
A Neural-Network-Based Fault Classifier

Rodrı́guez Gómez, Laura; Wunderlich, Hans-Joachim

Proceedings of the 25th IEEE Asian Test Symposium (ATS’16) Hiroshima, Japan, 21-24

November 2016

doi: http://dx.doi.org/10.1109/ATS.2016.46

Abstract: In order to reduce the number of defective parts and increase yield, especially in early stages of

production, systematic defects must be identified and corrected as soon as possible. This paper presents a

technique to move defect classification to the earliest phase of volume testing without any special diagnostic

test patterns. A neural-network-based fault classifier is described, which is able to raise a warning, if the

frequency of certain defect mechanisms increases. Only in this case more sophisticated diagnostic patterns or

the even more expensive physical failure analysis have to be applied. The fault classification method presented

here is able to extract underlying fault types with high confidence by identifying relevant features from the

circuit topology and from logic simulation.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic

reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form

to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

http://dx.doi.org/10.1109/ATS.2016.46

A Neural-Network-Based Fault Classifier

Laura Rodrı́guez Gómez and Hans-Joachim Wunderlich

Institute of Computer Architecture and Computer Engineering, University of Stuttgart

Pfaffenwaldring 47, D-70569, Germany, Email: {laura.rodriguez, wu}@informatik.uni-stuttgart.de

Abstract—In order to reduce the number of defective parts and
increase yield, especially in early stages of production, systematic
defects must be identified and corrected as soon as possible. This
paper presents a technique to move defect classification to the
earliest phase of volume testing without any special diagnostic
test patterns. A neural-network-based fault classifier is described,
which is able to raise a warning, if the frequency of certain
defect mechanisms increases. Only in this case more sophisticated
diagnostic patterns or the even more expensive physical failure
analysis have to be applied. The fault classification method
presented here is able to extract underlying fault types with
high confidence by identifying relevant features from the circuit
topology and from logic simulation.

Index Terms—Neural networks, machine learning, fault clas-
sification, diagnosis

I. INTRODUCTION

Manufacturing monitoring includes an early identification

of systematic defects in order to correct them as soon as

possible and to ensure or increase yield [1]. Detecting the

problem requires the generation of high quality test sets, while

identifying and correcting the problem requires sophisticated

logic diagnosis, physical analysis, process monitoring and

yield learning. Standard logic diagnosis algorithms can work

on production test data and are able to locate the fault sites to

a large extent [2][3][4]. Yet the identification of the underlying

defect type is often only possible if additional tests with high

resolution are applied in a second test and are complemented

by physical failure analysis (PFA) [5].

PFA may benefit from any approach that can correctly

identify susceptible weak structures and locations [6]. Still, the

lack of accurate logic models of faulty behaviours caused by

defects complicates this analysis. The activation and detection

of the fault depend on physical and topological parameters

of the design, some of which cannot be predicted [7]. Along

with non-modelled non-functional interactions during testing,

the increased occurrence of intermittent faults aggravates the

problem[8]. This leads to difficulties in finding a match

between test outcomes and defect mechanisms [9] and exceeds

the capabilities of most logic diagnosis techniques.

The lack of predictable rules to relate the test outcome to a

defect mechanism is the perfect scenario for machine learning

approaches. Machine learning refers to a variety of algorithms

used in contexts where the solution cannot be programmed in

an if-then-else fashion, i.e., with fixed rules. Such algorithms

are able to infer a structure in a given data set. In particular,

neural networks [10] have been successfully applied in differ-

ent domains, such as speech or image recognition, with great

success.

We present an approach to find a match between the

observed faulty behaviour during production test and certain

fault models with the help of neural networks. The traditional

test flow (figure I-a) is complemented with the classifier. The

classification technique works on top of a logic diagnosis

algorithm for fault location, and does not require a second

pass to test failing chips with diagnostic patterns. The modified

flow is depicted in figure I-b. With information from test and

logic diagnosis, the classifier is able to identify the fault type.

Based on previous experience, a threshold T is set which

is considered to be the minimum bound for a defect to be

considered systematic. Whenever T is surpassed, a warning

is issued that informs of a systematic defect. Further analysis

is important in chips affected by a systematic defect, since a

confirmation of this diagnosis would allow to correct the prob-

lem immediately. Early classification allows a prioritization

of a second diagnostic pass and PFA utilization. Given that

classification using an ANN is an extremely fast and cheap

operation, a manufacturer could avoid time consuming second

pass diagnosis or even PFA for defects which are outliers

and rather dedicate the resources to confirm the presence of

a systematic defect, which can be corrected. The approach is

validated with permanent and intermittent faults which include

crosstalk, complex bridging functions, delay faults and can

easily be extended.

Fig. 1. a) Traditional test flow; b) Modified test flow

The remainder of the paper is organized as follows: section

II describes the available techniques for test and diagnosis

that contribute to locating or characterizing the fault. Section

III gives an insight into neural networks, while IV explains

how the classification takes place. Section V summarizes the

experimental results.

1

II. TEST, DIAGNOSIS AND DEFECT MECHANISM

IDENTIFICATION

The primary goal of test is to detect any possible defect

in the chip, and a high success has been achieved up to

now with relatively simple fault models [9]. For diagnosis,

more sophisticated defect mechanisms introduced by newer

technologies require more accurate modeling. In [11], the

authors allow the user to describe a ”user-defined fault model”,

or UDFM, which may be generated taking into account the

layout of the considered library cell. Each of the cells in the

standard library is characterized, and the detecting patterns

are stored for each defect. This information is fed to the test

generator, which generates high-efficiency test sets.

More general fault models are the conditional line flip

model[12] or pattern-dependent faults [13], which allow con-

sidering timing, indeterminism, or layout neighbourhoods.

These rather complex fault models are useful for high quality

test pattern generation and high defect coverage, but there is

limited progress to deduct a fault model from a test outcome.

Techniques such as presented in [2] or [14] perform model-

independent logic diagnosis. The logic-level representation of

the circuit provides the diagnosis approaches with enough

information to find the fault location. Unfortunately, it is

insufficient to provide insight into the underlying problem.

Many techniques have been proposed which take advantage

of layout information both in test pattern generation and

diagnosis. Methods such as [4] extract from the layout the

defective location’s neighborhood, and infer from the logic

values the function which activates the fault. However, the

authors assume deterministic behaviour of the faults in given

neighbourhood conditions, and do not handle intermittent

faults. They use both failing and passing pattern information,

and patterns which are not in the test are given a don’t

care value, possibly leading to deviations from the original

activation function. Based on [4], [15] uses machine learning

to discard candidates with inconsistent activation functions

and thus enhance diagnosis resolution. Such layout-aware

diagnostic approaches provide a good first approximation to

understand the underlying defect. When a big population

is available, they can be successfully combined with yield

learning [16]. Other approaches assume a fault model and

locate the problematic signal or gate based on this. Examples

are [17], where the authors locate bridges in a design and

classify their type. While such techniques are successful, the

analysis is limited to bridging faults.

As nanometer technology evolves, many factors influencing

circuit behaviour must be accounted for, including variations.

It is possible to predict the performance of a unit by statis-

tically analysing high volume test results. Researchers have

developed approaches to predict the test outcome of a circuit

based on the results of previous tests [18]. Machine learning

has also been used to separate critical from non-critical faults

[19][8]. Although these approaches rule out systems affected

by noise, they do not provide information about the critical

defect in the actual faulty chips.

This paper presents an approach to point out the fault model

to which the observed behaviour may belong based on volume

test outcomes and standard logic diagnosis. This will avoid the

need of waiting for PFA results for every faulty chip, while

it provides more detailed information and speeds up PFA. To

the best of the authors’ knowledge, no attempt has been made

so far to relate test outcomes to permanent and intermittent

fault manifestations by means of neural networks.

III. NEURAL NETWORKS

An artificial neural network (ANN) is an information

processing structure, often considered a universal function

approximator. It can detect data trends and structures too

complex to be detected by human experts or even by other

computing techniques. ANNs are configured (or learn) to solve

a certain problem. The term supervised learning refers to

algorithms which find a mapping between a set of inputs called

features and the provided output values. Classification refers

to the mapping of certain patterns of features into a certain

given category. In our work, we assume a (correctly) labelled

learning set is available from previous production, i.e., a large

set of feature vectors and the corresponding class or label are

available a priori. The ANN learns from (or is trained with)

this set.

This section introduces ANNs in the context of supervised

learning for classification. More specifically, it describes the

type of ANNs deployed in this work using the Keras [20]

library, which is based on Theano [21]. For readers interested

in more details we refer to [10].

A. Structure and feed-forwarding

ANNs are formed by a number of processing elements

referred to as neurons. A neuron is connected by means of

directed edges to other neurons, and those edges are annotated

with weights.

Neurons are organized in layers. Each layer l is connected

to layers l−1 and l+1. In a fully connected ANN like the one

used in this work, this means every cell in layer l has all l−1
cells as predecessors, and all l+1 cells as successors. There are

three types of layers, namely input, hidden and output layer.

The input layer has one cell per feature, and its activation is

just the input vector X . Hidden layers calculate their activation

as

Al = Φ(Al−1 ∗W
T
l)

where Al−1 is the activation of the predecessor layer and

Wl is the weight matrix, of size |l − 1| ∗ |l|, as it is formed

by all weight vectors associated to edges between layers l− 1
and l. Φ is a differentiable non-linear function, which allows

the network to approximate non-linear functions. One of the

most common choices for Φ is the hyperbolic tangent, used

in this work.

For classification problems, the output layer has as many

nodes as the number of classes, C. The activation of the

last layer, which is a vector of real numbers of length C,

is converted into a probability vector by using the softmax

function:

P (faultclass =c|X) = eF (X)[c]/
∑

k∈C

eF (X)[k]

and then class c for which the corresponding probability is

the highest, is taken as the solution. The process of calculating

the output given a certain input vector X is known as feed-

forwarding.

2

B. Learning

ANNs learn because they can adapt the weights associated

to their neurons. Given that ANNs learn by example, they must

be provided with a so-called tranining set. A training set TrS
consists of a large set of pairs of the form (features, label).
An objective function Q is defined which the learning algo-

rithm will try to minimize. In this work we have considered

the mean squared error between the labels in the training

set and the feedforward value calculated by the ANN given

the corresponding feature vectors. Backpropagation learning

[22] iteratively adapts the weights using an optimizer function

that tries to minimize the difference between labels and

feedforward values for the training set. The algorithm finishes

when a maximum number of iterations or a maximum error

bound have been reached.

A possible optimizer is gradient descent, which for every

iteration adapts weights by differentiating the cost function:

w := w − α∇Q(w) where w is the weight, Q is the

cost function and α is the learning rate. Keras implements

stochastic gradient descent, which means the weights are

modified after evaluating a minibatch: a subset of the training

set, and not the complete population. In succeeding iterations,

data is shuffled to avoid cycles. Classic stochastic gradient

descent can diverge in some cases. To avoid it,the learning

rate can include momentum, i.e., the learning method has

a ”memory” to prevent oscillations in the direction of the

steps. Keras implements Adadelta [23], which includes a

dynamic learning rate for each parameter. This is particularly

useful since gradients in different cells may have several

orders of magnitude between them, complicating learning with

traditional approaches.

Neural networks may infer a too complex function which

fits closely the training data set but extrapolates poorly. This

problem is known as overfitting, and one technique to avoid it

is weight decay, which penalizes weights with very large abso-

lute values. Weight decay can be included in the optimization

function to ensure good learning properties. Another problem

is underfitting, which can be detected because the accuracy

for both TrS and TeS is low. This is an indication that the

inferred function is too simple, i.e., the configuration of the

ANN may not be expressive enough.

IV. DEFECT CLASSIFICATION WITH NEURAL NETWORKS

The proposed method takes advantage of knowledge ac-

quired during past production. As a first step, the ANN is

trained with information gathered from past production. The

trained ANN, ready to classify new data, is then integrated

into the fault classifier. The block diagram in figure 2 shows

the inputs to be provided as well as the basic structure and

output. Test provides the failing test patterns, including input

and observed output. Diagnosis provides a candidate location,

to which we will refer as victim line. If the diagnosis tool

returns more than one candidate, the analysis can be performed

for all returned candidates.

The defect classifier is divided in two blocks. The first

block, or logic simulator, gathers the features. The second

block contains the trained ANN which receives the features

from the logic collector as input and outputs the classification.

Fig. 2. Proposed defect classifier.

Keras allows to parametrize the ANNs to a large extent.

The experimental results in section V report the accuracy of

classification depending on the topology of the ANN. In the

following subsections we describe the chosen features and the

output encoding.

A. Features

Along with the neural network structure choice and proper

training, feature selection is a crucial step which determines

the success of the approach. We do not apply feature learning,

but select input values representative of the classes we want

to differentiate. The approach is not intended to increase the

costs of the traditional flow. The features used below can be

easily obtained by logic simulation. The fault models covered

at the moment include interconnect and gate faults:

• crosstalk induced delay: a victim line is pulled down/up

because of switching activity in the opposite direction

neighbourhood.

• dominant-and(-or) bridge: due to an unwanted connec-

tion, two lines are connected. The victim line changes its

value to the AND (OR) of its value and the aggressor’s.

• byzantine bridge: either of the two signals connected by

mistake may flip if they have opposite values.

• slow-to-rise and slow-to-fall gates: a gate exhibits long

delays for transitions to high or to low, respectively.

We now select information obtainable from the circuit

topology and logic simulation that can represent our fault

models. From the simulation of the subset of failing patterns

Tf ⊂ T we can obtain the following values:

1) Ratio of failing patterns with victim line 0: If

for all Tf the victim line is 0 in the fault-free case, then

we have some strong evidence that the victim line may be

driven by a dominant-or bridge. Let T 0
f ⊂ Tf be the subset

of failing patterns which set the victim line to 0, and set

vl@0 = |T 0
f |/|Tf |. Then vl@0 is a representative feature of a

dominant-or fault.

2) Ratio of failing patterns with victim line 1: In exactly

the same way we set vl@1 = |T 1
f |/|Tf |, which is the ratio of

all failing patterns where the victim line is 1 in the fault-free

case among all the failing patterns. It is an indication of a

dominant-and bridge.

3) Ratio of falling transitions at victim line: This

feature is calculated as fallV L = |Tfall|/|Tf |, where Tfall =
ti ∈ Tf |vl(ti) = 0&vl(ti−1) = 1, i.e., Tfall is the number of

3

failing patterns at which the victim line had value 0, and a

transition from the previous cycle took place. This feature is

a strong indicator for slow-to-fall faults.

4) Ratio of rising transitions at victim line: Analo-

gously, we define riseV L = |Trise/|Tf |, where Trise =
ti ∈ Tf |vl(ti) = 1&vl(ti−1) = 0. riseV L also quantifies evi-

dence of a slow-to-rise fault.

5) Driving gate inputs: The driving gate and the pat-

terns applied at its input help characterize some given faults.

Features are added to include information such as switching

at the input of the gate, even if it causes no switching at the

output. This gives a hint towards possible temporal glitches

in the signal that may derive in an error if a timing fault is

present. For gate g driven by inputs I , we gather six additional

numbers from logic simulation:

Tc0 = |{ti ∈ Tf |g(ti) = g(ti−1) = 0&I(ti)! = I(ti−1)}|

Tc1 = |{ti ∈ Tf |g(ti) = g(ti−1) = 1&I(ti)! = I(ti−1)}|

Ts0 = |{ti ∈ Tf |g(ti) = g(ti−1) = 0&I(ti) = I(ti−1)}|

Ts1 = |{ti ∈ Tf |g(ti) = g(ti−1) = 1&I(ti) = I(ti−1)}|

Ttf = |{ti ∈ Tf |g(ti) = 1&g(ti−1) = 0&I(ti)! = I(ti−1)}|

Ttr = |{ti ∈ Tf |g(ti) = 0&g(ti−1) = 1&I(ti)! = I(ti−1)}|,

where Tc0(Tc1) is the number of patterns for which at least

one input of the gate changed but the output remained at 0
(1), Ts0 (Ts1) is the number of patterns for which inputs and

output remained stable and the output had value 0 (1) and Ttf

(Ttr) is the number of patterns for which a transition at the

inputs caused a falling (rising) transition at the output. Based

on these values, we extract the following features:

Tc0

Tf

,
Tc1

Tf

,
Ts0

Tf

,
Ts1

Tf

,
Tfalling

Tf

,
Trising

Tf

(1)

6) Ratio of unexplained patterns: We define Tu
f ⊂ Tf

as those failing patterns which cannot be explained by flip-

ping the victim line. We define the feature unexplained =
|Tu

f |/|Tf |, and if unexplained > 0, there must be at least

one more culprit in the circuit. This reflects the situation that

a bridging fault affects two lines in an arbitrary way.

7) Maximum ratio of transitions in the neighborhood:

We extract the physical neighbourhood of the victim line

from layout information. Logic simulation determines for each

neighbour v ∈ Nh the number of patterns ti ∈ Tf for which

they switch their value by applying ti:

max trans =
maxv∈Nh

{ti ∈ Tf |v(ti) 6= v(ti−1)}

|Tf |
. (2)

Note, that ti ∈ Tf , but not necessarily ti−1 ∈ Tf . The feature

max trans helps to point out crosstalk faults.

8) Average ratio of neighbours with different value than

the victim line: The feature

avg dist =

∑

v∈Nh

∑

t∈Tf

{v|v(t) 6= vl(t)}

|Nh||Tf |
(3)

computes the average of the ratio of patterns in which the

neighbours in Nh have a different value than the victim line

vl with different value. It is included to help classify bridges.

The values of all thirteen features are integrated into a vector

X . None of the features allows by itself the classification of

the faults.

The features are expected to have noisy behaviour. Given

that feature extraction is based solely on logic simulation,

which does not capture timing behaviour accurately, this is

the typical diagnosis limitation: it is not possible to know

the defect behaviour beforehand, which requires diagnosis

methods that can work with less-than-perfect matches.

B. Output Encoding

The problem at hand is a multiclass classification with pos-

sible outcomes: slow-to-rise, slow-to-fall, crosstalk, dominant-

AND, dominant-OR, byzantine bridge. Outputs are encoded as

vectors of length c, where c is the number of classes. The class

with the highest probability is taken as the result provided by

the network. For the training set, the labels are known and the

expected values are set to 0 except for the one corresponding

to the class, which should be 1. The expected outputs for the

elements in the training set are set to [1, 0, 0, 0, 0, 0] for slow-

to-rise faults, [0, 1, 0, 0, 0, 0] for slow-to-fall faults, and so on.

V. EXPERIMENTAL VALIDATION

To validate the presented approach, faults have been injected

in random locations into a set of five of the ITC’99 circuits

and five bigger circuits kindly provided by NXP. Under full-

scan test assumption, test patterns were generated with a

commercial tool targeting transition faults with n-detect. 200

random faults have been injected per fault type and circuit.

The injection was performed in random locations. Each fault

was simulated and features were collected for all of them. The

test environment has been simulated with a timing-accurate

simulation framework [24]. The classifier, on the other hand,

integrates an in-house logic simulator which extracts the

feature values and feeds them to the ANN. The gathered data

is divided into training and test sets.

The ANNs deployed in this work are fully connected. The

number of layers and number of cells per layer are indicated

for each network in the experimental results. The maximum

number of learning iterations was set to 15000. 65% of the

generated data are used as training set. The remaining 35%

fault injections are used as test set. Configurations with over-

or underfitting for at least one circuit are discarded. The

classification results presented are exclusively based on the

test set. Accuracy is calculated as the percentage of faults

correctly classified.

A. ANN trained with product knowledge

The first batch of experiments consisted of training a

network for each circuit, and then testing using the test set

of the same circuit. Experimental results show that the best

results were obtained with up to four layers and from eight

to thirteen cells per layer. The first ten data rows of table I

show the configuration which obtained the best result for every

circuit. Column accuracy shows the average accuracy for all

fault models. The last six columns show the accuracy for each

of the six fault models considered.

The accuracy of the tool is limited by the indeterminism

introduced by timing. For instance, in case of a slow gate

which has a stable value in logic simulation but switches

4

TABLE I
CLASSIFICATION RESULTS FOR ANN TRAINED WITH DATA OF THE DIAGNOSED DESIGN

Optimal configuration per circuit

circuit layers cells accuracy or bridge and bridge byzantine slow to rise slow to fall crosstalk

b18 1 13 83.52% 79.31% 83.93% 84.62% 75.51% 81.54% 93.85%

b19 2 12 78.51% 66.67% 66.67% 92.18% 77.08% 64.62% 96.92%

b20 2 10 83.61% 71.19% 87.93% 84.37% 79.59% 81.54% 95.38%

b21 3 12 87.22% 86.44% 85.96% 87.69% 87.75% 75.38% 100%

b22 3 12 87.32% 87.93% 94.44% 87.5% 87.75% 72.31% 95.38%

p35k 3 10 84.84% 78.33% 81.67% 89.23% 87.75% 79.69% 92.31%

p45k 3 8 85.67% 88.14% 84.21% 85.93% 85.71% 81.54% 87.69%

p78k 3 11 92.66% 96.77% 96.77% 96.92% 81.63% 83.08% 98.46%

p141k 2 13 90.98% 98.39% 91.80% 93.75% 83.67% 80% 96.92%

p330k 1 13 90.88% 88.14% 91.67% 92.19% 87.75% 89.23% 95.38%

Identical configuration per circuit

circuit layers cells accuracy or bridge and bridge byzantine slow to rise slow to fall crosstalk

b18 2 9 85.47% 79.31% 92.85% 87.69% 75.51% 78.46% 96.92%

b19 2 9 77.61% 57.89% 63.89% 92.19% 81.25% 67.69% 95.38%

b20 2 9 81.39% 67.79% 87.93% 89.06% 75.51% 78.46% 87.69%

b21 2 9 85.83% 89.83% 84.21% 86.15% 83.67% 70.76% 100%

b22 2 9 83.94% 82.75% 96.29% 82.81% 79.59% 67.69% 95.38%

p35k 2 9 84.02% 71.67% 83.33% 89.23% 89.79% 78.13% 92.31%

p45k 2 9 84.11% 91.52% 63.15% 87.5% 87.75% 72.31% 89.23%

p78k 2 9 89.94% 95.16% 93.54% 96.92% 81.63% 72.31% 98.46%

p141k 2 9 91.26% 98.39% 96.72% 98.44% 75.51% 81.53% 93.84%

p330k 2 9 90.61% 91.53% 90% 90.63% 85.71% 89.23% 95.38%

shortly -and slower than it should-, causing a problem that

logic simulation cannot model. In particular, for a very deep

circuit, gates near the output may have glitches with more

frequency, caused by differences in the arrival times of their

inputs. If this situation arises too often in the test set, it will

lead the tool to interpret the values as a bridging faults. If

such faults are also included in the training set, it will cause

lower accuracy levels, as for circuit b19. However, regardless

of this, the method can indeed work with this typical diagnosis

limitation: the overall accuracy reaches almost 80% in the

worst case and over 90% in the best cases.

Although optimal configuration for the circuits differ, such

an optimal choice can only be met with some knowledge about

the circuit and available data. As a starting point, however,

a global optimal configuration can be chosen which works

acceptably for all circuits. In this case, a neural network with

two hidden layers and nine cells per layer renders accuracy

results as shown in the last ten rows of table I. Despite

not achieving optimal configuration results, the accuracy still

suffices in volume test as a first estimation of systematic

defects.

Training and classification were performed on a 64-bit x86

at 3301 MHz. Both operations depend on the size of the ANN

and the topology. In our experiments, training takes under 90s
for any ANN topology, while prediction for 400 experiments

can be performed in 1s.

B. Classification of intermittent faults

Due to physical parameters, a fault may be activated in-

termittently, for instance, depending on temperature or power

droop. We have generated a test set with intermittent faults,

i.e., the setup remains as described before but in the timing

simulation, when the activation condition is met we randomly

decide if the fault is injected or not. Table II shows the

results of the classification accuracy for this kind of faults,

and confirms that out method is robust w.r.t. indeterminism.

C. ANN reuse for new product

The results in the previous sections are the best possible

scenario: data from the circuit under test is available and

labelled to train the network. But the approach is also intended

for the first stages of production, when there may be no data

available. Gathering the data for one design can take a long

time, so it is interesting to survey the possibility of reusing data

from other products. We show in table III the average accuracy

for each ANN trained with data from the circuit indicated

in column circuit when data from all other nine circuits is

classified. The ANN has been configured with two layers and

nine cells per layer, the ”best global configuration” chosen in

the previous section. These are not the best results obtained,

but it is reasonable to assume that without prior experience

with the circuit, a ”generally good” configuration is to be

taken.

VI. CONCLUSION

We presented a method to distinguish between crosstalk in-

duced delay, slow to rise/fall gates and bridges in interconnects

from production test data. By using neural networks we are

able to distinguish among different types of faults without

changing the test set. Moreover, we show that the method

could be used with data from another design at very early

stages of production, when there is no available data, and it is

robust with faults which exhibit an intermittent behaviour. If

more complex fault models have to be classified as well, the

set of features could be enhanced.

5

TABLE II
AVERAGE ACCURACY OF ANNS CLASSIFYING INTERMITTENT FAULTS.

Circuit accuracy or bridge and bridge byzantine slow to rise slow to fall crosstalk

b18 83.51% 74.60% 83.05% 87.69% 87.69% 83.07% 84.62%

b19 82.49% 61.02% 76.27% 89.06% 89.23% 81.54% 95.38%

b20 86.41% 78.33% 82.14% 92.31% 81.54% 91.07% 95.45%

b21 87.59% 83.60% 79.31% 90.77% 93.84% 81.53% 95.38%

b22 83.51% 82.46% 84.75% 90.77% 67.69% 76.92% 98.46%

p35k 83.69% 80.70% 77.19% 86.15% 84.61% 85.93% 92.30%

p45k 85.49% 84.74% 84.37% 93.85% 80.00% 76.92% 92.65%

p78k 89.29% 81.96% 93.55% 96.92% 84.62% 80.00% 98.46%

p141k 86.77% 83.33% 79.66% 89.23% 89.23% 85.94% 92.31%

p330k 86.70% 77.97% 84.21% 88.89% 89.23% 87.69% 92.31%

TABLE III
AVERAGE ACCURACY OF ANNS CLASSIFYING DATA FROM OTHER DESIGNS. ANN CONFIGURED WITH 2 LAYERS AND 9 CELLS PER LAYER.

Circuit accuracy or bridge and bridge byzantine slow to rise slow to fall crosstalk

b18 83.71% 78.27% 90.86% 87.72% 73.61% 72.25% 98.63%

b19 83.33% 74.20% 73.05% 91.54% 85.03% 76.01% 98.11%

b20 84.02% 75.06% 83.48% 89.13% 87.92% 73.96% 95.04%

b21 85.04% 84.23% 81.47% 90.67% 82.93% 74.13% 95.56%

b22 85.21% 78.42% 86.89% 89.82% 82.02% 75.16% 97.78%

p35k 80.93% 70.68% 78.55% 88.94% 82.01% 72.99% 91.28%

p45k 80.32% 90.59% 63.26% 91.54% 79.75% 64.54% 90.59%

p78k 77.85% 84.11% 83.31% 82.20% 76.79% 66.44% 76.75%

p141k 83.65% 93.21% 89.65% 98.29% 73.85% 73.87% 92.13%

p330k 84.12% 92.29% 89.17% 87.91% 73.16% 69.51% 91.45%

BIBLIOGRAPHY

[1] R. Aitken, “Yield learning perspectives”, IEEE Design & Test of
Computers, vol. 29, no. 1, pp. 59–62, Feb 2012.

[2] S. Holst and H.-J. Wunderlich, “Adaptive debug and diagnosis without
fault dictionaries”, Journal of Electronic Testing, vol. 25, no. 4-5, pp.
259–268, 2009.

[3] Y. Benabboud, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch,
A. Virazel, L. Bouzaida, and I. Izaute, “A fault-simulation-based ap-
proach for logic diagnosis”, in 4th Int’l Conf. on Design Technology of
Integrated Systems in Nanoscale Era, 2009. (DTIS’09), April 2009, pp.
216–222.

[4] R. Desineni, O. Poku, and R. Blanton, “A logic diagnosis methodology
for improved localization and extraction of accurate defect behavior”, in
Proc. IEEE Int’l Test Conference, 2006. (ITC ’06), Oct 2006, pp. 1–10.

[5] S.-Y. Liu, Y.-C. Hou, C.-C. Chang, and J.-C. Lin, “Sige profile inspection
by using dual beam fib system in physical failure analysis”, in 20th
IEEE Int’l Symposium on the Physical and Failure Analysis of Integrated
Circuits, 2013 (IPFA’13),, July 2013, pp. 490–492.

[6] C. Hora, R. Segers, S. Eichenberger, and M. Lousberg, “An effective
diagnosis method to support yield improvement”, in Proc. Int’l Test
Conference, 2002 (ITC’02), 2002, pp. 260–269.

[7] A. Ivanov, S. Rafiq, M. Renovell, F. Azais, and Y. Bertrand, “On the
detectability of cmos floating gate transistor faults”, IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, vol. 20,
no. 1, pp. 116–128, Jan 2001.

[8] L. Rodrı́guez Gómez, A. Cook, T. Indlekofer, S. Hellebrand, and H.-
J. Wunderlich, “Adaptive Bayesian Diagnosis of Intermittent Faults”,
Journal of Electronic Testing: Theory and Applications (JETTA), vol. 30,
no. 5, pp. 527–540, 2014.

[9] W. Maly, A. Gattiker, T. Zanon, T. Vogels, R. Blanton, and T. Storey,
“Deformations of ic structure in test and yield learning”, in Proc. IEEE
Int’l Test Conference (ITC’03), vol. 1, Sept 2003, pp. 856–865.

[10] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2006.

[11] F. Hapke, W. Redemund, A. Glowatz, J. Rajski, M. Reese, M. Hustava,
M. Keim, J. Schloeffel, and A. Fast, “Cell-aware test”, IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems, vol. 33,
no. 9, pp. 1396–1409, Sept 2014.

[12] H.-J. Wunderlich, Ed., Models in Hardware Testing. Springer-Verlag
Heidelberg, 2010, vol. 43.

[13] R. Blanton and J. Hayes, “The input pattern fault model and its
application”, in Proc. European Design and Test Conference, 1997
(EDTC’97), Mar 1997, p. 628.

[14] A. Cook, M. Elm, H. Wunderlich, and U. Abelein, “Structural In-
Field Diagnosis for Random Logic Circuits”, in Proc. European Test
Symposium (ETS’11), Trondheim, Norway, may 2011, pp. 111 –116.

[15] Y. Xue, O. Poku, X. Li, and R. Blanton, “Padre: Physically-aware
diagnostic resolution enhancement”, in Proc. IEEE Int’l Test Conference
(ITC’13), Sept 2013, pp. 1–10.

[16] R. Blanton, W. Tam, X. Yu, J. Nelson, and O. Poku, “Yield learning
through physically aware diagnosis of ic-failure populations”, IEEE
Design & Test of Computers, vol. 29, no. 1, pp. 36–47, Feb 2012.

[17] Y. Benabboud, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch,
A. Virazel, L. Bouzaida, and I. Izaute, “Comprehensive bridging fault
diagnosis based on the slat paradigm”, in 4th Int’l Conf. on Design
Technology of Integrated Systems in Nanoscale Era, 2009. (DTIS’09),
April 2009, pp. 216–222.

[18] R. Madge, B. Benware, M. Ward, and R. Daasch, “The value of
statistical testing for quality, yield and test cost improvement”, in Proc.
of IEEE Int’l Test Conference(ITC’05), Nov 2005, pp. 10 pp.–332.

[19] J. De Kleer, “Diagnosing multiple persistent and intermittent faults”,
in Proc. of the 21st Int’l Jont Conf. on Artifical Intelligencei(IJCAI’09),
ser. IJCAI’09. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2009, pp. 733–738.

[20] F. Chollet, “Keras”, https://github.com/fchollet/keras, 2015.
[21] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow,

A. Bergeron, N. Bouchard, and Y. Bengio, “Theano: new features
and speed improvements”, Deep Learning and Unsupervised Feature
Learning NIPS 2012 Workshop, 2012.

[22] P. J. Werbos, “Beyond regression: New tools for prediction and analysis
in the behavioral sciences”, Ph.D. dissertation, Harvard University, 1974,
department of Applied Mathematics.

[23] M. D. Zeiler, “ADADELTA: an adaptive learning rate method”, CoRR,
vol. abs/1212.5701, 2012.

[24] S. Holst, E. Schneider, and H.-J. Wunderlich, “Scan Test Power Sim-
ulation on GPGPUs”, in Proceedings of the 21st IEEE Asian Test
Symposium (ATS’12). IEEE Computer Society, 2012, pp. 155–160.

6

