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Abstract—Deviations in the first-order parameters of CMOS
cells can lead to severe errors in the functional and time domain.
With increasing sensitivity of these parameters to manufac-
turing defects and variation, parametric and parasitic-aware
fault simulation is becoming crucial in order to support test
pattern generation. Traditional approaches based on gate-level
models are not sufficient to represent and capture the impact of
deviations in these parameters in either an efficient or accurate
manner. Evaluation at electrical level, on the other hand, severely
lacks execution speed and quickly becomes inapplicable to larger
designs due to high computational demands.

This work presents a novel fault simulation approach con-
sidering first-order parameters in CMOS circuits to explicitly
capture CMOS-specific behavior in the functional and time
domain with transistor granularity. The approach utilizes massive
parallelization in order to achieve high-throughput acceleration
on Graphics Processing Units (GPUs) by exploiting parallelism
of cells, stimuli and faults. Despite the more precise level of
abstraction, the simulator is able to process designs with millions
of gates and even outperforms conventional simulation at logic
level in terms of modeling accuracy and simulation speed.
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I. INTRODUCTION

As circuit structures are shrinking, physical defects express

a more complex and severe impact on the switching behavior

of CMOS cells [1, 2]. With the strict high-performance and

low-power requirements of today’s circuits and due to omni-

present variability of the manufacturing processes, even small

deviations of first-order parameters in the layout of CMOS

cell structures are sufficient to cause faults at transistor-level

that lead to severe system failures. Transistor-level faults and

parametric deviations at cell-level, such as resistive bridges,

cross-wire and resistive opens [3], often cannot be detected by

conventional tests due to complex activation and propagation

mechanisms in the time domain [4]. Therefore, it is crucial

to thoroughly validate test schemes and test generation for

detecting faults at transistor-level, which have recently became

focus of current test research [5].

The simulation of faults is an essential task for test set

validation, test pattern generation and reliability assessment.

Many of the defects found in CMOS cells have impact

in both functional and timing aspects [4] and thus require

consideration of timing with glitch-accuracy. For large circuits,

the simulation itself is typically performed with gate-level

abstraction due to the runtime complexity being several orders

of magnitude smaller compared to lower-level approaches such

as electrical simulation. The behavior of defects found at lower

abstraction levels is then mapped to inputs for higher level

simulation algorithms [6], and during the process often some

of the modeling accuracy has to be sacrificed.

However, the functional and timing behavior of CMOS cells

is not only influenced by intrinsic parameters, but other factors

as well: Simultaneous switching at cell input terminals [7]

can cause different transition ramps and speed-up the actual

switching process of a cell. This effect cannot be considered

efficiently and accurately using gate-level approaches. By

ignoring these effects, small errors can occur at various stages

during fault simulation which, especially for faults with impact

in the time domain, quickly accumulate to and exceed the

amount of the targeted fault sizes. Therefore, these detections

are likely to result in false positives by overestimating the

actual fault coverage.

For accurate validation of test patterns targeting timing-

related faults in complex CMOS cells, it is necessary to model

faults with little or no abstraction at all. The simulation of

these faults then requires algorithms with sufficiently high

time-resolution and accuracy. Since higher accuracy involves

more computational complexity and more data to process,

runtimes quickly rise, which causes conventional algorithms

to become inapplicable to larger designs. In order to tackle

this complexity issue, algorithms are being parallelized for

the execution on data-parallel architectures, such as Graphics

Processing Units (GPUs), which have well established in high-

performance computing, since they are known to provide vast

computational throughput [8].

In this work we present the first approach to utilize the

computing capabilities of GPUs to enable accelerated fault

simulation at transistor-level. It combines massive-throughput

parallelization concepts of circuit timing simulation and paral-

lel fault modeling at CMOS-level to enable fast parallel fault

simulation with transistor-granularity. By carefully selecting

available dimensions of parallelism and efficient organization

of the data-structures, the proposed approach allows for:

• Efficient and explicit modeling of functional and timing-

related parametric and parasitic faults at transistor-level,

achieving higher modeling capability and accuracy com-

pared to logic level,

• Overhead-free fault injection and fault evaluation method

for fast and transparent parallel fault simulation on GPUs

outperforming conventional logic level approaches,

• Accurate and comprehensive fault analysis applicable to

larger designs with millions of gates.



The next section summarizes simulation algorithms for tim-

ing validation and introduces the basic concepts for capturing

functional and time behavior of CMOS circuits. Section III

presents the novel simulation scheme for efficient transistor-

level fault simulation by explaining the fault modeling and

the fault injection mechanism for parallel fault simulation on

GPUs. Section IV presents the calculation of fault syndromes

for evaluation of the fault detection. In section V, experimental

results are discussed, which prove that the new GPU-based

transistor-level fault simulator outperforms even commercial

timing simulators at logic-level that only support timing vali-

dation without consideration of any faults.

II. RELATED WORK

Timing simulation is usually done at gate-level, where the

delay of a gate or cell is expressed as a function of events

at the inputs (e.g. rising and falling transition at a specific

pin at a given time point). All input events are then typically

processed in an event-driven manner from earliest to latest

signal transition in order to calculate the response at the output.

Most approaches utilize the so-called pin-to-pin delay. With

pin-to-pin delay, individual rising and falling delay times can

be assigned to each physical pin of a cell, which are typically

provided in Standard Delay Format (SDF) by the synthesis

tools. In addition to the complexity of the time domain,

the timing-accurate evaluation of circuits typically involves

calculations with floating-point numbers, which is much more

expensive than untimed (zero-delay) logic simulation.

With the introduction of the general purpose computing

on Graphics Processing Units (GPUs) many untimed logic

and fault simulation approaches have spawned. In [9–12]

algorithms were presented that exploit both structural- as well

as data-parallelism to solve multiple problems simultaneously

for achieving high speedup over a serial execution.

First accelerated approaches for statistical timing simula-

tion [13] or waveform-accurate simulation [14] at logic-level

have been proposed, which allow to exploit the floating-point

throughput capabilities of the GPUs. Although the simulators

are able to achieve high speedups, they lack the essential

modeling capabilities for further increasing the accuracy of the

simulation efficiently, such as the ability to consider CMOS-

related pattern-dependent delays [7] and transition ramp times.

At circuit-level, methods for accelerating SPICE simula-

tions [15] have been proposed as well [16, 17]. Yet, these

approaches offer either too little speedup to be applied on a

large scale or are even limited to designs composed of few

transistors only. In [18] a High-Throughput Oriented Parallel

Switch-Level Simulator (HiTOPS) was proposed, a first timing

simulator for execution on GPUs for fast simulation of circuits

at CMOS level. It models delays at transistor granularity under

consideration of first-order parameters of standard cells while

achieving high simulation throughput even for designs with

millions of gates. The simulation model is based on Resistor-

Resistor-Capacitor (RRC-) cells, which are extracted from

identification of current connected meshes in the transistor

netlist of primitive or complex cells as shown in Fig. 1.
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Fig. 1. RRC-cell extracted from a complex 10T XOR-cell with input-
controlled voltage divider (PMOS/NMOS nets) and capacitor Cload.

Each transistor of an RRC-cell is viewed as a voltage-

controlled resistor that behaves like a threshold-based bi-

nary switch. Depending on the applied gate voltage v, each

transistor assumes a blocking or conducting state which are

modeled by high and low resistance parameters, respectively.

During the simulation, the transistors switch states every time

the associated input signals undergo transitions crossing their

threshold voltage Vth:

R(v) :=

{
Roff if v < Vth,

Ron else.

After each switch, the resistances of the transistor-nets (either

the PMOS- or the NMOS-net) change and the RRC-cell

output level aims for a new stationary voltage. All changes

in the stationary voltage cause the output load capacitor to

(dis-)charge via the voltage divider over time with the transient

response being modeled by exponential curves to better reflect

the electrical behavior.

III. TRANSISTOR-LEVEL FAULT SIMULATION

In this work, efficient modeling and simulation of faults

at transistor-level is realized by introducing a simulation

scheme that allows to obtain a high degree of parallelism,

simulation speedup and accuracy during execution. The pro-

posed simulation scheme exploits three dimensions of paral-

lelism, namely: a) fault parallelism, b) cell-parallelism and

c) waveform-parallelism, utilizing both structural as well as

data-independence of RRC-cells as depicted in Fig. 2. First,

interaction of parametric and parasitic faults and their locations

are identified in order to form fault groups [19] for parallel

injection. Secondly, the topological dependencies within a

circuit are used to simulate data-independent RRC-cells in

parallel. Finally, input stimuli, either single test vectors or test

vector sequences (i.e., delay test) are considered independent

and hence will be evaluated concurrently as well. By careful

consideration of all three dimensions, the proposed execution

scheme enables faster and more accurate simulation of faults

modeled at transistor-level than compared to using logic-level

simulation.

In the following, the fault modeling as well as the fault in-

jection scheme are discussed along with the efficient grouping

of faults for parallel injection into the simulation instances.

A. Fault Modeling

The abstraction level of the underlying fault model corre-

sponds to that of the RRC-cells. Any deviation of the cell

description can be used, which may require either manual work
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Fig. 2. Dimensions of parallelism exploited during simulation: a) fault-
parallelism, b) cell-parallelism, c) waveform-parallelism.

on a complex cell library or additional effort for automatically

using a user-defined fault model as used in cell-aware test [5].

Methods for mapping defects and extracting relevant faults

on either electrical or logic domain based on the layout have

been proposed in [20]. In this work we focus on RRC-cell-

based fault modeling using the available cell parameters, i.e.,

of the transistor in the pull-up and pull-down networks. This

allows to model many of the resistive faults in the with

finite (resistive-open, shorts) or infinite (stuck-open) resistance

and threshold variations, as well as deviations in the output

capacitance. This way, low-level defect information can be

directly employed and does not need to be mapped to a logical

behavior, which avoids the common modeling restrictions

faced on logic level and allows to act beyond their modeling

capabilities. The scheme can be applied to support more fault

models, such as cell-internal bridging faults, by assuming, for

example, additional resistors in the transistor networks of the

RRC-cell descriptions.

In the basic simulation model each RRC-cell is assigned

a description of its internal first-order parameters composed

of output capacitance and transistor properties. The latter is

organized as set R containing tuples which each describes the

functional behavior of a transistor (PMOS as well as NMOS

types) by the threshold voltage levels and pairs of individual

resistances for conducting and blocking states respectively:

R = {(V 0
th, {R

0
off , R0

on}), (V
1
th, {R

1
off , R1

on}), ...}.

A resistive transistor fault f in a cell is represented by a tu-

ple f = (loc,∆Rf ) composed of the culprit transistor as fault

location and resistance values as the fault size. The injection

of the fault into the circuit is done by modifying the RRC-

cell data tuple (V loc
th , {Rloc

off , Rloc
on }) of the associated transistor

in the circuit description, such that R̃loc
i := Rloc

i + ∆Rf

with i ∈ {off , on}. For example, in order to model open

transistors, the conducting resistance is increased (∆Rf > 0)

and, vice versa, for shorted transistors the blocking resistance

is reduced (∆Rf < 0).

Resistive or capacitive faults in the interconnects are mod-

eled assuming a lumped wire resistance and capacitance [18],

which incorporates the resistive property of the fault by dis-

tribution over the transistor descriptions of the driving RRC-

cell. As for capacitive faults f = (loc,∆Cf ), that introduce

an additional parasitic capacitance ∆Cf , such as wire loads or

gate capacitances, the parameter will be added to the RRC-cell

internal output load capacitance value C̃load := Cload+∆Cf .

In a similar manner, threshold-related faults in individual tran-

sistors, i.e., caused by aging effects like Negative-Bias Tem-

perature Instability (NBTI) and Hot-Carrier Injection (HCI),

can be expressed. In order to model a particular shift ∆Vth in

the threshold voltage parameter, the threshold of the targeted

PMOS or NMOS transistor is raised or lowered respectively.

B. Fault Injection

Each RRC-fault is injected into the circuit by modifying

the parameters in the cell description of the associated RRC-

cell according to the fault model prior to the actual simulation

process. During this process the fault location is marked as

faulty for later removal. To the simulation kernel, the presence

of faults in the circuit is completely transparent, since the

circuit description is always read during the simulation process

like in the fault-free case. Additional faults can be injected at

the same time in order to represent multi-faults located across

the circuit or even within single cells. However, for the sake

of simplicity, this work considers the single fault assumption.

Once the fault simulation is completed, the parameters of

the original descriptions of all cells currently being marked as

faulty are restored to their original nominal description. Since

the fault descriptions are compact, only few small memory

transactions are involved during the injection process.

C. Fault Grouping

All faults modeled in RRC-cells manifest as either delayed

output transitions and deviations in the signal voltages at the

associated cell output vc(t) which can propagate towards the

primary circuit outputs in the sensitized case. Hence, each

RRC-fault can only affect the signals in its own output-

cone, and it must be ensured that there is no other fault

injected at the same time that shares common output logic,

or otherwise fault effects might influence each other by

masking or adding (single fault assumption). For parallel fault

simulation a partitioning of the given fault-set into groups

of mutually independent faults for parallel injection can be

performed [19]. These fault groups are obtained by checking

the mutual output-independence of the respective reachable

outputs. Since identifying largest fault groups is a minimum

graph coloring problem for which finding an optimal solution

is NP-hard [21], we use a heuristic that partitions the faults

into suitable groups for injection in reverse topological order

starting from the primary outputs towards the inputs [22].

In a first attempt, all faults are assigned to an initial

fault group based on their fault location and by looking up

their topological successors. By utilizing knowledge about the

general circuit structure and by distributing group information

from previously processed faults along the netlist, the number

of comparisons and grouping attempts can be reduced such

that suitable groups are found quickly. Once all fault groups

have been determined, the simulator performs repeated sim-

ulation runs processing all groups one after another. In each

simulation run all the faults contained in a group are injected

into the circuit description prior to the actual simulation.

IV. FAULT DETECTION AND EVALUATION

The detection of a fault is determined by observing the

values of the waveforms of all output signals in its output cone

at a given user-specified sample time tsamp. Each waveform



is stored in the global waveform memory on the GPU device

as an ordered list of pivots (p0, p1, ..., pk). Each pivot of a

waveform expresses a signal switch of an RRC-cell output

(caused by a change in the resistances of the transistor-nets)

at a certain point in time. A pivot p is a tuple composed

of the time of the associated signal switch tp, the stationary

voltage vp as well as the time constant τp which indicates

the slope. Given the sample time tsamp, the pivot lists of all

the output signals are traced until the corresponding curve

segments pi = (ti, vi, τi) with ti+1 > tsamp are reached in

each waveform. In the meanwhile, the change of the signal

voltage that takes place in each curve interval [ti, ti+1] is

determined for the time span ∆t = (ti+1−ti) and the previous

output value w(ti) as given by:

w(ti+1) := (w(ti)− vi) · e
−∆t

τi + vi. (1)

The final signal value w(tsamp) at time tsamp ∈ [ti, ti+1)
is computed in the same way by evaluating the latest curve

segment starting at ti for ∆t = (tsamp − ti) time units,

respectively. Since the value domain of RRC-cell outputs is

continuous, the value w(tsamp) ∈ [GND,VDD] obtained does

not have to correspond to a proper logic value that allows

to distinguish right from wrong. Thus, a mapping to discrete

logic values along with instructions to derive a comprehensive

syndrome is required to distinguish between fault-free and

faulty responses. In order to put a sampled output signal

in comparison to the good simulation, we characterize the

sampled value through boundaries.

A. Signal Evaluation

We define a signal threshold interval as (VthL, VthH) ⊂
[GND,VDD] with VthL < VthH to distinguish between high,

low and undefined signals [23]. Signal values that are within

[GND, VthL] (or [VthH ,VDD]) are considered as low (resp.

high) due to the amplification of succeeding cells in CMOS

technology. These boundaries can be obtained by character-

izing the input/output relationship of succeeding cells and

storage elements by determining appropriate transfer functions

based on the target technology. Within the range (VthL, VthH)
succeeding cells might interpret the output signal differently

and cause uncertainties during the propagation. Hence, in this

interval the signal is assumed to undefined (symbol ‘X’)

and considered pessimistically as possibly erroneous due to

its weakness. The mapping from a sample w ∈ R of a

time-continuous signal w(t) to a discrete logic value is then

described by

val : R → {0, 1, X}, val(w) :=





0 if w ≤ VthL,

1 elif w ≥ VthH ,

X else.

B. Discrete Syndrome Calculation

The syndrome syn(t) of a cell output w(t) will be used to

continuously determine the presence of a faulty value at any

given time t. It is acquired directly from the waveform by

comparing the output value w(t) of the cell with its fault-free

stable value w(∞) for t → ∞. By default it is assumed that

the fault-free responses of a circuit are stable and always have

clear high or low signal values. As usual, the difference of the

output value with respect to the fault-free value potential then

determines the syndrome:

syn(t) :=

{
val(w(t)) if w(∞) ≤( VDD+GND

2 ),

val(VDD − w(t) + GND) else.

Therefore, syn(t) = 1 (syn(t) = 0) iff the cell produces a

definite faulty (fault-free) signal at time t, or unknown in case

w(t) is undefined.

The calculation and evaluation of the syndrome itself at

some sample time tsamp is performed by a two-dimensional

kernel that invokes threads as shown in Fig. 3. Each thread

traverses the pivot list of the computed output waveform

w(t) of a specific output pin and given stimuli concurrently

until tsamp is reached and the waveform value is extracted.

For each output, the acquired syndrome information is then

further encoded by two bits as symbol to distinguish the three

discrete logic cases, merged as bit-strings and finally stored

in a separate memory on the GPU device for all input stimuli

respectively. The detection of a fault is then determined by

looking up the captured syndromes of all the outputs o in its

corresponding output-cone O:

• A fault is detected iff any output signal in the output-cone

shows a faulty syndrome (∃o ∈ O : syno(tsamp) = 1).
• A fault is undetected iff all outputs in the output-cone

show a fault-free syndrome (∀o ∈ O : syno(tsamp) = 0).
• A fault is possibly detected iff a non-empty subset of

outputs in the output-cone shows an unknown syndrome

(∃o ∈ O : syno(tsamp) = X), while the others do not

show a faulty syndrome (∀o ∈ O : syno(tsamp) 6= 1).

Since the output waveforms remain untouched during the

evaluation, multiple capture time points can be evaluated

quickly in succession. Furthermore, individual capture times

can be applied for each output in order to model skew in the

clock distribution tree.

V. EXPERIMENTAL RESULTS

The presented simulation approach was evaluated for a

set of selected benchmark circuits from ISCAS’89, ITC’99

and industrial designs provided by NXP. All circuits have

been synthesized using a 45nm digital standard-cell library.

During this process all state elements have been removed,

thus leaving only the combinational logic structure. Internal
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parameters were then obtained from the layout of the cells as

well as extraction from SPICE simulations of the transistor

models. For the evaluation of each circuit, n-detect pattern

sets composed of stimuli pairs for detecting transition delay

faults (n = 10) have been generated using a commercial ATPG

tool with pattern compaction. The experiments were executed

on a host machine equipped with NVIDIA R© Tesla R© K80

dual-GPU-accelerator cards each of which has 2×2496 cores

clocked at 824MHz with access to 12GB of global device

memory. However, only a single GPU device was used in the

experiments. The host system contains eight Intel R© Xeon R©

processors clocked at 3.0GHz and 128GB of RAM. The peak

memory consumption of the host never exceeded 32GB.

A. Transistor-Level Fault Behavior

In order to evaluate the fault modeling of the proposed

approach, the behavior of affected cells has been compared

with simulations at electrical level first. Fig. 4 shows the

output waveforms of a circuit under the effect of resistive

open transistor faults in the presence of an input hazard. It

depicts the fault-free transient response as well as simula-

tion of different fault sizes in SPICE against the visualized

output of the proposed approach. Each of the open faults

is modeled and injected as an additional ohmic resistance

in a transistor’s conducting state. In the first case (a), faults

in an NMOS transistor of the pull-down net of a NOR-cell

have been investigated for varying sizes. As expected, with

increasing fault size, the falling transition at the output gets

significantly delayed. For higher ohmic resistances (10MΩ),

the resulting drain current is too small to discharge the load

within the required time-frame and the output level sustains.

This behavior was observed in both SPICE and our simulations

as well. In the second case (b), the fault is now located in a

PMOS transistor that strongly affects the rising edge in the

output signal. Due to the high resistance in the pull-up net,

the cell is not able to charge the output load in time before

the off-path signal arrives. Hence, the larger the fault size, the

flatter the output level remains. Again, this impact could be

observed in both of the simulations.

Similarly, the behavior of capacitive faults at the output load

have been investigated for varying sizes as depicted in Fig. 5.

These faults affect the delay of both rising and falling transi-

tions at the same time, but in contrast to the resistive faults they

show no influence on the stationary voltage calculated during

simulation. Thus, for larger simulation intervals, the outputs

achieve full signal strength. However, in logic simulation

similar capacitive faults need to be expressed as small delay

faults that affect both rising and falling edges of the pulse

simultaneously [24]. Hence this will sustain the pulse, as both

the ramping behavior and the corresponding pulse filtering

effect cannot be reflected at logic level appropriately.

B. Runtime

For evaluation of the performance, simulation runtimes are

measured and compared. In the experiments we constrained

the fault sets of each circuit to 10,000 transistor locations that

have been chosen randomly for fault injection, since out of
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Fig. 4. Behavior of a resistive-open transistor fault in a) NMOS- and
b) PMOS-transistors of a NOR-cell compared to electrical level simulation.
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Fig. 5. Behavior of a capacitive fault at the NOR-cell output in comparison.

all possible defects in a circuit, a large portion can in general

be handled at logic level [20]. However, in order to prove the

scalability, we avoid further comparisons with SPICE due to

the drastic computational complexity of its simulation. Instead,

a commercial event-based logic-level timing simulator is used

as a reference.

Table I provides an overview of the investigated circuits and

simulation results. The first three columns contain the names

of the circuit, their number of cells and the number of stimuli

pairs generated by the ATPG tool. Column 4 shows the number

of remaining fault groups after grouping the uncollapsed fault

set. We define the grouping efficiency (eff.) as the initial num-

ber of faults divided by the number of obtained fault groups for

parallel injection. Hence, the efficiency provides the estimated

speedup over a naı̈ve serial simulation of the faults, which is

reported in column 5. In all cases, the grouping was finished

after a few seconds which is a negligible effort compared to a

serial simulation. As shown, the use of fault groups allows for

significant reduction of the simulation overhead. Even in case

of p469k with the small efficiency, almost 15% of the initial

total fault simulation runs are saved.



The last three columns present the runtime performance of

the proposed fault simulation. For an unbiased evaluation, the

simulation runtimes are compared only for a single fault-free

simulation run (Col. 6–7). As shown, the proposed simulator

reduces the runtimes from several hours to few minutes despite

the more precise abstraction. Finally, the last column contains

the time for evaluating all 10,000 faults by using injection

of fault groups. Compared to the fault-free simulation run,

slight improvements in the average runtime per fault group are

achieved, since the simulation of each group is the repeated

processing of the same stimuli set that is cached on the

GPU. Under consideration of the fault grouping efficiency,

the cumulative speedup of the simulation exceeds indeed three

orders of magnitude over naı̈ve serial logic level simulation.

TABLE I
SIMULATION OF 10,000 FAULTS AT RANDOM LOCATIONS.

Circuit(1) Cells(2) Pattern- Fault-
eff.(5) Fault-Free Simulation Fault-

Pairs(3) Groups(4) Logic-Level(6) Proposed(7) Sim.(8)

s38417 15.6k 348 390 25.6 4.94s 383ms 50.42s
s38584 19.9k 563 328 30.5 9.90s 484ms 1:17m
b17 39.8k 2135 1166 8.6 1:22m 2.40s 40:07m
b19 236.9k 4651 485 20.6 31:04m 34.98s 4:32h
p35k 42.9k 4096 5325 1.9 2:20m 4.74s 6:05h
p89k 88.4k 2460 490 20.4 2:41m 5.03s 36:27m
p141k 156.3k 2043 930 10.8 6:04m 9.55s 2:10h
p378k 366.3k 200 26 384.6 4:15m 4.28s 1:13m
p469k 103.4k 347 8589 1.2 2:50m 4.59s 9:52h
p951k 893.7k 7063 55 181.8 2:43h 2:46m 2:33h
p1522k 949.0k 17980 222 45.0 7:57h 7:22m 27:16h
p2927k 1.48M 22107 67 149.3 17:37h 14:24m 17:03h
p3881k 3.15M 12092 102 98.0 23:41h 32:15m 54:16h

VI. CONCLUSION

This work presented a novel approach for fast and accurate

transistor-level fault simulation on data-parallel GPU architec-

tures. The fault simulator allows for modeling and evaluation

of parametric and parasitic faults in complex standard cells

and supports all major timing-related effects found in CMOS

technology, such as pattern-dependent delays, individual tran-

sition ramps and pulse filtering. Dimensions of parallelism

from cells, stimuli and faults are utilized in order to attain

high simulation-throughput for acceleration. Runtime results

have shown cumulative speedups of more than three orders of

magnitude compared to naı̈ve serial simulation at logic-level,

hence outperforming higher-level approaches. This significant

speedup as well as the additional gain in modeling detail

thus enable, for the first time, accurate simulation of faults

at transistor-level even for million-gate designs.
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