
Applying Efficient Fault Tolerance to Enable

the Preconditioned Conjugate Gradient

Solver on Approximate Computing Hardware

Schöll, Alexander; Braun, Claus; Wunderlich, Hans-Joachim

Proceedings of the IEEE International Symposium on Defect and Fault Tolerance in VLSI

and Nanotechnology Systems (DFT’16) University of Connecticut, USA, 19-20 September

2016

doi: http://dx.doi.org/10.1109/DFT.2016.7684063

Abstract: A new technique is presented that allows to execute the preconditioned conjugate gradient (PCG)
solver on approximate hardware while ensuring correct solver results. This technique expands the scope of
approximate computing to scientific and engineering applications. The changing error resilience of PCG during
the solving process is exploited by different levels of approximation which trade off numerical accuracy and
hardware utilization. Such approximation levels are determined at runtime by periodically estimating the
error resilience. An efficient fault tolerance technique allows reductions in hardware utilization by ensuring
the continued exploitation of maximum allowed energy-accuracy trade-offs. Experimental results show that
the hardware utilization is reduced on average by 14.5% and by up to 41.0% compared to executing PCG on
accurate hardware.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic
reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form
to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

http://dx.doi.org/10.1109/DFT.2016.7684063

Applying Efficient Fault Tolerance to Enable the Preconditioned Conjugate Gradient

Solver on Approximate Computing Hardware

Alexander Schöll, Claus Braun and Hans-Joachim Wunderlich

Institute of Computer Architecture and Computer Engineering, University of Stuttgart

Pfaffenwaldring 47, D-70569, Germany, Email: {schoell,braun,wu}@informatik.uni-stuttgart.de

Abstract—A new technique is presented that allows to
execute the preconditioned conjugate gradient (PCG) solver
on approximate hardware while ensuring correct solver results.
This technique expands the scope of approximate computing
to scientific and engineering applications. The changing error
resilience of PCG during the solving process is exploited by
different levels of approximation which trade off numerical
precision and hardware utilization. Such approximation levels
are determined at runtime by periodically estimating the
error resilience. An efficient fault tolerance technique allows
reductions in hardware utilization by ensuring the continued
exploitation of suitable energy-precision trade-offs. Experimen-
tal results show that the hardware utilization is reduced on
average by 14.5% and by up to 41.0% compared to executing
PCG on precise hardware.

Keywords-Approximate Computing, Fault Tolerance, Sparse
Linear System Solving, Preconditioned Conjugate Gradient

I. INTRODUCTION

Approximate computing constitutes an emerging

paradigm that exploits the inherent error resilience of

applications to trade-off computational precision in

exchange for reduced runtime or energy demands [1, 2].

Different applications in, for instance, multimedia and signal

processing exhibit error resilience to certain numerical errors

and often do not need to compute perfect results. The

resilience to such approximation errors allows the use

of energy-efficient approximate hardware or software-

based approximation techniques [3]. Different portions

in applications typically exhibit different sensitivities to

approximation errors [4]. At the same time, this error

resilience may also change over time. Such a behavior is

exhibited by different iterative methods like linear system

solvers [5].

Many large-scale applications in science and engineering

rely on linear systems including structural mechanics [6],

computational fluid dynamics [7], or power grid analysis

[8]. Therefore, the efficient solution of linear systems is an

essential computational task in high-performance computing

(HPC). The preconditioned conjugate gradient (PCG) solver

[9] is an iterative technique and one of the most important

methods to solve large linear systems of the form Ax = b.
Since the energy demands of such compute-intensive tasks

are already a constraining factor in future exascale HPC

systems [10], the expansion of approximate computing tech-

niques to applications in science and engineering is required

to overcome future energy challenges.

Such applications often rely on tight accuracy constraints

which render approximation techniques exploiting single

degrees of precision (e.g. relying on single approximate

hardware designs) unsuitable. The gained energy savings

are often canceled out by additional PCG iterations that are

required to achieve correct convergence. Instead, approxima-

tion levels LApprox that offer different degrees of precision

(e.g. with certain numbers of precise bits) [11–13] have to be

adaptively utilized according to the changing error resilience.

To ensure correct solver results while minimizing energy

demands, the error resilience must be dynamically evalu-

ated during the iterative solving process. Such a periodic

evaluation not only requires to estimate the error resilience

effectively, but also highly efficiently. One idea [5] is to begin

the execution using the lowest available degree of precision

which is increased if the underlying optimization function

is violated (i.e. for PCG: minx E(x) := 1

2
�Ax, x�−�b, x�

with �·, ·� being the inner product [14]). While this optimiza-

tion function can be directly evaluated for some iterative

methods, the PCG method, however, does not inherently

compute it. Additionally computing this function induces

significant runtime overheads since it requires additional

expensive matrix operations.

We present a new technique that allows the execution of

the PCG solver on approximate hardware to gain hardware

utilization reductions while still providing correct solver

results. Thus, this technique extends the application scope

of approximate computing to scientific and engineering

applications. The presented technique is based on the insight

that the error resilience can change over time. Exploiting this

observation requires the execution with changing degrees of

precision. To determine suitable approximation levels at run-

time, the error resilience is estimated using inherent solver

properties which induce only low hardware utilization. An

efficient fault tolerance technique such as [15] ensures the

continued exploitation of suitable energy-precision trade-

offs. At the same time, reductions in hardware utilization

are enabled by efficiently adapting approximation levels. The

hardware utilization translates to energy demand which can

be quantified by an in-depth analysis e.g. using standard

cell libraries. While such a technology-specific energy dis-

cussion is not in the scope of this work, the applicability

of approximate computing in the scientific and engineering

domain is shown. Experimental results show that the number

of iterations is only increased on average by 9.5% while

the complete hardware utilization is reduced on average by

14.5% compared to executing PCG on precise hardware.

II. PRECONDITIONED CONJUGATE GRADIENT METHOD

The PCG method [9] iteratively solves linear systems

Ax = b, when A is a symmetric positive-definite matrix.

Compared to direct methods like the Gaussian-Elimination,

PCG finds a solution typically faster. To make a clear dis-

tinction between the error induced by approximate hardware

and the outcomes of PCG iterations, we use the term inter-

mediate result for x, which is referred to as approximation x
in literature. The fundamental operations of the PCG solver

are shown in Algorithm 1. The inputs include a coefficient

matrix A, a right-hand side vector b, an initial guess vector

x0, a preconditioner M , and an upper limit for the number

of iterations kmax. The constraints for result accuracy are

set by tolerances � := (�a, �r) to accept a sufficiently good

intermediate result xk. Based on the initial guess vector

x0, each iteration of the PCG loop provides an improved

intermediate result xk with respect to the exact solution.

Algorithm 1: Preconditioned Conjugate Gradient

Input: A,M ,b, x0, �, kmax

1 r0 ← b−Ax0 ; // Initial residual vector

2 s0 ← M−1r0; // Preconditioning

3 p0 ← s0; // Initial search direction

4 δ0 ← rT0 r0; // Residual

5 k ← 0 ; // Iteration count

/* PCG loop */

6 while (δk > �a) ∧ (δk/δ0 > �r) ∧ (k < kmax) do
7 wk ← Apk;

8 γ ← rTk sk;
9 α ←

γ

pT
k
wk

;

10 xk+1 ← xk + αpk; // Next interm. result

11 rk+1 ← rk − αwk; // Update residual vector

12 sk+1 ← M−1rk+1; // Preconditioning

13 δk+1 ← rTk+1rk+1; // Update residual

14 β ←
rT
k+1

sk+1

γ
;

15 pk+1 ← sk+1 + βpk; // New search direction

16 k ← k + 1;
17 end

PCG represents the solution x as a linear combination

of search directions {p0, p1, p2, ..., pN} and x = x0 +�
k≤N

αkpk. In each subsequent iteration k, a new search

direction pk is computed from the residual rk such that

pi ⊥ Apk, k �= i. The time complexity of PCG depends

on both the size and the condition number of the matrix

A [9]. A suitable preconditioner M is able to diminish the

condition number of the matrix A, which improves the rate

of convergence.

As discussed further below, the error resilience of PCG is

closely related to the update vector length ||uk||2 (with uk =
xk−xk−1). Figure 1 shows two examples (cf. Section V-C)

for PCG executions in which the update vectors uk range

within several orders of magnitude before converging to a

correct result. The update vectors uk are often large for early

PCG iterations and approach zero when PCG converges to

the solution.

1E-‐10

1E-‐08

1E-‐06

1E-‐04

1E-‐02

1E+00

1E+02

1E+04

0 2000 4000 6000

1E-‐10

1E-‐08

1E-‐06

1E-‐04

1E-‐02

1E+00

1E+02

1E+04

0 700 1400 2100

Matrix MSC01050Matrix MSC10848

Update step size

Iterations Iterations

0

1

2

3

4

0 700 1400 2100

0

1

2

3

4

0 2000 4000 6000

Figure 1. Comparison of update vectors uk at runtime for two input
matrices A.

III. STATE OF THE ART

The approximate computing paradigm [1, 2] has been

applied to all layers of the computing stack including cir-

cuits, architectures and programming models. The spectrum

of proposed approximate hardware designs ranges from

approximate adder structures [16, 17] over approximate

floating-point components [12, 18] to structures that allow

to configure the underlying precision at runtime [11, 13, 19].

On the software level, the approximate nature of neural

networks is exploited to mimic certain algorithms [3]. In

[20], an approximate computing technique for a direct

Cholesky decomposition based solver is presented that tar-

gets well-conditioned problems arising in video processing

applications. For iterative methods on approximate com-

puting hardware, the technique in [5] starts the execution

using the lowest available degree of precision, which is

increased if the underlying optimization function is vio-

lated. While some iterative methods rely on evaluating their

underlying optimization function, Krylov-subspace methods

including PCG typically do not rely on this evaluation

to find solutions. For PCG, the optimization function is

minx E(x) := 1

2
�Ax, x� − �b, x� [14]. The periodic compu-

tation of this function induces significant runtime overheads

since it requires an additional expensive matrix-vector multi-

plication. Such additional matrix-vector multiplications often

cancel out potential energy savings as experimental results

(cf. Section V-E) show.

Different fault tolerance approaches were proposed for the

PCG method to detect and correct transient effects causing

soft errors: In [21], PCG is repeated on an auxiliary problem,

if an incorrect solution is detected after the completion of

PCG. In such a case, PCG is repeated on the obtained

residual Ad = r = (b−Ax). While the method aims to avoid

repetitions of PCG on the original problem, it awaits the

result after complete convergence of PCG before it applies

error detection. Inherently reliable system modes are period-

ically required in [22] to stabilize the solver execution. Such

stabilizations exploit the convergence conditions of PCG to

transform arbitrary iterations to valid iterations. The periodic

check of both the residual invariant (i.e. rk ≈ b−Axk) and

the orthogonality of consecutive search direction vectors is

used in [23] for error detection. In [15], we presented a

fault tolerance technique that exploits inherent orthogonality

invariants of PCG to check intermediate results for errors.

Instead of relying on expensive matrix operations to detect

errors as in [21–23] with complexity O(NNZ), this approach

only relies on inner products with complexity O(N) with

NNZ � N which allows very low runtime overheads. NNZ

is the number of non-zero elements in the matrix A with

size N×N.

IV. USING APPROXIMATE HARDWARE FOR THE

PRECONDITIONED CONJUGATE GRADIENT SOLVER

In this work, a new technique is presented that allows

to execute the preconditioned conjugate gradient (PCG)

solver on approximate hardware while ensuring correct

solutions within the required accuracy. The inherent error

resilience of PCG allows to trade off numerical precision

and hardware utilization (e.g. energy savings) for certain

PCG operations and iterations. Since the error resilience

may change between PCG iterations, different approxima-

tion levels LApprox that provide certain degrees of precision

are utilized and exchanged at runtime. Such approximation

levels are provided by approximate hardware designs such

as [11–13] that allow to configure the underyling precision.

To minimize the hardware utilization while ensuring correct

results, the inherent error resilience is periodically estimated

and matching approximation levels are determined. Such

approximation levels are periodically evaluated by exploiting

the error detection capability of fault tolerance techniques

[9, 15, 21–23]. These fault tolerance techniques check PCG’s

inherent convergence invariants to detect errors, which is

exploited by our technique to improve the approximation

level estimation. By applying our fault tolerance technique

from previous work [15], correct solver results are ensured

while the hardware utilization is effectively reduced.

Figure 2 shows the steps of our technique for the PCG

solver. The first step comprises the preparation of the PCG

algorithm which corresponds to lines 1 to 5 in Algorithm 1.

In the second step, the approximation level LApprox is pe-

riodically determined based on estimating the current error

resilience in iteration k as explained below in Section IV-A.

Using this approximation level LApprox, a PCG iteration is

computed in the third step which corresponds to lines 6

to 17 in the original Algorithm 1. Afterwards, the approx-

imation level is evaluated periodically in the fourth step

by a fault tolerance technique for PCG such as [15, 21–

23]. If the approximation level is too aggressive (i.e. the

underlying precision is unsuitable for solver convergence),

PCG’s inherent convergence properties are violated, which is

detected by the fault tolerance technique as an error. In such

a case, an offset is introduced in the fifth step which ensures

that PCG iterations are continued using lower approximation

levels with increased precision. Besides, a valid solver state

is recovered by performing the error correction scheme of

the fault tolerance technique. This step is explained further

below in Section IV-C.

A. Approximation Level Determination

The proposed estimation scheme is based on the insight,

that the error resilience is closely related to the update

Determine approximation level

DFTS2016

Final

Solver Iteration

While do

3

Preparation of Solver (PCG)1

Calculate tangential angle

2

P
e
ri

o
d
ic

Apply Fault Tolerance Technique4

Increment

Error Detection

Error Correction

Re-‐establish valid solver state

Check inherent solver properties

e.g. create checkpoint

Maintain fault tolerance context

5

e
rr

o
r

d
e
te

ct
e
d

P
e
ri

o
d
ic

Decrement

if suggests to increase precision

Figure 2. Overview of our technique for the Preconditioned Conjugate
Gradient Solver (PCG).

vector length ||uk||2 (i.e. ||xk − xk−1||2) for each itera-

tion k which may be highly variable during runtime. Such

update vectors ||uk||2 are typically large during the first

PCG iterations and approach zero when PCG converges to

the solution (cf. Section II). The directions of successive

update vectors must be A-orthogonal (i.e. ukAuk+1 = 0) to

ensure correct convergence of PCG [9]. The PCG method

is less sensitive to approximation errors for large update

vectors uk as the update direction is often only marginally

altered by approximation errors and therefore allows the

utilization of approximation levels with less precision and

reduced hardware utilization. At the same time, PCG is

becoming increasingly sensitive for smaller update vectors

since the update direction is now increasingly altered by

approximation errors which can violate the A-orthogonality

between successive update vectors.

Instead of directly evaluating the update vector length,

which requires additional inner products, our method cal-

culates the tangential angle ϕ in the intermediate result xk

which constitutes the update vector length ||uk||2 with

ϕ := tan−1(δk), ϕ ∈ [0◦, 90◦[(1)

and δk being the norm of the residual vector rk. This oper-

ation only requires a single additional scalar operation (i.e.

tan−1). For large angles ϕ, the update vector length ||uk||2
is large while it becomes smaller when PCG converges

as ϕ approaches 0◦. Our proposed technique calculates

the angle ϕ periodically to estimate the error resilience

for the succeeding iterations and uses the function H(ϕ)
to determine a suitable approximation level LApprox. The

function H(ϕ) : {[0◦, 90◦[→ N} maps angles ϕ to the set of

approximation levels LApprox. Here, we consider H(ϕ) being

a user-defined lookup table. The calculation of both ϕ and

H(ϕ) induces very low performance and energy overheads

since only scalar operations are required.

B. Relation between angle ϕ and update vectors uk

As mentioned before, the error resilience of the PCG

execution is constituted by the update vector length (||uk||2)

which is closely related to tangential angle ϕ. This correla-

tion is based on the insight that solving a system of linear

equations Ax = b (using e.g. PCG) is equivalent to finding

the minimum of its quadratic form E(x) [14]:

min
x

E(x) := 1

2
�Ax, x� − �b, x�.

For each intermediate result xk, a tangential angle ϕ can be

derived from the gradient ∇E|xk
in xk. Figure 3 presents

an example for a two dimensional system of equations. The

tangential angle ϕ is calculated from the gradient ∇E|xk
in

xk which is in case of PCG −rk [14] with

ϕ := tan−1(∇E|xk
) = tan−1(|| − rk||2) = tan−1(δk).

()

()

Figure 3. Quadratic function E(x) with a tangential angle ϕ in the
intermediate result xk .

C. Using Fault Tolerance to Evaluate Estimated Error Re-

silience

Since the determined approximation level LApprox can be

too aggressive, a fault tolerance technique is periodically

evaluated which detects and corrects deviations (i.e. errors)

being too harmful for the solver execution. Fault tolerance

techniques which are tailored for the PCG method evaluate

certain invariants [9] between the PCG variables that must

be satisfied for correct convergence throughout the whole

execution. As explained before, our fault tolerance technique

[15] ensures correct solver results while effectively reducing

the hardware utilization. Such reductions are ensured by the

underyling efficient error detection scheme that avoids ex-

pensive operations. An offset for the current approximation

level is introduced if the fault tolerance technique detects

errors. This offset ensures the use of approximation levels

with increased precision. At the same time, this offset is

reduced if the result of the mapping function H(ϕ) suggests

an approximation level with increased precision.

V. EXPERIMENTAL RESULTS

The proposed technique for PCG is evaluated with respect

to required PCG iterations for correct convergence and

reductions in hardware utilization for three different fault

tolerance techniques. Besides, our approach is compared

with a static technique that does not change the precision at

runtime.

The following fault tolerance techniques are evaluated and

compared: The first method is the approach from previous

work [15]. The second method is the periodic correction

of the residual which is proposed in different degrees in

[22] as well as in [21]. The third method is the periodic

evaluation of orthogonality and residual relationships which

is proposed in [23].

A. Hardware Model

In the experiments, the behavior of approximate hardware

was modeled in software. This model performs approximate

arithmetic operations based on concatenating precise result

bits with uniformly random bits, which model approximately

computed bits. Different approximation levels (i.e. degrees

of precision) were provided at runtime by changing the

number of approximated bits. Higher approximation levels

use increasing numbers of approximated bits (and vice

versa).

The approximation was applied to the most energy-

demanding arithmetic operation in the dominant operation

in PCG, namely the floating-point multiplications [12] in

sparse matrix-vector multiplications (SpMV). To approxi-

mate such floating-point multiplications, the least significant

bits of the result mantissa were approximated. Assuming

an N -bit multiplier using carry-save logic with N(N−1)
binary adders [24], k(2N−1)−k2 adders can be deactivated

(i.e. N(N−1)−(N−k)((N−k)−1)) by approximating the

k least significant bits in the result value.

To compare reductions in hardware utilization, the num-

ber of required active binary adders was determined for each

PCG iteration according to the underlying approximation

level and accumulated to obtain the hardware utilization for

complete PCG executions. In this work, the term precise

hardware refers to a IEEE 754-compliant floating-point unit.

B. Experimental Setup

To accelerate the experiments, the PCG algorithm and

the approximate hardware model were mapped to a het-

erogeneous computing system comprising multi-core CPUs

and many-core GPUs. At runtime, the floating-point mul-

tiplications in the SpMV operation were replaced by their

approximate counterparts. All parallelizable linear algebra

operations were mapped to a GPU architecture and GPU-

accelerated linear algebra libraries were utilized. All exper-

iments have been performed in double precision.

The following experimental parameters were utilized: For

all experiments, a random vector was generated for the initial

guess x0, If the right-hand side b was not available for

a matrix, then a random solution x was generated. Using

x, the right-hand side b was computed with Ax = b.
We set all thresholds and intervals according to related

work for fair comparison. The execution of PCG was

continued until δk fell below the absolute error tolerance

�a or δk/δ0 fell below the relative error tolerance �r. The

absolute error tolerance �a was set to 10−6 and the relative

error tolerance �r was set to 10−15. An experiment was

considered a failure, if the number of iterations exceeded

10 ·N iterations. To avoid false identification of convergence

due to accumulation of rounding errors in δk, the final

result was checked against rk ≈ (b − Axk). In case of

a violation, the true residual rk (i.e. := b − Axk) was

reconstituted and PCG was continued as discussed in [25].

The error detection threshold used in the comparison of

floating-point values was set to 10−7. Approximation levels

were determined each 20 iterations and evaluated by the

fault tolerance each 10 iterations. The context of each fault

tolerance method (e.g. checkpoint generation) was updated

each 20 iterations as proposed in [15, 22, 23]. The function

H(ϕ) was defined to map the angles ϕ to five approximation

levels as follows: For the highest approximation level, 35

operand bits were approximated (i.e. multiplication using 17

precise bits). Lower approximation levels provide increased

precision with linearly increased number of precise operand

bits. The lowest approximation level provides full machine

precision (i.e. 52 bits). The highest approximation level was

used for tangential angles ϕ>25◦. The hardware platform

consists of two Intel Xeon E5-2623 and 128 GB RAM with

three Nvidia Tesla K80 GPUs and 24 GB GDDR5 RAM

per device. More than 200,000 experiments were performed

to obtain the results presented below. Each experiment was

executed using a combination of a single CPU core and a

single GPU.

C. Benchmarks

As benchmarks, 14 matrices from the Florida Sparse

Matrix Collection [26] were used which are shown in Table

I. Besides the names and sizes of the matrices (N × N),

the number of nonzero elements (NNZ) is presented. As a

side information, the portion of zeros within the matrices is

shown. The matrices have the following properties: square,

symmetric, real and positive definite. The evaluated matrices

were stored in the compressed sparse row format [27].

Table I
OVERVIEW OF EVALUATED MATRICES FROM THE

FLORIDA SPARSE MATRIX COLLECTION [26].

Name N NNZ Portion of 0s

nos3 960 15844 98.28%
bcsstk10 1086 22070 98.13%
msc01050 1050 26198 97.62%
nasa2146 2146 72250 98.43%
sts4098 4098 72356 99.57%
bcsstk13 2003 83883 97.91%
ex9 3363 99471 99.12%
bodyy4 17546 121550 99.96%
bodyy5 18589 128853 99.96%
bodyy6 19366 134208 99.96%
Muu 7102 170134 99.66%
bcsstk16 4884 290378 98.78%
msc10848 10848 1229776 98.95%
nd3k 9000 3279690 95.95%

D. PCG Iteration Overhead

The use of approximate hardware may induce some

additional PCG iterations required for convergence to a

correct result. Figure 4 shows the additional iterations com-

pared to PCG executions on precise hardware. All evaluated

experiments converged to a correct result. The evaluated

matrices are ordered by the number of non-zero elements.

The iteration overhead is on average 9.5% and ranges from

0.0% to 28.5% when the fault tolerance technique from

[15] is applied. In comparison, the iteration overhead is

on average 83.6% lower compared to the approach in [23]

and 93.3% lower compared to the approach in [21, 22].

The comparatively low overhead can be explained by the

increased error coverage of that fault tolerance technique

which ensures the use of suitable approximation levels.

E. Reduction of Hardware Utilization

To evaluate potential energy savings gained by our ap-

proach, the hardware utilization (i.e. the number of active

binary adders during the execution of PCG) was determined.

As explained before, the active binary adders were counted

for each PCG iteration and accumulated for complete PCG

executions to determine the overall hardware utilization.

In Figure 5, the hardware utilization of our approach is

compared to the hardware utilization when precise hardware

is used. Positive results represent reductions in total hard-

ware utilization while negative results indicate overheads.

Although the number of iterations is often increased with

approximate hardware, reductions in hardware utilization

can be observed for 11 out of 14 matrices when fault

tolerance technique [15] is applied. In these 11 cases, the

reduction of hardware utilization is on average 14.5% and

ranges from 3.1% to 41.0%. Reductions in total hardware

utilization can be observed for one matrix for the approaches

in [21–23]. The reductions of hardware utilization for fault

tolerance technique [15] can be explained by the efficiency

of this technique, which avoids the periodic computation

of expensive sparse matrix operations. Figure 6 shows the

adaption of approximation levels along with the number of

precise bits during two example PCG executions.

F. Evaluation for Fixed Precision

We evaluated PCG executions using fixed precision. In

this setup, five operand bits were approximated (i.e. mul-

tiplication using 47 precise bits) for each floating-point

multiplication during the SpMV operation. For 9 out of 14

matrices, PCG never converged to a correct result. For the

remaining five matrices (nos3, bodyy4, bodyy5, Muu, and

nd3k), the hardware utilization was reduced on average by

11.2% (ranging from 8.7% to 17.3%) compared to execution

on precise hardware.

VI. CONCLUSION

Efficient linear system solvers are an important task for

many scientific and engineering applications. However, their

energy demands require suitable approximate computing

techniques to overcome future energy challenges in exascale

0%

1%

10%

100%

1000%

Orthogonality & Online Correction [15] Orthogonality & Rollback [23] Residual Correction [21,22]

A
v
e
ra

g
e

it
e
ra

ti
o
n
 o

v
e
rh

e
a
d

Figure 4. Average iteration overhead compared to PCG executions on precise hardware.

-105%

-90%

-75%

-60%

-45%

-30%

-15%

15%

30%

45%

-150%

-75%

0%

Orthogonality & Online Correction [15] Orthogonality & Rollback [23] Residual Correction [21,22]

R
e
d
u
c
t
io

n
 i

n

h
a
r
d
w

a
r
e
 u

t
il
iz

a
t
io

n

Figure 5. Reduction in hardware utilization compared to execution on precise hardware.

0

1

2

3

4

0 700 1400 2100

0

1

2

3

4

0 2000 4000 6000

PCG Iterations

Matrix MSC01050

Matrix MSC10848

A
p
p
ro

x
im

a
ti

o
n

L
e
v
e
l

A
p
p
ro

x
im

a
ti

o
n
 L

e
v
e
l

P
r
e
c
is

e
 B

it
s

52

44

35

17

26

PCG Iterations

P
r
e
c
is

e
 B

it
s

52

44

35

17

26

1
0
 i
t
e
r
s
.

1
0
 i
t
e
r
s
.

7
0
 i
t
e
r
s
.

5
5
6
0
 i
t
e
r
s
.

2
3
1
 i
t
e
r
s
.

1
0
 i
t
e
r
s
.

1
0
 i
t
e
r
s
.

3
0
 i
t
e
r
s
.

5
9
0
 i
t
e
r
s
.

4
0
0
 i
t
e
r
s
.

2
0
 i
t
e
r
s
.

2
0
 i
t
e
r
s
.

6
1
0
 i
t
e
r
s
.

3
5
6
 i
t
e
r
s
.

Figure 6. Adaption of approximation levels
over time for two input matrices A.

computing. In this work, we presented a new technique that

allows the execution of the PCG solver on approximate hard-

ware to gain reductions in hardware utilization while still

providing correct solver results. This technique periodically

estimates the error resilience and uses different approxima-

tion levels to ensure suitable energy-precision trade-offs. By

applying an efficient fault tolerance technique to evaluate the

estimated error resilience, the hardware utilization is reduced

while correct solver results are ensured. Experimental results

show that, when compared to executing PCG on precise

hardware, the number of iterations is only increased on

average by 9.5% while the complete hardware utilization

is on average reduced by 14.5%.

ACKNOWLEDGMENT

The authors thank the German Research Foundation (DFG) for financial
support of the project within the Cluster of Excellence in Simulation
Technology (EXC 310/2) at the University of Stuttgart.

BIBLIOGRAPHY
[1] J. Han and M. Orshansky, “Approximate Computing: An Emerging Paradigm

for Energy-efficient Design”, in Proc. 18th IEEE European Test Symposium
(ETS’13), Avignon, France, May 2013, pp. 1–6.

[2] S. Venkataramani et al., “Approximate Computing and the Quest for Computing
Efficiency”, in Proc. 51st ACM/EDAC/IEEE Design Automation Conference
(DAC’15), San Francisco, CA, USA, Jun. 2015, pp. 1–6.

[3] T. Moreau et al., “SNNAP: Approximate Computing on Programmable SoCs via
Neural Acceleration”, in Proc. IEEE Intl. Symp. on High Performance Computer
Architecture (HPCA), San Francisco, CA, Feb. 2015, pp. 603–614.

[4] V. Chippa et al., “Analysis and Characterization of Inherent Application Re-
silience for Approximate Computing”, in Proc. 50th ACM/EDAC/IEEE Design
Automation Conference (DAC’13), Austin, Texas, May 2013, pp. 1–9.

[5] Q. Zhang et al., “ApproxIt: An Approximate Computing Framework for Iterative
Methods”, in Proc. 51st ACM/IEEE Design Automation Conference (DAC’14),
2014, pp. 1–6.

[6] I. Smith, D. Griffiths, and L. Margetts, Programming the Finite Element Method,
4th ed. Wiley, Oct 2013.

[7] D. Yuen et al., GPU Solutions to Multi-scale Problems in Science and Engi-
neering, 8th ed., ser. In Earth System Sciences. Springer, 2013.

[8] K. Daloukas et al., “A 3-D Fast Transform-based Preconditioner for Large-Scale
Power Grid Analysis on Massively Parallel Architectures”, in Proc. Intl. Symp.
Quality Electronic Design (ISQED), Santa Clara, USA, Mar. 2014, pp. 723–730.

[9] Y. Saad, Iterative Methods for Sparse Linear Systems. Siam, 2003.

[10] B. Dally, “Power, Programmability, and Granularity: The Challenges of Exascale
Computing”, in Proc. IEEE International Test Conference (ITC), Anaheim, CA,
2011, pp. 1–12.

[11] A. B. Kahng and S. Kang, “Accuracy-Configurable Adder for Approximate
Arithmetic Designs”, in Proc. ACM/IEEE 49th Design Automation Conference
(DAC’12), San Francisco, CA, Jun. 2012, pp. 820–825.

[12] H. Zhang, W. Zhang, and J. Lach, “A Low-Power Accuracy-Configurable
Floating Point Multiplier”, in Proc. IEEE Intl. Conf. on Computer Design
(ICCD), Seoul, South Korea, Oct. 2014, pp. 48–54.

[13] C. Liu, J. Han, and F. Lombardi, “A Low-Power, High-Performance Approxi-
mate Multiplier with Configurable Partial Error Recovery”, in Proc. Conference
on Design, Automation & Test in Europe (DATE’14), Dresden, Germany, Mar.
2014, pp. 95:1–95:4.

[14] W. Gander, M. Gander, and F. Kwok, Scientific Computing, ser. Computational
Science and Engineering. Springer International, 2014, vol. 11, no. 1.

[15] A. Schöll et al., “Low-Overhead Fault-Tolerance for the Preconditioned Con-
jugate Gradient Solver”, in Proc. Intl. Symp. on Defect and Fault Tolerance in
VLSI and Nanotechnology Systems (DFT), Amherst, MA, Oct. 2015, pp. 60–66.

[16] V. Gupta et al., “IMPACT: Imprecise Adders for Low-Power Approximate
Computing”, in Proc. 17th IEEE/ACM Intl. Symp. on Low-power Electronics
and Design, Fukuoka, Japan, Aug. 2011, pp. 409–414.

[17] H. Jiang, J. Han, and F. Lombardi, “A Comparative Review and Evaluation of
Approximate Adders”, in Proc. Great Lakes Symposium on VLSI, Pittsburgh,
PA, USA, May 2015, pp. 343–348.

[18] W. Liu et al., “Design and Analysis of Inexact Floating-Point Adders”, IEEE
Transactions on Computers, vol. 65, no. 1, pp. 308–314, Jan. 2016.

[19] V. Camus, J. Schlachter, and C. Enz, “Energy-Efficient Inexact Speculative
Adder with High Performance and Accuracy Control”, in Proc. IEEE Intl. Symp.
on Circuits and Systems (ISCAS), Lisbon, Portugal, May 2015, pp. 45–48.

[20] M. Schaffner et al., “An Approximate Computing Technique for the Complexity
of a Direct-solver for Sparse Linear Systems in Real-time Video Processing”,
in Proc. 51st ACM/EDAC/IEEE Design Automation Conference (DAC’15), San
Francisco, CA, USA, Jun. 2014, pp. 1–6.

[21] F. Oboril et al., “Numerical Defect Correction as an Algorithm-Based Fault
Tolerance Technique for Iterative Solvers”, in Proc. IEEE Pacific Rim Intl. Symp.
on Dependable Computing (PRDC), Pasadena, USA, Dec. 2011, pp. 144–153.

[22] P. Sao and R. Vuduc, “Self-stabilizing Iterative Solvers”, in Latest Advances in
Scalable Algorithms for Large-Scale Systems, Nov. 2013, pp. 4:1–4:8.

[23] Z. Chen, “Online-ABFT: An Online Algorithm Based Fault Tolerance Scheme
for Soft Error Detection in Iterative Methods”, in Proc. 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, Shenzhen,
China, Feb. 2013, pp. 167–176.

[24] M. Elrabaa, I. Abu-Khater, and M. Elmasry, Advanced Low-Power Digital
Circuit Techniques. Springer, 2012, vol. 405, no. 1.

[25] H. A. Van Der Vorst and Q. Ye, “Residual Replacement Strategies for Krylov
Subspace Iterative Methods for the Convergence of True Residuals”, SIAM
Journal on Scientific Computing, vol. 22, no. 3, pp. 835–852, 2000.

[26] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix Collection”,
ACM Trans. on Mathematical Software, vol. 38, no. 1, pp. 1:1–1:25, Nov. 2011.

[27] E. F. D’Azevedo, M. R. Fahey, and R. T. Mills, “Vectorized Sparse Matrix
Multiply for Compressed Row Storage Format”, in Computational Science, ser.
Lecture Notes in Computer Science, 2005, vol. 3514, pp. 99–106.

