitions and glitches of signals in the time domain. The

authors in [35] proposed a GPU-accelerated time simulator for

power estimation which utilizes a two-dimensional execution

scheme to maximize simulation throughput by exploiting

structural gate- as well as data-parallelism. All threads process

different gates for different inputs concurrently, while model-

ing full switching histories for each signal in the circuit with

floating-point timing accuracy as so-called waveforms.

Fig. 2 illustrates example waveforms a and b along with

their vector representation [35] applied for two gates with unit

delay. Each waveform is implemented as an array of times

of switching events sorted in temporal order. By default, any

waveform w has an initial value of w(t) = 0 for time t = −∞.

The simulation algorithm can process gate input events from

earliest to latest using an efficient mergesort approach. This

allows to evaluate a gate in a single pass. The resulting

waveforms are stored in the global waveform memory on

the device during the process. The evaluation algorithm itself

utilizes an efficient data encoding and storage management in

order to compute the waveforms with low memory-footprint

and little synchronization overhead.

a

b

a·b

a⊕b

1 2 3 4 5 60 t

(2)

(0.5, 4)

(-∞, 3, 5)

(1.5, 3, 5)

0
1

0
1

0
1

0
1

Fig. 2. Signal waveforms and their vector representation before and after
passing through NAND and XOR gates with a delay of 1 time unit.

D. Overview of the Proposed Approach

The small delay fault simulation approach proposed in this

work simultaneously exploits (a) gate-parallelism, (b) fault-

parallelism, (c) waveform-parallelism, and (d) instance-

parallelism as illustrated in Fig. 3. It adopts the two-

dimensional scheme of [35] for combining gate- and pattern-

parallelism, which enables fast waveform-accurate time sim-

ulation. Fault-parallelism is exploited by evaluating groups

of structurally independent small delay faults in the same

simulation instances [39]. Instance-parallelism is exploited

through simultaneous processing of multiple circuit instances

with varying gate delays that are generated during evaluation.

For the evaluation of a fault set under circuit variation, the

naı̈ve serial simulation flow of these four dimensions will be

mapped to a simulation scheme as shown in Fig. 4. Given

a set of circuit instances I with different delay parameters,

the test responses of all stimuli provided by the test set T

will be investigated for all faults of interest F , each involving

the evaluation of all gates N in a circuit. Thus, the amount of

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEM, VOL. YYY, NO. ZZZ, MONTH YEAR

Δ(p , p , ...)i i
0 1

a) b) c) d)

Fig. 3. Dimensions exploited for maximum throughput parallelization: a) gate-
, b) fault-, c) waveform- and d) instance-parallelism.

simulation problems sums up to a total of |N |×|F |×|T |×|I|
gate evaluations as indicated by the four nested loops. In this

work we combine the dimensions of the structural problems,

i.e., gates N and faults F , to exploit structural parallelism for

simulation speedup. In addition, the evaluation of the data-

specific aspects, i.e., the test-set stimuli T and the circuit in-

stances I , will be combined as well to utilize data-parallelism

in every step of the simulation.

...
...

...
...

...

...

st
ru

ct
ur

al
 p

ar
al

le
lis

m
 (g

at
es

+
fa

ul
ts

)

da
ta

-p
ar

al
le

lis
m

(w
av

ef
or

m
s

+i
ns

ta
nc

es
)

wave-
form

for each
gate

annotate timing

apply waveforms

inject fault

evaluate gate

for each
instance

for each
fault

for each
stimuli

simulation step

Fig. 4. Mapping of a serial simulation flow to the parallel evaluation scheme.

Fig. 5 shows an overview of the proposed simulation

approach. The upper part (Step 1–4) consists of all necessary

pre-processing steps for reading in (1) and preparation of (2)

the netlist to initialize the simulator. This is followed by fault

collapsing (3) and finding fault groups suitable for parallel

simulation. The lower part (Step 5–8) contains the actual

simulation process composed of the injection of parallel fault

groups (5), the timing annotation (6) as well as waveform-

accurate time simulation (7) which is followed by a fault

detection kernel (8) to capture the output responses at given

sample times. All shaded boxes denote parallel processings on

the GPU.

This work uses a pin-to-pin delay model that considers indi-

vidual delay annotations for each input of a cell. Furthermore

it distinguishes between rising and falling transition polarities.

The timing data is obtained from standard delay format (SDF)

files [40] generated from synthesis, which are provided as

input to the simulator. In the following, the applied methods of

parallelization for the accelerated small delay fault simulation

on GPUs will be explained in more detail.

III. GATE-PARALLEL SIMULATION

If two gates are neither in the input-cone nor in the output-

cone of each other, they are considered to be mutually data-

independent as the inputs of any of the gates do not depend

on the output values of the others and vice versa. For data-

independent gates, the order of evaluation does not matter and

by using parallel architectures the evaluation of these gates

fault-
set

combinational network
extraction

topological ordering

netlist

fault set collapsing

fault grouping

waveform-accurate
time simulation

input
stimuli

output

fault group injection

fault detection

circuit instance assigment

fault
groups

1

6

5

7

8

4

3

2

Fig. 5. Flow-chart of the overall simulation algorithm.

will be performed concurrently. For data-dependent gates on

the other hand, a partially ordered evaluation sequence has to

be defined first to ensure that all necessary input signals are

provided before the time of their evaluation.

Fig. 6 depicts the scheme for the parallel evaluation of a

topologically ordered netlist. The topological ordering parti-

tions the combinational netlist, which is treated as a directed

acyclic graph, into partitions called levels based on their

topological distances to either circuit inputs or circuit outputs.

Typically as-soon-as-possible (ASAP) schedules are used for

the ordering which schedules nodes as soon as their predeces-

sors have been levelized. Hence, all gates in such a partition

are mutually data-independent. The amount of parallelism that

can be exploited per evaluation is limited by the number of

gates on each level of the circuit, which typically decreases

towards the outputs in ordinary ASAP-scheduled netlists. The

runtime of the simulation depends on the circuit depth (and

hence number of levels), since all levels have to be evaluated

in sequential order by individual invocations of the evaluation

kernels.

Although the full circuit description resides in the device

memory on the GPU, the working set of the threads processing

a level only contains its respective gates and input waveforms.

For each level, the kernel from [35] is invoked, which spawns

individual threads for each gate to be evaluated. All threads

simultaneously compute the output waveforms of their cor-

responding gates by processing the toggle events of input

waveforms. Since all switching events are sorted in temporal

gate k

gate 0

...

level 0 level i

... ...

level d

...

topological evaluation

... ...

ou
tp
ut
s

in
pu

ts

gate 1

thread
(kd)

thread
(0)

thread
(1)

thread
(ki)

thread
(0)

thread
(1)

thread
(k0)

thread
(0)

thread
(1)

Fig. 6. Parallel evaluation sequence of data-independent gates in a topologi-
cally ordered netlist.

SCHNEIDER et al.: GPU-ACCELERATED SIMULATION OF SMALL DELAY FAULTS 5

order, the simulation algorithm can process gate input events

from earliest to latest using an efficient mergesort approach

which allows for evaluation within a single pass. The resulting

waveforms are stored in the global waveform memory on

the device during the process. If at some point during the

simulation a signal is not the input of any of the remaining

gates still scheduled for evaluation, its associated waveform

is de-allocated in order to free memory [35]. Therefore, the

required waveform memory is bounded by the maximum

number of signals that are direct input to gates on the deeper

levels in the remaining simulation process.

However, for keeping the control flow of the evaluation

algorithm simple, all waveforms are stored at predefined posi-

tions in the waveform memory. In order to prevent overwriting

a waveform with another, each is assigned only limited storage

for storing its switching information. Since the switching

activity of a signal is not known a priori, overflows might occur

during evaluation, when there is insufficient space for storing

all of its toggles. Thus, if an overflow has been reported by a

kernel after a first simulation, the simulation run is repeated

with additional checks after the processing of each level in

order to identify the culprit waveforms. This information is

utilized by the host system to compute a new waveform

allocation. The storage limitation of the overflown waveforms

is then increased and reallocated, which is stored in the circuit

description, before proceeding with the remaining evaluation

on the GPU [35].

IV. FAULT-PARALLEL SIMULATION

In order to reduce the number of fault locations in advance, a

structural collapsing of the fault list is performed by collapsing

the provided fault set into equivalence classes on the host

system. All faults of an equivalence class have an identical

behavior at the outputs of the circuit and thus require evalu-

ation at a single representative fault location only. For small

delay faults that affect both transition polarities (rising and

falling) by the same delay amount, the equivalence rules of

transition faults [7] are applied as follows:

• If a gate has a single input, then the fault locations at

input and output pins of the gate are equivalent.

• If a gate has a single fanout, then the location at the output

pin and the corresponding input pin of the succeeding

gate are equivalent.

These rules obey transitivity and can further be extended to

support collapsing of faults with different polarities as well.

For simulating small delay faults we employ a paralleliza-

tion scheme based on groups of independent faults [39]. If

the output cones of two faults share no common output logic,

they are referred to as output-independent as they propagate

to different parts in the circuit. Since these faults have no

mutual influence, they can be injected in the same simulation

instance for parallel evaluation. In the following, such sets of

output-independent faults will be referred to as fault groups.

To achieve a maximum simulation speedup it is favorable to

process the target faults in the least number of fault groups,

or equivalently by maximizing the average number of faults

simulated per group. An optimal selection and scheduling

can be viewed as a minimum graph coloring problem (also

chromatic number problem), where each node is assigned a

color such that no edge connects two nodes of the same color

with the additional requirement that the number of used colors

is minimal. For this the mutual output-dependence of each

fault pair is mapped to an output-dependency graph. The nodes

in this graph represent the individual faults, while two nodes

are connected by an edge iff the associated faults share any

output logic. Hence, an edge indicates that the associated fault

pair is ineligible for parallel injection. Since after coloring

all vertices of the same color in a graph are not directly

connected, faults corresponding to the nodes of the same color

form a valid fault group. As the graph is minimally colored

(minimum number of different colors) the number of fault

groups is minimal as well. However, the minimum graph

coloring problem is NP-complete [41] and its optimization

problem is even NP-hard, thus rendering it inapplicable to

multi-million gate designs.

To enable the efficient computation of fault groups for large

problem sizes, we employ a greedy heuristic approach that

is outlined in Fig. 7. Given a particular fault set as input

for the algorithm, the spatial information is derived in a first

step to form an initial set of fault locations, such as the pins

of a gate. These fault locations are then sorted in (reversed)

topological order from outputs to inputs (1), which are then

processed in an as-late-as-possible (ALAP) manner. Starting

from a given fault location f , a list of reachable outputs is

first determined (2) by traversing the netlist towards the circuit

outputs. This list is then compared with the reachable outputs

of a group in order to determine any shared logic. A map is

stored for each group G that holds the reachable outputs of

all faults contained. Initially, the map of a group is empty.

If the outputs of a group G and a fault f are disjoint, f is

inserted into G (5) and the reachable outputs of f are added

to the output map of the group (6). If a shared output has

been detected, the comparison process is repeated for the next

group in the list (4a). If none of the currently existing groups is

disjoint with f , a new group will be created for the fault f (4b).

Once a fault has been inserted into a group, the index of the

group is assigned to the fault location and propagated towards

the inputs of the circuit by annotating the nodes in the input

cone of the fault (7). This back-traversal annotation is part of

the heuristic as the index will be used as the starting group

when trying to find a valid group assignment for subsequent

scheduling of faults. The start index avoids unnecessary group

comparisons when processing these faults due to the transitive

structural dependency of succeeding gates, since a fault f

cannot be scheduled for concurrent evaluation with the faults

in its output cone. Initially, the starting group of every node is

initialized with 0. For a particular fault location f , the starting

group start(f) is then computed as:

start(f) := max{start(g) | g ∈ {f ∪ fanout(f)}}+ 1

whose value is propagated to all the nodes that share the same

outputs as the fault location. This is arranged by forward-

propagation towards the primary outputs followed by a back-

propagation to the primary inputs. Propagation is terminated at

nodes that were already assigned a higher group index. Since

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEM, VOL. YYY, NO. ZZZ, MONTH YEAR

fault-
set

determine reachable outputs

1. schedule fault locations ALAP

for each
fault f

do

done

look up start group index G

if
group G

shares outputs
with f

yes

no

no

yes

4a. pick next group G

4b. add new group G

if G
last group

add fault f to group G

update reachable outputs

propagate group index

fault
groups

2.

3.

5.

7.

6.

Fig. 7. Flow-chart of the greedy fault grouping heuristic.

all faults are processed in ALAP-order, the starting group of

each fault allows to quickly skip all comparisons of nodes

in the output cones. In general, fault groups and runtime vary

depending on the order in which the faults are being processed.

An example of the fault grouping is illustrated in Fig. 8.

The faults of a given fault set are sorted in topological order

and processed one by one starting from outputs to inputs (a).

All mutual output dependencies are illustrated in the output-

dependence graph (b). Fault a is assigned the first group index

ga = 1, then back-propagation is performed. In the next

step, fault b is processed. Since node b already knows the

group of a from back-propagation of its index, it will skip

comparison for ga and start looking for output dependencies

in group ga + 1 = 2 instead. As the group is empty, fault b

will be assigned the index gb = 2. Regarding fault c, no

output dependent faults have been processed yet, thus it will

be assigned index 1, sharing the same group with a. The

back-propagation from node c is terminated for all nodes

within the red highlighted cone, as they have been already

assigned a higher group index from b. Faults d and e have

both received the group information from b and thus start

looking in group gb + 1 = 3 for dependencies. For the

faults d and e, the range of the reachable outputs, denoted

as Od and Oe, are shown respectively. As both faults share

no common outputs (Od ∩ Oe = ∅), they remain in the same

group gd = ge = 3.

A. Fault-Injection

For each gate in a circuit, the data structure of its timing

annotation is organized as a set D of tuples with pin-delay

values, with each tuple representing the delays for rising and

c

b

e

d O

O

d

e

a
b

c

d

e

a a → ga = 1
b → gb = ga+1 = 2
c → gc = 1
d → gd = gb+1 = 3
e → ge = gb+1 = 3

G1={ , }
G2={ }
G3={ , }

a

b

c

d e

a) b) c) d)

Fig. 8. Fault grouping: a) Fault set {a, b, c, d, e} in reversed topological order,
b) output-dependence graph, c) index assignment and d) resulting groups.

falling transitions at a certain input-pin of the associated gate:

D = {{d0rise, d
0

fall}, {d
1

rise, d
1

fall}, · · · }.

The underlying simulation algorithm annotates pin-to-pin

delays at the gate inputs and processes transitions at gate inputs

as well with respect to their polarity. Each small delay fault

f is represented by a tuple f = (loc, {δrise, δfall}) consisting

of a particular gate pin (loc) as fault location and a set of

delay values for the rising (δrise) and falling (δfall) transition

polarity as fault size. The injection of a fault into the circuit

is conducted by modifying the gate timing descriptions prior

to the simulation run as follows:

• For a fault at an input the delay values of the fault size

are added to the rising and falling delays of the associated

pin timing descriptions of the affected gate.

• Faults at a gate output are modeled by injecting the delay

values of the fault size into the delay descriptions of every

input pin of the affected gate.

In addition, all gates currently subject to fault injection are

marked. Yet, the presence of the injected faults is completely

transparent to the evaluation kernel and thus causes no addi-

tional control flow divergence during thread execution. Since

the simulator processes fault groups as a whole, all faults

contained in a group are injected into the same simulation

instance. After the simulation of the fault group is completed,

all injected small delay faults are removed by restoring the

nominal delay specification of all cells in the circuit that are

currently marked. This way, the injection scheme causes only

few memory operations and thus keeps data communication

and synchronization at a minimum.

V. WAVEFORM-PARALLEL SIMULATION

The time simulation algorithm (Section III) adopts a two-

dimensional parallelization concept in which all gates are

processed for different stimuli concurrently. In each simulation

step, the evaluation kernels invoke a two-dimensional grid of

execution threads as shown in Fig. 9. Threads in the vertical

direction process the different gates at one topological level in

parallel. These threads form a slot, which processes simulation

of the circuit for a particular input stimuli combination (i.e.,

test vector pair). In the horizontal direction, each of the threads

evaluates the same gate, yet operates on different input stimuli

and hence simulates different slots. The threads are scheduled

in batches by the thread scheduler for simultaneous execution

in the multi-processing cores. During the execution, each

batch evaluates the same gate for multiple stimuli. In global

memory, the necessary waveform data is aligned such that

the memory accesses of the threads within a batch exploit

SCHNEIDER et al.: GPU-ACCELERATED SIMULATION OF SMALL DELAY FAULTS 7

fully utilized memory transactions. This efficient coalescing of

the waveform memory access along with the caching within

thread blocks reduces the overall amount of global memory

transactions and maximizes the computational throughput.

i

... ...

i+1

...

topological evaluation

ou
tp
ut
s

ga
te

ki

...

thread
(0,0)

thread
(0,ki)

thread
(0,1)

i-1

...

......
slot 0 slot 1 slot n

ga
te

0

ga
te

1

...

thread
(1,0)

thread
(1,ki)

thread
(1,1)

thread
(n,0)

thread
(n,ki)

thread
(n,1)

ga
te

-p
ar

al
le

lis
m

data-parallelism

level

in
pu

ts ...

Fig. 9. Two-dimensional organization of concurrently executed threads.

The number of input stimuli that are processed in parallel

depends on the available global device memory and the

memory required for processing a single slot (cf. Section III).

In contrast to the level-dependent gate-parallelism, the par-

allelism obtained from waveform stimuli remains constant

throughout the simulation. If more input stimuli are provided

than the memory can store at a time, the simulation run is

split into a sequence of executions each processing a different

bunch of stimuli. Therefore, larger memories allow for a higher

degree of parallelization.

A. Response Evaluation

For the evaluation of the circuit responses, the signal values

of all output waveforms are captured at a given sample time T .

Again, a kernel with a two-dimensional thread-grid is used.

Each thread traverses the toggle list in its associated output

waveform w(t) until time T is reached. The waveform value

w(T) then represents the captured value.

In order to determine whether a fault has been detected

or not, the syndrome syn(T) of the waveform is computed

during the evaluation process. Since small delay faults are

of finite size, the stabilized good value at each output can

be acquired directly from the waveforms at t = ∞ without

the need of an explicit good value reference simulation The

syndrome waveform syn(t) of a signal w(t) is ’1’ iff the value

w(t) is the opposite of its final stable value w(∞):

syn(t) := w(t)⊕ w(∞).

Therefore, if a fault has been detected at an output, the syn-

drome value of the output waveform is ’1’; otherwise it is ’0’.

The detection of a given fault is then determined by looking

up all computed syndromes of the corresponding reachable

outputs. A kernel compresses the syndrome information of

all outputs as a sequence of bits to allow fast access to the

fault detection of each stimuli. Regarding the evaluation, the

output sampling itself is not limited to a single capture time.

As the computed output waveforms remain untouched during

the capture process, multiple captures at different sample

times can be evaluated quickly in succession. Furthermore,

individual capture times can be provided for each output to

model skew in the clock distribution tree.

VI. INSTANCE-PARALLEL SIMULATION

In the following, the aforementioned slots (cf. Section V)

will be used for modeling and evaluating circuit instances

under delay variation with respect to a given parameter space

that is spanned by devices with different delay characteristics

and process corners. Variation is typically distinguished into

random and systematic variation: Random variation is caused

by statistical processes during production, which influence,

for example, the interconnect delay by line-edge roughness or

the transistor threshold due to random dopant-fluctuation [1].

Since these processes are of quantum mechanical nature

involving numerous uncertainties, each gate delay is viewed as

an independent random variable [2]. For systematic variation

spatial correlations and dependencies are assumed between

the gates (i.e., inter-die, wafer-to-wafer, lot-to-lot). These

variations relate to material properties or fabrication related

limitations during lithography or polishing that impact the

behavior of neighboring gates in a similar way [42]. Fig. 10

illustrates the extension of the basic thread-organization of

the simulation kernels for the parallel evaluation of individual

circuit instances. While all the threads in the horizontal dimen-

sion still process the same gates, the threads of each slot will

now process the assigned stimuli with the delays of a given

circuit instance, thus maintaining control flow uniformity. This

way the available GPU memory can be fully occupied.

In general, rather than keeping the raw timing data of all

considered circuit instances in memory, the proposed simula-

tion algorithm calculates the local delay deviation of the gates

during runtime. For this it is assumed that the delays of each

design are subject to a nominal specification that describes

the mean or expected delay of each gate (i.e., the SDF-

file generated from synthesis) to which the variation will be

applied. When the evaluation kernel of the simulation starts, all

threads of the grid compute the gate delay specification of their

gate based on its nominal values and the delay distribution

of the variation source. Hence, for each pin i of a gate, the

resulting pin delay dres is calculated by:

dires := dinom +∆(pi
0
, pi

1
, . . . , pin)

where dnom is the nominal pin delay and ∆ represents a

variation distribution function that maps to a scalar delay

offset. The latter is expressed as a function based on a set

of different local parameters pj (for j = 0, 1, . . . , n) of the

parameter space. A set of parameters is assigned to each slot

prior to the execution of the simulation in order to link the

respective slots to specific circuit instances.

...

ga
te

k

...

slot j+1 slot n

ga
te

0

ga
te

1

data-parallelism (instance+waveform)

1 i
m m...

slot 1 slot i
1 i
0 0...

...
...

ga
te

-p
ar

al
le

lis
m

stimuli
instance

slot 0
0
0

slot j
0
m

slot j
0
m

Fig. 10. Example of a thread-grid organization for the evaluation of multiple
circuit instances in parallel. Each slot is assigned an instance and a stimuli.

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEM, VOL. YYY, NO. ZZZ, MONTH YEAR

In the following, the applied approaches for modeling both

random as well as systematic variation for efficient computa-

tion on GPUs will be explained in more detail.

A. Random Variation

For modeling random variation, each slot is assigned an

instance number in order to link the circuit instance simulated

in the slot to a specific instance of the parameter space.

Furthermore, the circuit timing data structure is extended to

incorporate additional information about the variation into the

gate annotations. During the execution of a thread, pseudo ran-

dom number generators (PRNG) generate the random numbers

for the delay calculation. These generators use a unique seed

as a starting point for the number generation. In this work,

the seeds are computed using a hash function which uses as

inputs the information about the circuit instance as well as

some unique information of the gate (e.g. layout coordinates,

gate numbers or names) to be processed to introduce an

independent random variable for each gate in a circuit instance.

However, the spatial information can also be specified with

lower granularity to form clusters of gates with the same

behavior.

Since the randomness typically subjects to a given distribu-

tion (e.g. uniform or normal distribution), mean and variance

of the distribution have to be specified to describe the pool

of random values RV . Without any loss of generality, this

work focuses on normally distributed random numbers. For

the sake of simplicity, it is assumed that the expected value

is E(RV) = dnom, which is already contained in the timing

data. Hence, only a variance value has to be added to the

timing annotation of each gate, introducing only a negligible

memory overhead.

For the computation, a parallel kernel function derives the

delay deviation at the start of each gate evaluation. This

function ∆ requires two parameters: The gate variance as

well as the aforementioned seed that is based on the slot’s

instance number and the current gate in order to generate

the random number. Similar to [38], the parallelism of the

GPU computation hides the latency of the random number

generation. The normally distributed random numbers are

computed by an algorithm that uses a uniform pseudo random

number generator along with the well-known Box-Muller

method [43]. It is assumed that the random variation affects all

pins within a gate in the same manner, hence the calculation of

the deviation ∆ has to be performed only once for each gate,

thus minimizing the computational overhead. If two slots are

assigned identical instance numbers, the threads will always

generate the same delays for the gates, which allows for full

compliance with the general waveform-parallel approach (cf.

Section V).

B. Systematic Variation

As for the systematic variation, the calculation of the delay

deviation ∆ at a specific gate is based on the evaluation of

given distribution functions. These functions shall describe

the deviation from the mean propagation delay within a

parameter space of multiple dimensions as scalar values. Input

to these functions are the Cartesian coordinates of the gates

(p0, p1, . . . , pn) in the parameter space, where each parameter

pj (j = 0, 1, . . . , n) represents a value of either spatial

or parametric property. These properties can, for example,

represent x- and y-coordinates of the gate in the chip or refer

to specific wafers, lots, measurements or process parameters.

Each parameter spans over a dimension of the parameter space

that is considered to have distinct impact on the delay behavior

of the gates.

The distribution functions over the parameter space spanned

by all the parameters allow to model (spatial) dependencies

across the different dimensions. Each point (p0, p1, . . . , pn) or

coordinate in the parameter space delivers the expected devia-

tion of a gate as a scalar value representing an absolute or rel-

ative amount. Since systematic variation is typically spatially

correlated depending on the type of process, knowledge from

layout synthesis or manufacturing itself is required. These

correlations can be learned from post-silicon characterization

and test sweeps to extract process corners [44].

Once the relation between parameters and the delay impact

has been determined, distribution functions are built in order

to approximate and describe the delay behavior as a function

of the parameters. This work employs a hierarchical approach

similar to [2], [45] to model spatial correlations. The deviation

is obtained from individual components, each of which is

modeled at a level of hierarchy, such as inter-chip, inter-wafer

or lots. The components are modeled by distinct distributions

∆k that describe the influence of the variation on the gate

delays at the given level based on the parametric properties as

obtained from characterization. Each distribution function ∆k

is approximated using real functions and shall compute the

delay deviation of the respective component k as a scalar

value, given the coordinates pj of a gate. When considering

all components together, the resulting variation is modeled as

sum of the individual components:

∆(pi
0
, pi

1
. . . , pin) :=

n∑

k=0

∆k(p
i
0
, pi

1
, . . . , pink

).

The functions ∆k are approximated by polynomials or

sine and cosine primitives, which allow to model even more

complex distributions by approximation as series. Due to

the continuity of these functions, the spatial correlations and

dependencies are sustained (i.e., between neighboring gates

on a chip or across regions on wafers of the same lot). The

evaluation of polynomials can be processed efficiently on

the GPUs when transformed according to the Horner-scheme,

since it allows for extensive use of efficient fused multiply-add

operations on recent architectures [37].

Similar to the random variation, the systematic variation

is calculated and incorporated into the nominal gate delay

values once at the beginning prior to the waveform processing

and thus causes negligible overhead, which is hidden by

the GPU parallelization. Note that the scheme of computing

systematic variation can also be applied in combination to

random variation. Further, it can be used to manipulate mean

and standard deviation as well as to model spatially dependent

random distributions.

SCHNEIDER et al.: GPU-ACCELERATED SIMULATION OF SMALL DELAY FAULTS 9

VII. EXPERIMENTAL RESULTS

The proposed simulation approach has been evaluated in

a series of experiments and compared against a state-of-the-

art commercial event-based logic-level time simulator. The set

of benchmark circuits investigated contain the largest designs

from ISCAS’89 and ITC’99 as well as industrial designs

provided by NXP. All designs have been synthesized using the

NanGate 45nm Open Cell Library [46]. During this process, all

state elements were removed, thus leaving only the combina-

tional circuit structure. For the evaluation of each benchmark

circuit, n-detect pattern sets composed of stimuli pairs for the

detection of transition faults (n = 10) have been generated

using a commercial automated test pattern generation tool

with pattern compaction. The patterns sets were then applied to

the circuits during simulation to determine the fault coverage.

A spatially-exhaustive fault set is used that considers two small

delay faults affecting either rising or falling transitions for each

pin of a gate (inputs and outputs).

All experiments were executed on a NVIDIA R© Tesla R©

K80 dual-GPU-accelerator card with 2×2496 cores clocked

at 824MHz, each of which has exclusive access to 12GB

of global memory. However, only a single GPU was used

in the experiments. Regarding the memory consumption of

the circuit netlists stored on the GPU, the timing-annotated

netlist description of our largest circuit (p3881k, 3.15 million

gates) occupied only 202MB, which is roughly 1.7% of the

total memory available on the device. Note that although the

experiments have been conducted on the NVIDIA R© CUDA R©

architecture, the general concepts and programming paradigms

are applicable to other current general purpose many-core

architectures. The host system contains eight Intel R© Xeon R©

processors clocked at 3.0GHz and 128GB of RAM, though the

peak memory consumption of the host never exceeded 32GB.

A. Fault Grouping

Table I contains information about the designs of the circuits

and their corresponding fault sets that were grouped on the

host system prior to the actual fault simulation. The name,

size and logic depth of each circuit are given in the first

three columns. Note that the number of gates divided by

the logic depth of the circuit (levels) gives an estimate of

the average gate-parallelism available. Columns 4 (”Faults”)

and 5 (”Collapsed”) show the number of faults before and

after collapsing equivalent faults. We compare the number

of faults with the number of fault groups after performing

the grouping. For this, we define the effectiveness as the

number of faults before divided by the number of groups

after the grouping process, which delivers the approximate

speedup of the proposed approach over a naive simulation.

As shown in columns 6 (”Groups”) and 7 (”eff.”), the group

pre-processing was able to partition the fault set into groups

with an effectiveness (eff.) ranging from 1.2 to 773.2, which

also indicates the degree of available fault-parallelism. For

circuits p35k and p469k, the grouping is less effective, due a

large number of reconvergent fanouts in the circuits and a high

number of overlapping output cones of the faults. However,

even in the case of p469k, an average group size of 1.2 saves

almost 15 percent (≈ 45,000) of the simulation runs compared

to serial execution. On the other hand, p378k has fewer recon-

vergent fanouts and more mutually data-independent nodes,

which allows to reduce the number of simulation runs by

roughly 99.9 percent given the effectiveness of over 773. For

all circuits, the runtime of the grouping heuristic including the

collapsing phase ranges from less than a second to few minutes

as shown in the last column. This is a negligible amount of

time spent for pre-processing, since the overall simulation time

for processing the faults is dominated by the total number of

simulation runs.

TABLE I
CIRCUIT AND FAULT GROUPING STATISTICS.

Circuit(1) Gates(2) Depth(3) Faults(4) Collapsed(5) Groups(6) eff.(7) Runtime(8)

s38417 15.6k 48 80.9k 46.1k 1744 26.5 460ms
s38584 19.9k 70 104.6k 59.5k 2010 29.6 565ms
b17 39.8k 120 215.1k 127.5k 15.6k 8.2 3.17s
b19 236.9k 203 1.28M 770.1k 36.5k 21.1 25.61s
p35k 42.9k 74 221.3k 113.9k 59.7k 1.9 27.64s
p45k 37.8k 57 203.1k 118.6k 9272 12.8 1.91s
p77k 63.6k 466 344.3k 205.5k 64.9k 3.2 15.33s
p78k 73.3k 50 412.4k 276.5k 1788 154.6 2.78s
p89k 88.4k 85 471.1k 266.6k 13.7k 19.4 4.66s
p100k 84.4k 108 456.1k 275.9k 9272 29.8 4.84s

p267k 184.5k 55 996.8k 591.9k 9710 61.0 10.78s
p330k 251.4k 61 1.36M 842.7k 64.1k 13.1 1:34m
p378k 366.3k 50 2.06M 1.38M 1788 773.2 17.96s
p418k 380.0k 174 2.00M 1.12M 18.6k 60.2 14.33s
p469k 103.4k 239 553.5k 308.5k 263.9k 1.2 12:46m
p500k 465.4k 179 2.46M 1.41M 21.3k 66.0 23.38s
p533k 610.6k 112 3.32M 2.03M 9248 219.8 29.29s
p951k 893.7k 153 4.62M 2.53M 13.5k 187.9 30.55s
p1522k 949.0k 508 5.13M 2.94M 65.7k 44.8 2:45m
p2927k 1.48M 388 7.77M 4.46M 32.3k 137.9 2:13m
p3881k 3.15M 178 16.66M 9.79M 82.1k 119.3 4:01m

While the grouping of exhaustive fault sets in general

represents the worst case in terms of effort, the proposed

heuristic has also been investigated for sparse sets. The cor-

responding results are summarized in Table II. In the first

two columns the circuit name and the number of faults in

the initial collapsed fault set are shown. The fault grouping

heuristic was then applied to fault sets with different sparsity

in column 3 (”Set Sparsity”) with each fault set containing

the specified fraction of faults at random locations. For each

percentage, 100 distinct random fault sets have been generated

and evaluated to observe the impact on both the effective-

ness (eff.) of the grouping (Col. 4–6 respectively for mininum,

average and maximum) as well as the average runtime of the

algorithm in the last column. As shown in Table II, when

compared to the spatially-exhaustive set, the effectiveness of

the fault groups obtained can vary, ranging from a 33 percent

decrease to a 25 percent increase in some of the cases. This

is due to the random selection of faults, as their mutual

output dependencies impact the grouping result. However, in

average (avg.) the grouping effectiveness sustains while the

runtime scales linearly with the sparsity of the fault set and

hence the number of faults. Therefore, in all cases the grouping

for fault parallelism allows for significant reduction in the

number of simulation runs at negligible runtime overhead.

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEM, VOL. YYY, NO. ZZZ, MONTH YEAR

TABLE II
GROUPING OF RANDOM FAULT SETS WITH DIFFERENT SPARSITY (100

REPETITIONS).

Circuit(1) Collapsed Set Effectiveness (eff.)
Runtime(7)

Faults(2) Sparsity(3) min.(4) avg.(5) max.(6)

s38584 59530

100% – 29.6 – 565ms
75% 28 29.6 30 388ms
50% 28 29.6 31 346ms
25% 27 29.7 32 250ms
10% 25 29.5 35 195ms
5% 22 29.4 37 172ms

p500k 1405130

100% – 66.0 – 23.88s
75% 65 66.0 66 17.61s
50% 65 66.1 67 12.88s
25% 64 66.1 67 6.98s
10% 62 66.2 69 3.41s
5% 59 66.2 75 2.45s

p951k 2534274

100% – 187.9 – 30.55s
75% 186 187.9 190 24.16s
50% 183 187.7 192 15.03s
25% 181 187.4 193 9.77s
10% 178 185.6 198 6.41s
5% 171 183.6 196 5.18s

B. Runtime

Table III compares the runtime of the proposed simulation

approach to the commercial event-based time-simulator run-

ning on the same host system as a single thread. The first

three columns list the circuit names, the number of stimuli

pairs in the 10-detect pattern set (10det.) and the maximum

number of stimuli pairs that can be processed simultaneously

on the GPU (waveform-parallelism) with the current memory

configuration of 12GB of global memory on the GPU device.

If the generated pattern set is smaller than the maximum

number of patterns able to fit on the GPU, the thread-

grid dimensions have been reduced accordingly. This avoids

spawning and management of unnecessary threads that would

otherwise be scheduled for evaluation. These unused slots

can later be utilized for instance parallel simulation. Since

the commercial solution is in general too slow, only a fault-

free simulation run has been performed in order to enable a

comparison. The fourth column (”Event-Based”) shows the

average runtime of the event-based commercial simulator for

processing all input stimuli. The runtimes of the proposed

approach are split into worst-case and best-case. In the first

run, the GPU-accelerated time simulator achieved runtimes

13–397× times faster than the event-based solution (Col. 5–6,

”Worst (GPU)”). If the simulation is repeated, the overhead

for the memory management of the waveform reallocation is

reduced and eventually the simulator is able to run at full

speed, resulting in a higher speedup. This yields an additional

improvement of one order of magnitude on average (Col. 7–

8, ”Best (GPU)”). Note that the speedup of the simulation

run is independent of the faults as the presence of faults is

completely transparent to the evaluation kernel which allows

for efficient exhaustive small delay fault simulation.

TABLE III
RUNTIME COMPARISON.

Circuit(1)
Pattern- Fault-Free Simulation

Pairs Event- Worst (GPU) Best (GPU)

10det.(2) max.(3) Based(4) Time(5) X(6) Time(7) X(8)

s38417 348 29504 6.92s 227ms 30 67ms 103
s38584 563 24864 1:09m 314ms 217 79ms 864
b17 2135 33120 1:25m 1.21s 69 221ms 380
b19 4651 5408 0:48h 12.79s 224 1.95s 1469
p35k 4096 11744 3:40m 1.17s 187 321ms 683
p45k 2417 14048 1:53m 848ms 132 225ms 500
p77k 1979 13536 6:27m 5.91s 65 422ms 916
p78k 150 11744 40.34s 827ms 48 135ms 298
p89k 2460 8480 4:11m 2.06s 121 405ms 618
p100k 2809 8288 8:40m 2.50s 207 457ms 1135

p267k 3181 3360 0:17h 3.74s 260 1.03s 946
p330k 5928 3104 1:15h 11.65s 381 2.40s 1853
p378k 200 2400 5:24m 3.56s 90 595ms 543
p418k 3676 1888 0:39h 21.07s 109 2.54s 910
p469k 347 17056 0:19h 2.75s 397 373ms 2926
p500k 5012 1792 1:40h 39.08s 153 4.54s 1317
p533k 3417 1312 1:44h 38.15s 162 4.51s 1378
p951k 7063 544 3:45h 3:30m 64 20.04s 672
p1522k 17980 800 11:55h 9:31m 75 32.68s 1312
p2927k 22107 416 27:29h 0:31h 53 1:23m 1194
p3881k 12091 224 30:15h 2:18h 13 6:21m 286

C. Small Delay Fault Detection

Table IV compares the fault simulation coverage results

of both transition and small delay faults for the applied 10-

detect transition fault test patterns. In column 2 (”Faults”)

the number of fault locations is reported. Again, a spatially

exhaustive fault set is used. Given the nominal clock frequency

obtained from static timing analysis, the size of each small

delay fault has been set halfway between the slack of the

longest and shortest path through each fault location. The

third column (”Runtime”) contains the runtime of the small

delay fault simulation without fault dropping. Hence, the

detection information of every pattern is obtained for each

fault. Since the fault simulation is the repeated execution of

simulation runs with the same pattern set for different injected

fault groups, the memory calibration quickly converges, which

results almost exclusively in full-speed runs. Columns 4 and 5

(”Transition (TD)”) contain the number of detected transition

faults (”TD det.”) and the portion of small delay faults that

have not been detected at the same location (”⊇ SD und.”). As

shown in Table IV, a fair amount of small delay faults could

not be detected although the corresponding transition faults

were detected, confirming the well-known fact that transition

faults overestimate the small delay fault coverage.

The last two columns (”Small Delay (SD)”) summarize

the detections for the small delay faults respectively. As

expected, the coverage of the small delay faults is generally

much lower than for transition faults. However, there are also

numerous cases where small delay faults are detected, but

their corresponding transition faults are not detected. Here,

the small delay faults were propagated along reconvergent

fanouts causing glitches to appear at the circuit outputs while

the output signals were being captured as previously depicted

in Fig. 1. These faults were detected only for smaller (finite)

SCHNEIDER et al.: GPU-ACCELERATED SIMULATION OF SMALL DELAY FAULTS 11

TABLE IV
FAULT DETECTION OF TRANSITION DELAY (TD) AND SMALL DELAY (SD)

FAULTS AT SAME LOCATIONS.

Circuit(1) Faults(2) Runtime(3) Transition (TD) Small Delay (SD)

TD det.(4) ⊇ SD und.(5) SD det.(6) ⊇ TD und.(7)

s38417 46138 32.11s 45965 12198 33777 10
s38584 59530 40.18s 57838 20242 37734 138
b17 127490 0:38h 124979 60557 64443 21
b19 770082 27:21h 764557 216023 549854 1320
p35k 113946 3:49h 111820 39172 72702 54
p45k 118608 0:26h 118287 34138 84242 93
p77k 205478 7:12h 188221 78187 110500 466
p78k 276486 4:59m 276486 37757 238729 0
p89k 266576 1:15h 264314 95266 169049 1
p100k 275948 1:40h 274753 66758 208199 204

fault sizes that cannot be represented by transition faults. Al-

though these cases seem rare, they are especially important for

diagnosis and failure analysis, thus emphasizing the necessity

of fast and accurate small delay fault simulation.

D. Variation Impact

The generated 10-detect pattern set has further been eval-

uated under random variation for a population of different

circuit instances each of which has distinct gate delays. For the

distribution function ∆ of the pin delays, a Gaussian normal

distribution N (µ, σ2) has been chosen with mean µ = dnom
and standard deviation of σ = 0.2 · µ. In order to avoid

excessive occurrences of timing failures due to the variation,

the sample time T for all test cases (nominal and instances

under variations) has been set to 1.5× of the longest path delay

(nominal). Again, the fault sizes of the small delay faults have

been chosen halfway between minimum and maximum slack

at the fault sites with respect to the nominal instance. During

simulation, the aforementioned thread-grid organization for

parallel instance evaluation (cf. Fig. 10) has been applied.

Table V depicts the impact of the variation on the detection

of small delay faults for a population of 100 random circuit

instances. For each circuit the fault detections in nominal

and variation instances are compared and further classified

as gains or losses based on the difference as shown in

column 2 (”Detection Class”). A fault detection is considered

a gain, if a fault was detected in the instance under variation,

while it was undetected in the nominal case. Analogously, a

fault detection is called a loss, if the fault was detected in

the nominal instance, but not in the instance under variation.

As shown in columns 3–8 (”Affected Instances”), gains and

losses due to variation occur throughout the circuit population

with different impact.

Note that the instances stated in each column are supersets

of the instances stated in the columns to their right. For

example in p35k, 3752 faults were undetected in the nominal

instance, but have been detected in at least one random circuit

instance. Out of these, 1392 faults have been observed in even

more than 20% of the circuit population. In fact, in all of

the investigated circuits almost 50% of the fault detections

influenced by variation showed impact in more than 20%

TABLE V
OCCURRENCES OF FAULT DETECTIONS INFLUENCED BY VARIATION IN

100 RANDOM CIRCUIT INSTANCES.

Circuit(1) Detection Affected Instances

Class(2) >0%(3) >20%(4) >40%(5) >60%(6) >80%(7) all(8)

s38417
gain 1802 872 514 232 50 0
loss 3246 930 80 0 0 0

s38584
gain 3322 1124 444 108 32 0
loss 6392 2720 710 2 0 0

b17
gain 5254 2344 1240 404 76 2
loss 6806 2180 564 52 0 0

p35k
gain 3752 1392 682 258 58 10
loss 4274 1098 448 134 14 0

p45k
gain 3068 1452 718 158 18 2
loss 7404 1514 264 2 0 0

p78k
gain 3470 1968 1134 480 92 0
loss 8138 1380 162 0 0 0

p89k
gain 11532 4486 2040 506 136 6
loss 16716 4458 798 14 0 0

p100k
gain 8838 4134 2130 510 102 24
loss 10904 3132 660 16 0 0

of the instances, while losses occurred more frequently than

gains. In p35k, ten previously undetected faults even showed

gains in all of the variation instances due to captured glitches

in the nominal case. Altogether, the average impact of the

variation on the detection has been observed in almost 10%

of the faults in the fault universe of each circuit, ranging up

to 16% in case of s38584. Thus, variation should be taken

into account to reason about the robustness of the small delay

fault detection in presence of circuit variation [26]. For this,

the proposed simulation approach can be efficiently applied,

since it exploits the dimensions of parallelism from gates,

faults, waveforms and variation in order to cope with the

computational complexity.

VIII. CONCLUSIONS

In this work an approach for enabling fast and accurate

simulation of small delay faults on data-parallel GPU ar-

chitectures is presented. The fault simulation is waveform-

accurate and considers individual rising and falling pin-to-

pin delay annotations as well as glitch filtering. It maintains

full information about the switching activity and allows to

determine the coverage of small delays in the presence of

hazards and reconvergences. Furthermore, random as well as

systematic variation can be incorporated during the evaluation

by modifying gate delays during runtime in order to investigate

the robustness of fault detection. Rather than focusing on

a latency-optimized evaluation, the proposed method utilizes

many dimensions of parallelism that can be found in circuit

simulation (gates, faults, waveforms, instances) along with

careful memory management to attain maximum simulation

throughput and speedup. Runtime results of the approach have

shown speedups of up to three orders of magnitude compared

to conventional logic-level timing simulators. With this signif-

icant simulation speedup, the proposed approach enables for

the first time a waveform-accurate and exhaustive simulation

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEM, VOL. YYY, NO. ZZZ, MONTH YEAR

of small delay faults under variation for large industrial designs

with more than a million gates. Future work will include

the application of the waveform-accurate simulation algorithm

for accurate power and IR-drop estimation to investigate the

impact on circuit timing and fault detection in the presence of

variation for multi-million gate designs.

ACKNOWLEDGMENT

This work has been funded by the German Research

Foundation (DFG) within the project PARSIVAL under con-

tract WU 245/16-1 as well as the Japan Society for the

Promotion of Science (JSPS) under JSPS Grant-in-Aid for

Scientific Research (B) #25280016, JSPS Grant-in-Aid for

Scientific Research on Innovative Areas #15K12003, JSPS

Grant-in-Aid for the Promotions of Bilateral Joint Research

Projects (Japan-Germany) and the German Academic Ex-

change Service (DAAD) as part of the exchange project

#57155440 in collaboration with the JSPS.

REFERENCES

[1] S. R. Nassif, “Modeling and Analysis of Manufacturing Variations,” in
Proc. IEEE Custom Integrated Circuits Conf. (CICC), May 2001, pp.
223–228.

[2] A. Srivastava, D. Sylvester, and D. Blaauw, Statistical Analysis and

Optimization for VLSI: Timing and Power. Springer, 2005.

[3] ITRS. (2013) The International Technology Roadmap for
Semiconductors: 2013. [Online]. Available: http://www.itrs2.net/2013-
itrs.html [Accessed: Feb. 2, 2016]

[4] R. Rodrı́guez Montañés, J. P. de Gyvez, and P. Volf, “Resistance Char-
acterization for Weak Open Defects,” IEEE Design Test of Computers,
vol. 19, no. 5, pp. 18–26, Sep. 2002.

[5] Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S.-H. Lo,
G. A. Sai-Halasz, R. G. Viswanathan, H.-J. C. Wann, S. J. Wind, and
H. S. Wong, “CMOS Scaling into the Nanometer Regime,” Proceedings

of the IEEE, vol. 85, no. 4, pp. 486–504, Apr. 1997.

[6] A. K. Pramanick and S. M. Reddy, “On the Fault Coverage of Gate
Delay Fault Detecting Tests,” IEEE Trans. on Computer-Aided Design

of Integrated Circuits and Systems, vol. 16, no. 1, pp. 78–94, Jan. 1997.

[7] J. A. Waicukauski, E. Lindbloom, B. K. Rosen, and V. S. Iyengar,
“Transition Fault Simulation,” IEEE Design Test of Computers, vol. 4,
no. 2, pp. 32–38, Apr. 1987.

[8] Y. M. Kim, Y. Kameda, H. Kim, M. Mizuno, and S. Mitra, “Low-Cost
Gate-Oxide Early-Life Failure Detection in Robust Systems,” in Proc.

IEEE Symp. on VLSI Circuits (VLSIC), Jun. 2010, pp. 125–126.

[9] S. Hellebrand, T. Indlekofer, M. Kampmann, M. A. Kochte, C. Liu, and
H.-J. Wunderlich, “FAST-BIST: Faster-than-At-Speed BIST Targeting
Hidden Delay Defects,” in Proc. IEEE Int’l Test Conf. (ITC), Oct. 2014,
pp. 1–8, Paper 29.3.

[10] I. Polian, B. Becker, S. Hellebrand, H. Wunderlich, and P. Maxwell,
“Towards Variation-Aware Test Methods,” in Proc. IEEE 16th European

Test Symp. (ETS), May 2011, pp. 219–225.

[11] M. Sauer, A. Czutro, I. Polian, and B. Becker, “Small-Delay-Fault ATPG
with Waveform Accuracy,” in Proc. IEEE/ACM Int’l Conf. on Computer-

Aided Design (ICCAD), Nov. 2012, pp. 30–36.

[12] S. Eggersglüß and R. Drechsler, High Quality Test Pattern Generation

and Boolean Satisfiability. Springer New York, 2012.

[13] X. Qian and A. D. Singh, “Distinguishing Resistive Small Delay Defects
from Random Parameter Variations,” in Proc. IEEE 19th Asian Test

Symp. (ATS), Dec. 2010, pp. 325–330.

[14] M. Tehranipoor, K. Peng, and K. Chakrabarty, Test and Diagnosis for

Small-Delay Defects. Springer New York, 2011.

[15] S. M. Lin, C. J.and Reddy, “On Delay Fault Testing in Logic Circuits,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits and

Systems, vol. 6, no. 5, pp. 694–703, Sep. 1987.

[16] J. P. Hayes, “Digital Simulation with Multiple Logic Values,” IEEE

Trans. on Computer-Aided Design of Integrated Circuits and Systems,
vol. 5, no. 2, pp. 274–283, Apr. 1986.

[17] V. S. Iyengar, B. K. Rosen, and J. A. Waicukauski, “On Computing
the Sizes of Detected Delay Faults,” IEEE Trans. on Computer-Aided

Design of Integrated Circuits and Systems, vol. 9, no. 3, pp. 299–312,
Mar. 1990.

[18] S. Bose, H. Grimes, and V. D. Agrawal, “Delay Fault Simulation with
Bounded Gate Delay Model,” in Proc. Int’l Test Conf. (ITC), Oct. 2007,
pp. 1–10, Paper 26.3.

[19] E. S. Park, M. R. Mercer, and T. W. Williams, “Statistical Delay Fault
Coverage and Defect Level for Delay Faults,” in Proc. Int’l Test Conf.

(ITC), Sep. 1988, pp. 492–499, Paper 25.3.

[20] Y. Sato, S. Hamada, T. Maeda, A. Takatori, Y. Nozuyama, and S. Kaji-
hara, “Invisible Delay Quality – SDQM Model Lights Up What Could
Not Be Seen,” in Proc. IEEE Int’l Test Conf. (ITC), Nov. 2005, pp. 1–9,
Paper 47.1.

[21] H. Konuk, “On Invalidation Mechanisms for Non-Robust Delay Tests,”
in Proc. Int’l Test Conf. (ITC), Oct. 2000, pp. 393–399, Paper 14.3.

[22] I. Pomeranz and S. M. Reddy, “Hazard-Based Detection Conditions for
Improved Transition Fault Coverage of Scan-Based Tests,” IEEE Trans.

on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 2, pp.
333–337, Feb. 2010.

[23] C. Han and A. D. Singh, “Improving CMOS Open Defect Coverage
Using Hazard Activated Tests,” in Proc. IEEE 32nd VLSI Test Symp.

(VTS), Apr. 2014, pp. 1–6.

[24] A. Czutro, N. Houarche, P. Engelke, I. Polian, M. Comte, M. Renovell,
and B. Becker, “A Simulator of Small-Delay Faults Caused by Resistive-
Open Defects,” in Proc. 13th European Test Symp. (ETS), May 2008,
pp. 113–118.

[25] A. Czutro, M. E. Imhof, J. Jiang, A. Mumtaz, M. Sauer, B. Becker,
I. Polian, and H.-J. Wunderlich, “Variation-Aware Fault Grading,” in
Proc. IEEE 21st Asian Test Symp. (ATS), Nov. 2012, pp. 344–349.

[26] M. Sauer, I. Polian, M. E. Imhof, A. Mumtaz, E. Schneider, A. Czutro,
H.-J. Wunderlich, and B. Becker, “Variation-Aware Deterministic
ATPG,” in Proc. IEEE 19th European Test Symp. (ETS), May 2014,
pp. 1–6.

[27] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “GPU Computing,” Proceedings of the IEEE, vol. 96, no. 5,
pp. 879–899, May 2008.

[28] D. Chatterjee, A. DeOrio, and V. Bertacco, “GCS: High-Performance
Gate-Level Simulation with GP-GPUs,” in Proc. Design, Automation

Test in Europe (DATE), Apr. 2009, pp. 1332–1337.

[29] ——, “Event-Driven Gate-Level Simulation with GP-GPUs,” in Proc.

ACM/IEEE 46th Design Automation Conf. (DAC), Jul. 2009, pp. 557–
562.

[30] K. Gulati and S. P. Khatri, “Towards Acceleration of Fault Simulation
using Graphics Processing Units,” in Proc. ACM/IEEE 45th Design

Automation Conf. (DAC), Jun. 2008, pp. 822–827, Paper 45.1.

[31] M. A. Kochte, M. Schaal, H. Wunderlich, and C. G. Zoellin, “Efficient
Fault Simulation on Many-Core Processors,” in Proc. ACM/IEEE 47th

Design Automation Conf. (DAC), Jun. 2010, pp. 380–385, Paper 23.4.

[32] M. Li and M. S. Hsiao, “FSimGP2: An Efficient Fault Simulator with
GPGPU,” in Proc. IEEE 19th Asian Test Symp. (ATS), Dec. 2010, pp.
15–20.

[33] H. Li, D. Xu, Y. Han, K. T. Cheng, and X. Li, “nGFSIM : A GPU-Based
Fault Simulator for 1-to-n Detection and its Applications,” in Proc. IEEE

Int’l Test Conf. (ITC), Nov. 2010, pp. 1–10, Paper 12.1.

[34] J. G. Tong, M. Boule, and Z. Zilic, “Efficient Data Encoding for
Improving Fault Simulation Performance on GPUs,” in Proc. Int’l Symp.

on Electronic System Design (ISED), Dec. 2013, pp. 138–142.

[35] S. Holst, M. E. Imhof, and H.-J. Wunderlich, “High-Throughput Logic
Timing Simulation on GPGPUs,” ACM Trans. on Design Automation of

Electronic Systems (TODAES), vol. 20, no. 3, pp. 1–22, Jun. 2015.

[36] E. Schneider, S. Holst, M. A. Kochte, X. Wen, and H.-J. Wunderlich,
“GPU-Accelerated Small Delay Fault Simulation,” in Proc. ACM/IEEE

Conf. on Design, Automation Test in Europe (DATE), Mar. 2015, pp.
1174–1179.

[37] NVIDIA Corporation. (2016) High Performance Computing (HPC)
and Supercomputing — NVIDIA Tesla — NVIDIA. [Online]. Avail-
able: http://www.nvidia.com/object/tesla-supercomputing-solutions.html
[Accessed: Feb. 2, 2016]

[38] K. Gulati and S. P. Khatri, “Accelerating Statistical Static Timing
Analysis Using Graphics Processing Units,” in Proc. Asia and South

Pacific Design Automation Conf. (ASP-DAC), Jan. 2009, pp. 260–265,
Paper 3B–1.

[39] V. S. Iyengar and D. T. Tang, “On simulating faults in parallel,” in Proc.

18th Int’l Symp. on Fault-Tolerant Computing (FTCS), Jun. 1988, pp.
110–115.

SCHNEIDER et al.: GPU-ACCELERATED SIMULATION OF SMALL DELAY FAULTS 13

[40] IEEE Computer Society, “IEEE Standard for Standard Delay Format
(SDF) for the Electronic Design Process,” IEEE Std 1497-2001, Dec.
2001.

[41] R. M. Karp, “Reducibility Among Combinatorial Problems,” in Proc.

Symp. on Complexity of Computer Computations, Mar. 1972, pp. 85–
103.

[42] P. S. Zuchowski, P. A. Habitz, J. D. Hayes, and J. H. Oppold, “Pro-
cess and Environmental Variation Impacts on ASIC Timing,” in Proc.

IEEE/ACM Int’l Conf. on Computer Aided Design (ICCAD), Nov. 2004,
pp. 336–342.

[43] D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd Ed.):

Seminumerical Algorithms. Addison-Wesley Publishing Co., Inc., 1997.
[44] M. Sauer, A. Czutro, B. Becker, and I. Polian, “On the Quality of Test

Vectors for Post-Silicon Characterization,” in Proc. IEEE 17th European

Test Symp. (ETS), May 2012, pp. 158–163.
[45] A. Agarwal, D. Blaauw, and V. Zolotov, “Statistical Timing Analysis

for Intra-Die Process Variations with Spatial Correlations,” in Proc. Int’l

Conf. on Computer Aided Design (ICCAD), Nov. 2003, pp. 900–907.
[46] Nangate Inc. (2016) NanGate 45nm Open Cell Library. [Online].

Available: http://www.nangate.com/ [Accessed: Feb. 2, 2016]

Eric Schneider received the diploma degree in
computer science (Dipl.-Inf.) from the University of
Stuttgart, Germany, in 2012. There he joined the
Institute of Computer Architecture and Computer
Engineering (ITI), where he is currently working
towards his Ph.D. His research interests include ac-
celerated circuit simulation on Graphics Processing
Units (GPUs), circuit test and diagnosis. He is a
student member of the IEEE.

Michael A. Kochte received a diploma in computer
science in 2007 and a Dr. rer. nat. (Ph.D.) from
the University of Stuttgart, Germany, in 2014. He
is currently with the Institute for Computer Archi-
tecture and Computer Engineering of the University
of Stuttgart and leads the research group for Depend-
able Hardware. Dr. Kochte received a best disserta-
tion award and two best paper awards (DELTA’08,
JETTA’14). In addition to reconfigurable computing,
his research interests include hardware reliability and
hardware security.

Stefan Holst received his Ph.D. in the field of
computer science from the University of Stuttgart,
Germany, in 2012. He now serves as assistant pro-
fessor in the Department of Creative Informatics at
Kyushu Institute of Technology, Japan. His research
interests include GPU-accelerated simulation and
diagnosis of logic circuits, power-aware test and
design-for-test. Furthermore, he is interested in rapid
prototyping and device development in areas like
rehabilitation and healthcare. He is a member of
IEEE.

Xiaoqing Wen received the B.E. degree from Ts-
inghua University, China, in 1986, the M.E. degree
from Hiroshima University, Japan, in 1990, and the
Ph.D. degree from Osaka University, Japan, in 1993.
From 1993 to 1997, he was an Assistant Professor
at Akita University, Japan. He was a Visiting Re-
searcher at University of Wisconsin, Madison, USA,
from Oct. 1995 to Mar. 1996. He joined SynTest
Technologies, Inc., USA, in 1998, and served as its
Chief Technology Officer until 2003. In 2004, he
joined Kyushu Institute of Technology, Japan, where

he is currently a Professor and the Director of Dependable Integrated Systems
Research Center. His research interests include VLSI test, diagnosis, and
testable design. He co-authored and co-edited two books: VLSI Test Principles
and Architectures: Design for Testability (Morgan Kaufmann, 2006) and
Power-Aware Testing and Test Strategies for Low Power Devices (Springer,
2009). He holds 41 U.S. Patents and 14 Japan Patents on VLSI testing. He
received the 2008 IEICE-ISS Best Paper Award for his pioneering work on
X-filling-based low-capture-power test generation. He is a Fellow of the IEEE,
a member of the IEICE, the IPSJ, and the REAJ. He is serving as associate
editors for IEEE Transactions on Computer-Aided Design, IEEE Transactions
on VLSI, and the Journal of Electronic Testing: Theory and Applications.

Hans-Joachim Wunderlich received the diploma
degree in mathematics from the University of
Freiburg, Germany, in 1981 and the Dr. rer. nat.
(Ph.D. degree) from the University of Karlsruhe
in 1986. Since 1991, he has been a full professor
and since 2002 he has been the director of the
Institute of Computer Architecture and Computer
Engineering at the University of Stuttgart, Germany.
He is editor of various international journals and
program committee member of a variety of IEEE
conferences on design and test of electronic systems.

He has published 11 books and book chapters and more than 250 reviewed
scientific papers in journals and conferences. His research interests include
test, reliability, and fault tolerance of microelectronic systems. He is a fellow
of the IEEE.

