
Pushing the Limits: How Fault Tolerance

Extends the Scope of Approximate

Computing

Wunderlich, Hans-Joachim; Braun, Claus; Schöll, Alexander

Proceedings of the 22nd IEEE International Symposium on On-Line Testing and Robust

System Design (IOLTS’16) Sant Feliu de Guixols, Catalunya, Spain, 4-6 July 2016

doi: http://dx.doi.org/10.1109/IOLTS.2016.7604686

Abstract: Approximate computing in hardware and software promises significantly improved computational

performance combined with very low power and energy consumption. This goal is achieved by both relaxing

strict requirements on accuracy and precision, and by allowing a deviating behavior from exact Boolean

specifications to a certain extent. Today, approximate computing is often limited to applications with a certain

degree of inherent error tolerance, where perfect computational results are not always required. However, in

order to fully utilize its benefits, the scope of applications has to be significantly extended to other compute-

intensive domains including science and engineering. To meet the often rather strict quality and reliability

requirements for computational results in these domains, the use of appropriate characterization and fault

tolerance measures is highly required. In this paper, we evaluate some of the available techniques and how

they may extend the scope of application for approximate computing.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic

reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form

to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

http://dx.doi.org/10.1109/IOLTS.2016.7604686

Pushing the Limits: How Fault Tolerance Extends

the Scope of Approximate Computing

Hans-Joachim Wunderlich, Claus Braun, Alexander Schöll

Institute of Computer Architecture and Computer Engineering, University of Stuttgart

Pfaffenwaldring 47, D-70569, Germany, Email: {wu,braun,schoell}@informatik.uni-stuttgart.de

Abstract—Approximate computing in hardware and software
promises significantly improved computational performance com-
bined with very low power and energy consumption. This goal
is achieved by both relaxing strict requirements on accuracy
and precision, and by allowing a deviating behavior from exact
Boolean specifications to a certain extent. Today, approximate
computing is often limited to applications with a certain degree of
inherent error tolerance, where perfect computational results are
not always required. However, in order to fully utilize its benefits,
the scope of applications has to be significantly extended to other
compute-intensive domains including science and engineering. To
meet the often rather strict quality and reliability requirements
for computational results in these domains, the use of appropriate
characterization and fault tolerance measures is highly required.
In this paper, we evaluate some of the available techniques and
how they may extend the scope of application for approximate
computing.

Index Terms—Approximate Computing, Variable Precision,
Metrics, Characterization, Fault Tolerance

I. INTRODUCTION

The approximate computing paradigm spans the whole sys-

tem stack from hardware up to software and algorithms [1, 2].

By exploiting the error tolerance and robustness of certain ap-

plications, approximate computing trades of precision against

power, energy, storage, bandwidth, and performance. Origi-

nally strict requirements of near-perfect precision are relaxed,

and deviating behavior from exact (e.g. Boolean) specifications

is allowed to some extent. The current scope of applications

for approximate computing can be roughly classified into the

following four categories: Applications with imprecise inputs,

where subsequent computations do not have to be more precise

then the input data allows. Such applications include, for

instance, voice recognition, motion detection or processing of

sensor data. Applications with imprecise outputs, where the

required output quality is defined by human perception. Well-

known examples are audio, image and video processing in

multimedia applications. Applications with ambiguous outputs

computed based on heuristics or stochastic algorithms. This

category also covers modern machine learning applications,

as well as big data mining and analytics. Applications with

convergent outputs that are computed based on optimization

techniques or iterative methods, where the output may vary

depending on the computational precision.

To extend the range of applications, it is essential to

distinguish and clarify the terms accuracy and precision for

approximate computing. Accuracy corresponds to the proba-

bility that a computed result is within a specified distance to

the exact value. The precision of the underlying computations

corresponds to this distance and can be determined by different

error metrics [1] which quantify the average deviation between

approximated results and their corresponding precise counter-

parts. The error significance describes the approximation error

severity. For arithmetic results, the error significance between

precise results p and approximated results a can be quantified,

among others, by the absolute error

εabs := |p− a|

and the relative error

εrel :=
|p− a|

|p|
.

The error rate quantifies the relation between the number of

input values and the number of approximate results a that are

unequal to the precise result p:

errorrate :=
|imprecise results|

|input values|

Besides, application-specific error metrics were proposed, that

are also able to evaluate the accuracy of application results [3].

Precision is a characteristic of the approximate hardware, or

more general, the approximate arithmetic itself. Approximate

arithmetic structures such as adders or multipliers that exhibit

a large degree of approximation are typically associated with a

lower precision, meaning that the results of their operations are

allowed to deviate more from the exact computational result.

Accuracy, in turn, is a requirement defined by the application,

in particular by its underlying algorithms and the processed

data. In Figure 1, an exact value is indicated by a red dot.

Based on the accuracy requirements of the target application,

a range of potential values with tolerable error is formed

around the exact value, bounded by appropriate error bounds.

The blue and the violet curve characterize two different

approximate arithmetic structures with different precisions.

The potential computational results within the blue curve (high

precision) may meet the application’s accuracy requirements.

The computational results within the violet curve, however,

are more likely to reside outside of the tolerable error range.

To cover also the requirements of scientific computing

applications, the design space with the objective parameters

area, energy, precision, performance and dependability has

Probability

Exact

value

Higher

precision

Application’s

required

minimum

accuracy

Lower

precision

Error

bounds

Intolerable

Errors

Value

Fig. 1. Relation between accuracy and precision.

to extend its focus from precision to accuracy (Figure 2).

Hence, the required minimum accuracy of a target application

becomes a key design aspect, which has direct influence on

the weighting of all the other cornerstones of the design space.

Depend-

ability

Precision Accuracy

Perfor-

mance

Perfor-

mance

Area

Efficiency

Energy

Efficiency

Energy

Efficiency

Area

Efficiency

Depend-

ability

Fig. 2. Changing design space for approximate computing.

Domains such as scientific high-performance computing

(HPC) and engineering often pose rather strict requirements

on the accuracy of computational results in order to draw

reliable and trustworthy conclusions. One major challenge in

the new design space for approximate computing is therefore

the development of architectures and algorithms which guar-

antee certain properties of the computational results and errors

within known and controllable boundaries.

Detailed and efficient characterization is mandatory to

determine appropriate error boundaries for applications in

approximate computing either offline or online at runtime.

Appropriate fault tolerance measures, in turn, can be used

as an effective tool at software and algorithm level to control

such error boundaries and to tackle critical errors outside of the

allowed range to assure the quality of computational results.

II. PROBABILISTIC ERROR FUNCTIONS FOR

CHARACTERIZATION AND FAULT TOLERANCE

The maximum tolerable error (MTE) εmax is an essential

criterion for every application in approximate computing since

it decides on the degree of approximation that can be applied.

Allowed errors are those errors, due to approximation or other

causes, which reside within the boundaries set by the MTE.

One of the main goals of characterization in approximate

computing is therefore the efficient determination of these

boundaries. Based on the characterization information, ap-

propriate fault tolerance measures such as Algorithm-Based

Fault Tolerance [4] can then be applied to monitor and control

the error behavior and to tackle critical errors outside of the

allowed error boundaries. Since the MTE does not only depend

on the underlying algorithms but also significantly on the

processed data, the characterization has to be data-aware.

Probabilistic error functions (PEF) provide information

about the behavior and characteristics of errors based on a

probabilistic model. PEFs have been introduced, for instance,

for the analysis of rounding errors in floating-point and log-

arithmic arithmetic [5, 6]. For applications from science and

engineering, probabilistic error functions form an attractive

and data-aware option for the estimation of error boundaries

in approximate computing. The basic idea of PEFs is to

determine a confidence interval

Iεmax
:= [E(εmax)− ω · σ(εmax), E(εmax) + ω · σ(εmax)]

for the maximum tolerable error consisting of the error’s ex-

pectation value E(εmax) and its standard deviation σ(εmax).
In order to compute these values, an appropriate probability

distribution is required. Here, the fact can be exploited that

the mantissas m of normalized floating-point numbers start to

follow a reciprocal distribution

r(m) =
1

m · ln(2)
, with m ∈ [

1

2
, 1),

after the application of basic arithmetic operations ◦ ∈
{+,−, ·, /} [7, 8] (see Figure 3). In [5], terms for the ex-

r(
m

)

1,5

2,0

2,5

3,0

Significand m

0,5 0,6 0,7 0,8 0,9 1,0

Reciprocal Distribution of Significands for Base 2

Fig. 3. Reciprocal distribution of floating-point significands.

pectation value and variance of the error in mantissas after

the application of the four basic arithmetic operations have

been introduced as

E(ε∗) =
1

3
· 2−2t and V ar(ε∗) =

1

12
· 2−2t

for multiplication and division, as well as

E(ε+) = 0 and V ar(ε+) ≤
1

8
· 2−2t

for addition and subtraction. In these equations the term t
denotes the number of bits used to represent the mantissas

within a floating-point number. By using these terms as

building blocks, the expectation value, variance and standard

deviation of the MTE for more complex, composite arithmetic

operations can be derived. If a floating-point number f is

the result of a sequence of n independent operations, the

expectation value and variance of the MTE are given as

E(εmax) =

n∑

i=1

E(ε) and V ar(εmax) =

n∑

i=1

V ar(ε),

where ε can be either ε∗ or ε+.

In [9], probabilistic error functions have been applied to

estimate the maximum tolerable error in checksum elements

of ABFT-protected matrix operations [4]. These elements are

computed as inner products for which the expectation value

and variance can be computed according to the basic terms

given above. The probabilistic error bound has been estimated

for each checksum element and has then been used as thresh-

old during the result checking procedure, where checksums

from before and after the matrix multiplication are compared.

Differences of checksums that exceeded the threshold value

were detected as error and corrected subsequently.

Based on the information on the maximum tolerable error

provided by the PEF, the number of required precise bits can

be determined for a computation. Figure 4 shows exemplarily

a histogram with these numbers of required precise bits for a

matrix-matrix multiplication. The input values for the matrix

0%

10%

20%

30%

Required Precise Bits

525150494847464544434241403938373635343332313029

Matrix Dimension 512x512

Up to 7 LSB bits

available for

approximation

Fig. 4. Example of characterization for matrix-matrix multiplication.

multiplication in this case where uniformly distributed random

numbers. The histogram shows that up to 45 precise bits in

the mantissa are required, based on the characterization by the

PEF. As a consequence for this matrix multiplication, result

values with up to 7 approximate bits can be tolerated.

III. EXTENDING APPROXIMATE COMPUTING TO

ITERATIVE LINEAR SOLVERS USING FAULT TOLERANCE

Large-scale applications from the science and engineering

domain often rely on systems of linear equations and their

solutions. One of the most common solvers is the Precondi-

tioned Conjugate Gradient (PCG) method [10], which solves

linear systems of the form Ax = b iteratively. Compared to

direct methods like e.g. the Gaussian-Elimination, PCG finds

solutions typically faster.

Static approximation techniques that use single degrees of

precision for arithmetic operations are often not suitable for

iterative methods as the underlying error resilience may change

over time [11]. With static approximation techniques being

applied, the typically constant approximation error can exceed

the changing error resilience at different points in time, leading

to wrong solutions or additional iterations required for correct

convergence. Relaxing the solution accuracy constraint (i.e.

Ax ≈ b) to avoid additional energy demand is not feasible

as science and engineering applications typically rely on tight

accuracy constraints. Instead, the level of approximation (i.e.

underlying precision) has to be exchanged at runtime accord-

ing to the changing error resilience. Different approximate

hardware designs such as [12–14] provide such exchangeable

approximation levels. However, the error resilience must be

continuously evaluated during the iterative solving process

to minimize energy demands while ensuring correct solver

results.

The residual δk := ||b − Axk||2 determines the accuracy

of an intermediate result xk with respect to the solution x
after iteration k. The accuracy of the intermediate result xk

improves with a decreasing residual δk. PCG iterations are

performed until some acceptable result accuracy ǫ is satisfied

(e.g. δk < ǫ) which allows to accept the intermediate result

xk as result. Reductions in energy demand can be achieved

by minimizing the precision for the underlying arithmetic

computations while maintaining the accuracy of single PCG

iterations. The intermediate results xk of PCG iterations are

accurate, if the inherent PCG convergence invariants are

satisfied for successive PCG iterations. By assuring the ac-

curacy for all intermediate results, accurate PCG results with

a minimum number of iterations are obtained. PCG represents

the solution x as a linear combination of search directions

{p0, p1, p2, ..., pN} and x = x0 +
∑

k≤N
αkpk. In order to

achieve correct convergence [10], these search directions must

be A-orthogonal:

pkApi ≈ 0, k 6= i.

At the same time, the internally used residual variable δ′
k

must

represent the actual residual with

δ′k ≈ δk := ||b−Axk||2.

The fault tolerance technique presented in previous works

[15, 16] evaluates these inherent convergence invariants effi-

ciently to detect errors with high coverage. The approximation

technique sketched below can exploit this fault tolerance

technique to enable the execution of the Preconditioned Con-

jugate Gradient (PCG) with correct solutions on approximate

hardware. The underlying idea is to periodically estimate the

underlying error resilience from inherent solver properties

and to evaluate these estimations using this fault tolerance

technique. The error resilience is determined by the maximum

approximation error which is not violating the property of A-

orthogonality for successive search directions pk. While the

orientation in pk is increasingly affected by approximation

errors for smaller ||pk||2, it is typically less sensitive for large

||pk||2. For this reason, the magnitude of ||pk||2 is periodically

estimated for subsequent iterations using the tangential angle

ϕ in the intermediate result xk with ϕ := tan−1(δk). This

estimation is then translated to a level of approximation using

the function H(ϕ) : {[0◦, 90◦[→ N} which can be, for

instance, a step function. Afterwards, the fault tolerance tech-

nique periodically evaluates whether the chosen approximation

level is suitable for solver convergence. In case of a violation,

the underlying approximation level is exchanged by increased

precision.

This approximation approach has been evaluated using a

software-based model for approximate floating-point multi-

plication. For the highest approximation level, 35 operand

bits were approximated (i.e. multiplication using 17 precise

bits) while the lowest approximation level provides complete

precision. As benchmarks, 14 matrices from the Florida Sparse

Matrix Collection [17] were used. All evaluated experiments

converged to a correct solution. Experimental results show

that the number of iterations is only increased on average by

9.5% (as shown in Figure 5) while the complete hardware

utilization is reduced on average by 14.5% (as shown in

Figure 6) compared to executing PCG on precise hardware. A

reduction in hardware utilization can be observed for 11 out of

14 matrices. These reductions of hardware utilization can be

explained by the efficiency of the underlying fault tolerance

technique that induces only low runtime overhead to evaluate

the inherent solver properties.

-30%

-15%

0%

15%

30%

45%

R
e
d
u
c
ti

o
n
 i
n

h
a
rd

w
a
re

 u
ti

li
z
a
ti

o
n

IOLTS

0%

10%

20%

30%

A
v
e
ra

g
e

it
e
ra

ti
o
n
 o

v
e
rh

e
a
d

Fig. 5. Average iteration overhead compared to execution on precise
hardware.

-30%

-15%

0%

15%

30%

45%

R
e
d
u
c
ti

o
n
 i
n

h
a
rd

w
a
re

 u
ti

li
z
a
ti

o
n

IOLTS

0%

10%

20%

30%

A
v
e
ra

g
e

it
e
ra

ti
o
n
 o

v
e
rh

e
a
d

Fig. 6. Reduction in hardware utilization compared to execution on precise
hardware.

IV. CONCLUSION

Approximate computing promises high computational per-

formance combined with low resource requirements. In do-

mains such as scientific computing and engineering, com-

putational results typically have to fulfill certain accuracy

and reliability requirements, which often can not directly be

supported by approximate computing. However, combinations

of efficient application characterization and effective fault

tolerance measures can help to enable approximate computing

in these domains. Probabilistic error functions are an attractive

option for the estimation of boundaries for the maximum toler-

able error, which can then be monitored and controlled by fault

tolerance techniques such as ABFT. The application of PEFs

with ABFT for linear algebra matrix operations has already

been successfully demonstrated. Moreover, highly optimized

fault tolerance techniques that exploit inherent algorithmic

invariants can be used to enable the use of approximate

computations, for instance, for iterative linear system solvers.

V. ACKNOWLEDGMENT

The authors would like to thank the German Research Foundation
(DFG) for financial support of the project within the Cluster of
Excellence in Simulation Technology (EXC 310/2) at the University
of Stuttgart.

BIBLIOGRAPHY

[1] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design”, in Proc. 18th IEEE European

Test Symposium (ETS’13), May 2013, pp. 1–6.
[2] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan,

“Approximate Computing and the Quest for Computing Efficiency”, in
Proc. 52nd ACM/EDAC/IEEE Design Automation Conference (DAC’15),
June 2015, pp. 1–6.

[3] B. Grigorian and G. Reinman, “Dynamically adaptive and reliable
approximate computing using light-weight error analysis”, in Proc.

NASA/ESA Conference on Adaptive Hardware and Systems (AHS’14),
July 2014, pp. 248–255.

[4] K.-H. Huang and J. A. Abraham, “Algorithm-Based Fault Tolerance
for Matrix Operations”, IEEE Trans. on Computers, vol. 33, no. 6, pp.
518–528, Jun. 1984.

[5] J. L. Barlow and E. H. Bareiss, “On Roundoff Error Distributions in
Floating Point and Logarithmic Arithmetic”, Computing, vol. 34, no. 4,
pp. 325–347, 1985.

[6] J. L. Barlow and E. H. Bareiss, “Probabilistic Error Analysis of
Gaussian Elimination in Floating Point and Logarithmic Arithmetic”,
Computing, vol. 34, no. 4, pp. 349–364, 1985. [Online]. Available:
http://dx.doi.org/10.1007/BF02251834

[7] R. W. Hamming, “On the Distribution of Numbers”, Bell System

Technical Journal, vol. 49, no. 8, pp. 1609–1625, 1970.
[8] R. S. Pinkham, “On the Distribution of First Significant Digits”, The

Annals of Mathematical Statistics, vol. 32, no. 4, pp. 1223–1230, 1961.
[Online]. Available: http://www.jstor.org/stable/2237922

[9] C. Braun, S. Halder, and H.-J. Wunderlich, “A-ABFT: Autonomous
Algorithm-Based Fault Tolerance for Matrix Multiplications on Graphics
Processing Units”, in Proc. 44th IEEE/IFIP Intl. Conf. on Dependable

Systems and Networks (DSN’14), Atlanta, GA, USA, Jun. 2014, pp.
443–454.

[10] Y. Saad, Iterative Methods for Sparse Linear Systems. Siam, 2003.
[11] Q. Zhang, F. Yuan, R. Ye, and Q. Xu, “ApproxIt: An Approxi-

mate Computing Framework for Iterative Methods”, in Proc. 51st

ACM/EDAC/IEEE Design Automation Conference (DAC’14), 2014, pp.
1–6.

[12] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approx-
imate arithmetic designs”, in Proceedings of the 49th Annual Design

Automation Conference. ACM, 2012, pp. 820–825.
[13] H. Zhang, W. Zhang, and J. Lach, “A Low-Power Accuracy-

Configurable Floating Point Multiplier”, in IEEE International Confer-

ence on Computer Design (ICCD), Seoul, South Korea, Oct. 2014, pp.
48–54.

[14] C. Liu, J. Han, and F. Lombardi, “A Low-Power, High-Performance
Approximate Multiplier with Configurable Partial Error Recovery”, in
Proceedings of the Conference on Design, Automation & Test in Europe

(DATE’14), Dresden, Germany, 2014, pp. 95:1–95:4.
[15] A. Schöll, C. Braun, M. A. Kochte, and H.-J. Wunderlich, “Efficient

On-Line Fault-Tolerance for the Preconditioned Conjugate Gradient
Method”, in Proc. IEEE Intl. On-Line Testing Symposium (IOLTS), Elia,
Greece, Jul. 2015, pp. 95–100.

[16] A. Schöll, C. Braun, M. A. Kochte, and H.-J. Wunderlich, “Low-
Overhead Fault-Tolerance for the Preconditioned Conjugate Gradient
Solver”, in Proc. Intl. Symp. on Defect and Fault Tolerance in VLSI

and Nanotechnology Systems (DFT’15), Amherst, MA, Oct. 2015, pp.
60–66.

[17] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection”, ACM Trans. on Mathematical Software, vol. 38, no. 1, pp.
1:1–1:25, Nov. 2011.

