
Mixed 01X-RSL-Encoding for Fast and

Accurate ATPG with Unknowns

Erb, Dominik; Scheibler, Karsten; Kochte, Michael A.; Sauer,

Matthias; Wunderlich, Hans-Joachim; Becker, Bernd

Proceedings of the 21st Asia and South Pacific Design Automation Conference

(ASP-DAC’16) Macao SAR, China, 25-28 January 2016

doi: http://dx.doi.org/10.1109/ASPDAC.2016.7428101

Abstract: Unknown (X) values in a design introduce pessimism in conventional test generation algorithms
which results in a loss of fault coverage. This pessimism is reduced by a more accurate modeling and analysis.
Unfortunately, accurate analysis techniques highly increase runtime and limit scalability. One promising
technique to prevent high runtimes while still providing high accuracy is the use of restricted symbolic logic
(RSL). However, also pure RSL-based algorithms reach their limits as soon as millon gate circuits need to be
processed. In this paper, we propose new ATPG techniques to overcome such limitations. An efficient hybrid
encoding combines the accuracy of RSL-based modeling with the compactness of conventional threevalued
encoding. A low-cost two-valued SAT-based untestability check is able to classify most untestable faults with
low runtime. An incremental and event-based accurate fault simulator is introduced to reduce fault simulation
effort. The experiments demonstrate the effectiveness of the proposed techniques. Over 97% of the faults are
accurately classified. Both the number of aborts and the total runtime are significantly reduced compared to
the state-of-the-art pure RSL-based algorithm. For circuits up to a million gates, the fault coverage could be
increased considerably compared to a state-of-the-art commercial tool with very competitive runtimes.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic
reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form
to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

http://dx.doi.org/10.1109/ASPDAC.2016.7428101


Mixed 01X-RSL-Encoding for Fast and Accurate ATPG with Unknowns

Dominik Erb∗, Karsten Scheibler∗, Michael A. Kochte‡, Matthias Sauer∗, Hans-Joachim Wunderlich‡, Bernd Becker∗
∗University of Freiburg, Georges-Köhler-Allee 51, 79110 Freiburg, Germany

‡University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany

Abstract—Unknown (X) values in a design introduce pessimism
in conventional test generation algorithms, which results in a loss of
fault coverage. This pessimism is reduced by a more accurate model-
ing and analysis. Unfortunately, accurate analysis techniques highly
increase runtime and limit scalability. One promising technique to
prevent high runtimes while still providing high accuracy is the use
of restricted symbolic logic (RSL). However, also pure RSL-based
algorithms reach their limits as soon as millon gate circuits need to
be processed.

In this paper, we propose new ATPG techniques to overcome such
limitations. An efficient hybrid encoding combines the accuracy of
RSL-based modeling with the compactness of conventional three-
valued encoding. A low-cost two-valued SAT-based untestability
check is able to classify most untestable faults with low runtime. An
incremental and event-based accurate fault simulator is introduced
to reduce fault simulation effort. The experiments demonstrate the
effectiveness of the proposed techniques. On average, over 99.3%
of the considered faults are accurately classified. Both the number
of aborts and the total runtime are significantly reduced compared
to the state-of-the-art pure RSL-based algorithm. For circuits up to
a million gates, the fault coverage could be increased considerably
compared to a state-of-the-art commercial tool with very competitive
runtimes.

Index Terms—Unknown values, test generation, ATPG, Restricted
symbolic logic, SAT, Stuck-at fault

I. INTRODUCTION

During test, unknown or X-values can occur in a design at

uninitialized memory blocks or non-scan flip-flops, at clock-

domain boundaries, or at analog-digital converters. Since these X-

values reduce the observability and controllability of signals, the

fault coverage is reduced. X-blocking design-for-test structures

can be added to limit the propagation of X-values in the design.

However, the resulting performance, area, and wiring overhead

may prohibit to block all sources of X-values.
Automatic test pattern generation (ATPG) algorithms have to

consider these remaining X-values during test generation and fault

simulation. Conventional ATPG algorithms for stuck-at faults

are based on logic algebras using a limited, fixed number of

values to represent signal states in the fault-free and faulty

circuits. Examples are the five-valued or nine-valued logic [1, 2].

Typically, one symbol X is used to denote the state of signals

with an X-value. The nine-valued logic is also often adapted to

SAT-based test generation for stuck-at faults [3]. In these logics,

it is not possible to distinguish different X-values and to correctly

evaluate reconvergences of X-valued signals.
Figure 1 shows a circuit with two X-sources (signals b and d).

The X-value originating at signal b fans out and reconverges at

output j. Since the negation of the X-value at gate G2 cannot be

captured by a three-valued logic with values {0, 1, X}, the value

of output j is evaluated as X. The stuck-at-0 fault at j is untestable

when using three-valued logic since j cannot be justified to value

1. An accurate analysis, however, shows that j has value 1 when

(a, c, e) = (1, 0, 1) independent of the value of signal b.
This pessimistic evaluation is a principal shortcoming of logic

algebras with a limited, fixed set of values. The accurate com-

putation of signal values in presence of multiple X-sources and

reconvergenes is an NP-complete problem and can be performed

Fig. 1: Stuck-at-0 fault at output j is undetectable in three-valued

logic, but detectable using restricted symbolic logic.

by symbolic simulation or by mapping the evaluation to Boolean

satisfiability (SAT) [4, 5]. Accurate fault simulation can also be

mapped to SAT [6, 7].

The accurate (non-pessimistic) test pattern generation in pres-

ence of X-values is an NP-hard problem, which was solved by

a mapping to the satisfiability of quantified Boolean formulas

(QBF) [8]. However, deciding the satisfiability of a QBF is a

PSPACE-complete problem, which is more complex than combi-

national ATPG or SAT [9]. For larger circuits the time to generate

a pattern for a fault or to prove its untestability grows quickly.

In [10], a test pattern generation algorithm based on restricted

symbolic logic (RSL) achieves lower runtimes than QBF-based

ATPG in presence of X-values with minimal impact on the fault

coverage: In RSL, different symbols are used to represent X-

values and their negation [11, 12]. Logic simulation using RSL

(also known as numbered-X or indexed simulation) allows to

accurately evaluate local reconvergences of X-valued signals. But

RSL may be pessimistic when X-values from different X-sources

converge at a gate.

In Fig. 1, output j is correctly evaluated to value 1 when logic

simulation is based on RSL, since the reconvergence of X-values

stemming from signal b at gate G5 and the resulting X-canceling

(here: X1 ∨ ¬X1 = 1) are evaluated accurately. Using RSL, a

pattern for the stuck-at-1 fault at j can also be generated.

However, the encoding of the possible X-values at signals in

RSL is costly and increases the size of the resulting SAT instance.

Furthermore, since RSL-based algorithms are in general unable

to prove fault untestability, a dedicated untestability check is

required, as proposed in [13] where a mapping to SMT (SAT

Modulo Theory) is done.

In this work, ATPG techniques are proposed which overcome

the limitations of a pure RSL encoding:

• An efficient hybrid value encoding is introduced that com-

bines the accuracy of RSL-based encoding and conventional

three-valued encoding. It is based on a thorough analysis

of the circuit to limit RSL encoding to the cases when

actual reconvergences may cause X-canceling, and uses a

combination of pessimistic and RSL encoding. This reduces

the size of the SAT instance and the resulting runtime.

• A low-cost two-valued SAT-based untestability check is

proposed to quickly drop untestable faults.

• Incremental accurate fault simulation reduces the simulation



effort significantly by combining event-based accurate eval-

uation of gates during the fault-free simulation and clever

selection of faults to be accurately evaluated by propagation

path analysis.

These techniques result in a speedup of the ATPG of up to 88×.

The number of faults not classified within a timeout of 10 seconds

decreases by over 99%, and circuits with more than a million

gates can be handled for the first time.

The next section introduces the used terminology. Section III

gives a short overview of the prosed ATPG framework. Sec-

tions IV, V, and VI present the novel ATPG techniques in detail.

Experimental results are discussed in Section VII.

II. TERMINOLOGY

A. X-Values

An X-value always represents a well defined, but unknown

binary value of either logic-0 or logic-1. This excludes undefined

values caused by undefined voltage levels for example by driver

contention and corresponds to the semantics of unknown values

in Kleene’s strong three-valued logic [14]. Signals that generate

unknown values are called X-sources – e. g. uncontrolled sequen-

tial elements or clock-domain crossings. A signal or gate in the

circuit is X-dependent if and only if it is reachable from an X-

source.

B. Two-, Three-Valued and Restricted Symbolic Logic (RSL)

Two-valued logic only allows to distinguish logic-0 and logic-

1. Three-valued logic extends the two-valued logic by only one

additional value to model that a signal has an X-value – and hence

is unable to distinguish different X-values.

In contrast, RSL extends the value domain by indexed and

distinguishable X-values and allows to represent the negation of

an X-value. This allows RSL to accurately evaluate simple, local

X-reconvergences and the resulting X-canceling (i.e. if correlated

X-values occur at several inputs of a gate and as a result a

binary value is visible at the gate output). If different X-values

reconverge, a new unique X-symbol is created, which has no

correlation with the convergent X-sources and hence introduces

pessimism.

Nevertheless, [10] showed that for ATPG, the evaluation of

local reconvergences already allows to generate a test for almost

all detectable faults.

C. Conventional Value Encoding for SAT-Based ATPG

In this work, we map the test pattern generation to a Boolean

satisfiability (SAT) problem. Most modern SAT-solvers expect a

conjunctive normal form (CNF) as input. A CNF is a conjunction

of clauses with each clause being a disjunction of literals – each

literal is either a Boolean variable or its negation.

The size of the CNF encoding highly depends on the number of

distinguishable values modeled for a signal. In two-valued logic,

the possible values are logic-0 and logic-1, and one literal is

sufficient for each signal. In order to handle unknowns, three-

valued logic additionally supports an X-value. This requires two

literals l1, l2 to encode the possible signal values [3].

Regarding RSL, [10] uses two literals (n, x) to distinguish

binary and X-values and adds �log
2
m� literals (called bk) to

distinguish up to m possible X-values at a certain signal using a

binary encoding of the X-indices.

D. Fault Detection Requirements

According to [6], a stuck-at fault is detectable if and only if

there is a test pattern (assignment to the controllable inputs) so

that there is at least one output at which this fault is observable

independent of the values of the X-sources.

III. OVERVIEW OF THE ATPG FRAMEWORK

The proposed SAT-based ATPG framework consists of a novel

signal value and gate encoding for signals that depend on X-

sources. The goals are to reduce the variables required for

encoding each X-dependent signal and to reduce the number

and the complexity of clauses encoding gates with X-dependent

inputs. A topological circuit analysis is performed to derive the

optimal encoding of each signal and gate in a SAT instance.

Before test generation starts, an efficient untestability check is

conducted for each fault. If a fault is not classified as untestable,

the SAT instance is constructed to model the fault free and faulty

circuits and the relevant propagation of X-values. It is analyzed

by a SAT solver. If the instance is satisfiable, a test pattern for

the target fault is found. In addition, an incremental accurate fault

simulator analyzes patterns and finds addtionally detected faults.

Mixed RSL Encoding of Signal Values and Gates

The proposed Mixed 01X-RSL encoding combines the advan-

tages of three-valued and restricted symbolic logic. In a three-

valued encoding, only three values need to be distinguished at

a signal, but all reconvergences are evaluated pessimistically. In

an RSL encoding, a significantly larger number of signal values

is distinguished, allowing much more accurate reasoning about

reconvergences.

The proposed method encodes only those X-values at a signal

as distinguishable (indexed) X-values using RSL that might

actually reconverge and cause X-canceling. For all other signals,

a three-value encoding is used. This requires to determine the

propagation paths of X-values from the X-sources and to compute

the set of X-values that might reconverge at a signal in a

preprocessing step (cf. Section IV-B). This reduces the number of

X-values to be encoded using RSL without reducing the accuracy.

IV. ATPG ALGORITHM

This section describes the novel value encoding and the con-

struction of the SAT instance for test generation.

A. Details of the Mixed 01X-RSL Encoding

In order to distinguish pessimistic (unnamed) and RSL X-

values, we extend the encoding of [10] to allow that a signal

in the SAT instance might show both pessimistic and RSL X-

values. If only one of both is possible at a signal, the needless

case is omitted in order to reduce the encoding overhead.

The following table summarizes the different literal types in

our encoding:

Literal Meaning

n n = 1 ↔ signal is negated

x x = 1 ↔ signal has X-value

xp xp = 1 ↔ X-value is encoded pessimistically

bk Xi i = {1, . . . ,m} binary encoded,

k ∈ {1, . . . , �log
2
m�}

This encoding easily allows the handling of two-valued signals

because in this case only the n literal is required, while the x



literal always shows logic-0 and hence neither xp nor b-literals

are required and the corresponding gate clauses is simplified. In

addition, if only a pessimistic X-value is possible at a signal,

the encoding is only slightly larger than a classical three-valued

encoding – as no b-literals are required and the xp literal is always

assigned logic-1.1 When referring to a literal l of signal s, we

use the notation s[l], e. g. i1[n] for the n-literal of signal i1.

B. Construction of the Mixed 01X-RSL Instance

Preprocessing for mixed 01X-RSL encoding: At first, all pos-

sible X-values per signal that need to be considered in the CNF

are computed by a topological netlist analysis. Figure 2 shows

the result of the preprocessing proposed in [10]. Already for

this small example, four different (indexed) X-values need to

be distinguished. Since at gates G4 and G5, different X-values

may converge, new unique X-symbols X3, X4 are introduced.

However, only the X-value originating at the X-source at input b

might reconverge and potentially cause X-canceling.

Fig. 2: Result of the preprocessing proposed in [10].

Thus, all other X-values can be replaced by one unique X-value

(XP ), which is evaluated pessimistically according to the three-

valued logic. This does not reduce the overall accuracy during

test generation and leads to the refinement shown in Figure 3.

Fig. 3: Refinement for creating a Mixed 01X-RSL CNF.

If only one X-value remains at a signal, the b-literals, which

encode the index of an X-value, can be removed and the depend-

ing gate clauses significantly simplified.

All gates at which only a pessimistic X-value is possible

after the refinement don’t need an RSL encoding anymore. This

reduces the literals and clauses significantly: For the example

above, the number of literals required for gate G5 and output j

is reduced from eleven to only four in the proposed encoding.

For the full example, the number of clauses is reduced by over

75% since the expensive comparator circuits used to compare the

indices of RSL values can be avoided.

Gate encoding using a mixed 01X-RSL encoding: In contrast

to a pure RSL encoding, which only considers n, x and b-

literals, pessimistic X-values (xp literals) need to be considered

in the proposed mixed encoding as well. The following cases are

1As shown in Section IV-B, in these cases the encoding is adjusted before the
creation of the corresponding clauses. Hence, no xp literal is required.

considered: (1) no X-values are possible at the inputs of a gate;

(2) only one input might show an X-value; (3) two or more inputs

might show an X-value. From these three cases, cases (1) and (2)

can easily be handled with only a few clauses.

If no X-values are possible at all, a two-valued encoding only

using the n-literal is sufficient. Thus, an AND gate with input

variables i1[n], i2[n] and output o[n] is represented by three

clauses:

(i1[n] ∨ ¬o[n]) , (i2[n] ∨ ¬o[n]) , (¬i1[n] ∨ ¬i2[n] ∨ o[n]).

If only one input may have an X-value, we distinguish: If an X-

source is modeled, the corresponding x literal is always assigned

logic-1. Furthermore, we keep track of the assigned b or xp literal.

If a gate is modeled, an X-value at the input is either blocked or

forwarded. Thus, it is sufficient to consider the n and x literals

for such a gate. For an two input AND gate with X-dependent

input i1, this leads to the clauses:

(¬i2[n] ∨ o[n] ∨ ¬i1[n]) , (¬o[n] ∨ i1[n]) ,
(¬i2[n] ∨ o[x] ∨ ¬i1[x]) , (¬o[x] ∨ i1[x]) ,
(i2[n] ∨ ¬o[n]) , (i2[n] ∨ ¬o[x]).

If both inputs might show an X-value, three different cases

are distinguished: If only RSL X-values are possible, a similar

encoding as proposed in [10] is used. However, as we want

to save as many clauses as possible, all information from the

enhanced preprocessing are directly considered for the creation

of the clauses. This leads to the following differences:

1) If only different X-values are possible at the inputs, the

comparator circuit to distinguish the X-indices is not re-

quired, and no clauses are required to handle the case that

a reconvergence might occur.

2) For all b literals that are permanently assigned, the corre-

sponding clauses in the gate encoding are simplified.

3) If a new X-value originates at the output of a gate that will

never reconverge, a pessimistic X-value is modeled instead

of an RSL X-value.

If only pessimistic X-values are possible at the inputs, no b-

literals need to be used for them, and the xp literals of the inputs

are always assigned logic-1. If a new X-value originates at the

output and may reconverge according to the preprocessing, then

the output is assigned an RSL X-value even though the inputs

show only pessimistic X-values. In case only a pessimistic X-

value is possible for the output, its xp literal is permanently

assigned logic-1. Consequently only the n and x literals need

to be considered in the encoding of the gate. Similarly, also

in case of a new RSL X-value at the output, all b literals are

already assigned since only one RSL X-value is possible here.

As a consequence, both cases can be handled with the same

clauses. For an AND gate with two inputs this is expressed by

the following implications:2

(i1[n] ∧ i2[n]) ↔ o[n]
(¬i1[n] ∧ ¬i1[x]) → ¬o[x]
(¬i2[n] ∧ ¬i2[x]) → ¬o[x]

(i1[n] ∧ ¬i1[x] ∧ i2[n] ∧ ¬i2[x]) → ¬o[x]
(o[n] ∧ ¬o[x]) → (¬i1[x] ∧ ¬i2[x])

(¬o[x] ∧ i1[n] ∧ ¬i1[x]) → ¬i2[x]

2Please note: this case can also be expressed by only 6 clauses using a classical
three-valued encoding. However, this would require to adjust the complete
encoding leading to disadvantages in case RSL X-values need to be considered.



(¬o[x] ∧ i2[n] ∧ ¬i2[x]) → ¬i1[x]
(i1[x] ∧ i2[n] ∧ ¬i2[x]) → o[x]
(i2[x] ∧ i1[n] ∧ ¬i1[x]) → o[x]
(o[x] ∧ i2[n] ∧ ¬i2[x]) → i1[x]
(o[x] ∧ i1[n] ∧ ¬i1[x]) → i2[x]

If both pessimistic and RSL X-values are possible, a mixture

of both encodings is used. If a pessimistic X-value is present at

an input, the RSL-clauses are deactivated, and the gate is handled

similarly to the case if no b-literals are present. Otherwise, if both

inputs do not show a pessimistic X-value, the case is similarly

handled as if only RSL X-values are present. If an output might

carry either an RSL or pessimistic X-value, the xp literal is

required and cannot be removed in the encoding.

Encoding of the D-Chain: [10] distinguished two different

types of D-chains [15] to model possible propagation paths of

value differences between the fault-free and faulty circuits. One

that allows a higher accuracy (complete RSL) and one with a

slightly reduced accuracy but the benefit of a notably reduced

runtime (optimized RSL).

For a mixed 01X-RSL instance, both modes are supported,

too. Yet, the results of [10] showed that the difference in the

achieved fault coverage between the optimized RSL based and

the complete RSL based ATPG is rather small, while the runtime

differs significantly. Thus, we omit the case of complete RSL

here and focus on optimized RSL.

Optimized RSL restricts the D-Chain and only considers differ-

ences that are likely to lead to a valid test pattern. As an example

consider a signal that is affected by a fault and shows a logic-1 in

the fault-free circuit and an X-value in the faulty circuit. Another

signal shows at the same time a logic-1 in the fault-free circuit

and the negation of the same X-value in the faulty circuit. A

later reconvergence in the faulty circuit may cause X-canceling,

but this is typically very rare. Thus, all combinations for which

either the fault-free or faulty circuit, but not both, consider an

X-value at a signal propagating the fault effect are excluded

and not considered a valid difference in the D-chain. This might

slightly decrease the accuracy, but the more strict D-chains allow

a notably reduced runtime.

To generate such a D-chain within our mixed 01X-RSL encod-

ing, the definition of difference is extended to support pessimistic

X-values. Since pessimistic X-values in our encoding never

reconverge and never cause X-canceling, they do not propagate

a fault effect. Thus, in the D-chain for the mixed 01X-RSL

encoding, it is forbidden that a pessimistic X-value is present

along the propagation path.

The described techniques are used for ATPG for stuck-at faults,

but can also be applied for ATPG targeting transition delay faults

by unrolling or time frame expansion.

V. TWO-VALUED SAT-BASED UNTESTABILITY CHECK

According to Section II-D, a fault is detected by a pattern if

there is an observable output difference for all possible assign-

ments to the X-sources. Consequently, a fault is untestable if there

is an assignment to the X-sources such that there is no test pattern

for the controllable inputs that creates an output difference for the

target fault.

While [13] implements this untestability check utilizing an

SMT-solver, we propose a pure two-value encoded SAT instance

to reduce the runtime. The instance considers up to two different

assignments to the X-sources. This allows to quickly identify a

large fraction of untestable faults and reduces the number of faults

for which the more expensive mixed 01X-RSL based analysis is

conducted.
In detail: First, we create a pure two-valued CNF of the fault

free and faulty circuit and assign randomized values to each

X-source (cf. Figure 4 left side). In case the resulting CNF is

unsatisfiable, the fault is proven to be untestable. Otherwise, we

extend the CNF with a second instance of the circuit – including

only those signals and gates, which depend on the X-sources

(cf. Figure 4 right side). The X-sources of the second instance

are assigned with the negated assignment of the first instance.

Furthermore, we add extra clauses in order to force the SAT-

solver to propagate the fault effect in both instances to the same

output.
Adding a second instance to the CNF strengthens the untesta-

bility check, because now we check whether a fault is testable

with two different assignments to the X-sources simultaneously. It

would also be possible to evaluate even more instances to further

strengthen the untestability check. However, experiments showed

that two instances trade-off runtime and accuracy very well.

X

X

Fanout cones of X-sources

X

X-sources

X

Fault f Fault f

Bitwise difference?

Still testable?

Fig. 4: SAT-based Untestability Check for a fault f considering

two different assignments to the X-sources at the same time.

VI. INCREMENTAL ACCURATE FAULT-SIMULATION

To implement fault-dropping for each test pattern generated by

the proposed mixed 01X-RSL based ATPG, an extended event-

based version of the fault simulator proposed in [7] is used. This

fault simulator allows an accurate fault classification for a given

test pattern in presence of X-values. It maps the decision whether

a fault is detected to a Boolean SAT instance.
The principal functionality of the original implementation is as

follows: For a pattern to be simulated, first a plain accurate fault-

free simulation was performed. Then, for each yet undetected

fault it was tested if the fault can be propagated to at least

one output. Both fault-free and faulty circuit simulation use a

combination of pattern-parallel logic simulation of randomized X-

source assignments and RSL-based simulation to classify as many

faults as possible accurately without the need to invoke a much

more costly SAT-based classification. The simulation of random

X-source assignments already allows to prove for many signals

that they indeed carry an X-value. The RSL-based simulation on

the other hand evaluates many reconvergences accurately. The

remaining pessimistically computed signal values are subject to

the SAT-based evaluation. More details are given in [7].
Processing the patterns and the resulting input value changes

in an event-based manner decreases the overhead of the parallel

logic simulation, restricted symbolic simulation, as well as the

number of required SAT-solver calls. The improvements in detail

are:

1) In the accurate fault-free simulation, input change events

are created when input values change from a binary value



to the complementary binary value, or if there is a change

from an X-value (binary value) to a binary value (X-value).

Only gates that have input events are evaluated.

2) If signal values changed during the event-based fault-

free simulation, only those faults are considered in the

subsequent fault simulation step for which either the fault-

site itself lies in a region with changed values, or for which

at least one input of an affected gate changed.

3) The SAT-based classification algorithm invoked for a final

value classification is only used if a change in the fault-free

simulation also had effects on the propagation of X-values

in the circuit.

In this way, the number of costly SAT invocations and resulting

runtime is greatly reduced.

VII. EVALUATION

The proposed algorithms are implemented in C. All SAT-

based approaches use the incremental SAT-solver antom [16]. For

comparison a state-of-the-art commercial tool was used. We eval-

uate the algorithms on full-scan circuits of the largest ISCAS’85

benchmarks (c6288, c7552) and larger industrial designs from

NXP. All experiments were conducted on an Intel Xeon CPU

with 3.3 GHz. Structural fault collapsing is performed.

We assume that a fixed and randomly selected subset of circuit

inputs is used as X-sources.3 For each circuit, five different X-

source assignments are considered. The reported results are the

rounded average over these five experiments per circuit.

A. Comparing Mixed 01X-RSL and pure RSL Encoding

Firstly, we evaluate the runtime impact of using a mixed

01X-RSL encoding instead of a pure RSL encoding. Thus, we

compare the optimized pure RSL based algorithm of [10] with the

proposed optimized mixed 01X-RSL based algorithm. Figure 5

shows the normalized runtime for two industrial designs (p78k

and p89k) in two different scenarios. p78k is a circuit with many

reconvergencies and hence, for most faults only a few RSL X-

values could be replaced by pessimistic X-values (on average

less than 5%). In contrast, for circuit p89k on average 40% of

the X-values considered in a CNF could be replaced and modeled

by pessimistic X-values. In the first scenario (cf. Figure 5 left)

all faults are solely handled by the pure RSL or mixed 01X-RSL

based algorithm. Two things can be observed: (1) for circuit p89k

the runtime reduces by 37.61%, while (2) for circuit p78k the

preprocessing runtime overhead completely consumes the benefit

of the mixed encoding (especially for the easy-to-detect faults).

In the second scenario (cf. Figure 5 right), the easy-to-detect

faults are removed by applying random patterns before using the

pure RSL or mixed 01X-RSL based algorithm. As a result, the

mixed 01X-RSL based algorithm reduces the runtime for p78k

by 35.74% and for p89k by 47.25%.

B. Fault Coverage in Larger Circuits

In order to achieve a high fault coverage while keeping the

runtime as low as possible, in experiment two the proposed mixed

01X-RSL based algorithm was combined with the untestability

check proposed in Section V and the incremental accurate fault

simulator (cf. Section VI) for fault-dropping. Prior to each ATPG

run, all faults detected by the used commercial tool are marked

as detected and removed from a further analysis. The runtime

3The effect of clustered X-sources in ATPG has been discussed in [17].

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

p78k p89k p78k p89k

w/o  random  patterns with  random  patterns

approach  of  [10] proposed  mixed  01X-‐RSL  based

Fig. 5: Normalized runtime of the pure RSL based and mixed

01X-RSL based test generation with and without random patterns.

for removing all easy-to-detect faults with the commercial tool

is always included in the reported runtime of the proposed

framework.

Table I compares the results of the proposed framework to the

fault coverage of the commercial tool as well as the runtimes of

the optimized RSL of [10]. For each circuit, an X-ratio of 1%,

2% and 5% was considered. For the academic benchmark c6288

with only 32 inputs, the case of 2% was omitted as it results in

a single X-source. Furthermore, the runtime of the commercial

tool is also listed to show the fraction of the total runtime of the

proposed framework used by the commercial tool.

The proposed ATPG increases the fault coverage compared

to the commercial tool considerably. Considering the ISCAS’85

benchmarks, the fault coverage (’FC’) increases by up to 34.24%

points (c6288 and an X-ratio of 5%).

For the industrial designs from NXP, the proposed ATPG

increases fault coverage by up to 7.77% points (p78k and an

X-ratio of 5%). On average over all considered industrial designs

and an X-ratio of 5%, the proposed ATPG achieves a 3.80%

points higher fault coverage than the commercial tool.

Using the proposed ATPG, for almost all circuits no aborts

occurred at all. In total only 49 faults were aborted – for the

circuit p100k less than 0.005% and for circuit p388k less than

0.002% of the faults were aborted.

Most of the faults that could not be classified as detectable

by the proposed approach were classified as untestable by the

incorporated untestability check (’UT’). Only a very small num-

ber of faults stays unclassified (’UC’). Thus the combination of

RSL based ATPG with a fast untestability check classifies for

all circuits at least 97% of the faults as detected or proves fault

untestability. On average over all tested circuits and X-ratios, only

0.67% stay unclassified.

The runtime of the proposed optimized mixed 01X-RSL frame-

work was always below 2h. In total, 20 611 586 non-equivalent

faults were classified in less than 9 hours.

Comparing this optimized mixed 01X-RSL framework to the

results of the pure optimized RSL-based one of [10], the number

of aborts and the runtime reduces significantly. The number of

aborts reduces by 95.91%, and the total runtime reduces by

88.59% (i.e. a speed-up of 8.8×). The highest speed-up of over

88× is achieved for circuit p267k and 1% of the inputs selected

as X-sources. Here, the proposed framework reduces the runtime

from 11 725s to 132s.

Results from experiments for a mixed 01X-RSL based ATPG

version of the complete RSL-based approach (cf. Section IV-B,

[10]) are in line with the differences observed when comparing

the optimized RSL-based versions.



VIII. CONCLUSIONS

In this paper we proposed a novel ATPG framework combining

new techniques to overcome the limitations of a pure RSL-based

encoding for ATPG in presence of unknown values. The proposed

mixed value encoding combines the accuracy of RSL with the

compactness and efficiency of a three-valued encoding to achieve

high accuracy and high scalability at the same time. Furthermore,

a low-cost two-valued SAT-based untestability check and an

incremental event-based accurate fault simulator is proposed.
The experimental results show the effectiveness and high

efficiency of the proposed ATPG framework, reducing the number

of aborts by over 95% compared to the state-of-the-art ATPG. At

the same time, an average speedup of 8.8× is achieved. This

allows the RSL-based evaluation of stuck-at faults for circuits

with over one million gates for the first time. The proposed

techniques are also applicable for transition delay fault ATPG.

ACKNOWLEDGMENTS: This work was partially supported

by the German Research Foundation (DFG) under grants

BE 1176/14-2, SFB/TR14 AVACS, WU 245/17-1 (ACCESS), and

GRK1103.

REFERENCES

[1] J. P. Roth, “Diagnosis of automata failures: A calculus and a method,” IBM
J. Res. Dev., vol. 10, no. 4, pp. 278–291, july 1966.

[2] P. Muth, “A nine-valued circuit model for test generation,” IEEE Trans. on
Computers, vol. C-25, no. 6, pp. 630–636, june 1976.

[3] A. Jain, V. Boppana et al., “Testing, verification, and diagnosis in the
presence of unknowns,” in Proc. IEEE VLSI Test Symposium (VTS), 2000,
pp. 263–268.

[4] H. Cho, S.-W. Jeong et al., “Synchronizing sequences and symbolic traversal
techniques in test generation,” Journal of Electronic Testing: Theory and
Applications (JETTA), vol. 4, no. 1, pp. 19–31, 1993.

[5] M. A. Kochte, M. Elm, and H.-J. Wunderlich, “Accurate X-propagation
for test applications by SAT-based reasoning,” IEEE Trans. CAD, vol. 31,
no. 12, pp. 1908–1919, 2012.

[6] S. Hillebrecht, M. A. Kochte et al., “Exact stuck-at fault classification in
presence of unknowns,” in Proc. IEEE European Test Symposium (ETS),
2012, pp. 1–6.

[7] D. Erb, M. A. Kochte et al., “Exact logic and fault simulation in presence of
unknowns,” ACM Transactions on Design Automation of Electronic Systems
(TODAES), vol. 19, no. 3, Jun. 2014.

[8] S. Hillebrecht, M. A. Kochte et al., “Accurate QBF-based test pattern
generation in presence of unknown values,” in Proc. Conf. on Design,
Automation and Test in Europe (DATE), 2013, pp. 436–441.

[9] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., USA, 1979.

[10] D. Erb, K. Scheibler et al., “Test Pattern Generation in Presence of Unknown
Values Based on Restricted Symbolic Logic,” in Proc. IEEE International
Test Conference (ITC), 2014, pp. 1–10.

[11] M. A. Breuer, “A note on three-valued logic simulation,” IEEE Transactions
on Computers, vol. 21, no. 4, pp. 399–402, Apr. 1972.

[12] J. Carter, B. Rosen et al., “Restricted symbolic evaluation is fast and useful,”
in Proc. IEEE Int. Conf. Comp.-Aided Design (ICCAD), 1989, pp. 38–41.

[13] K. Scheibler, D. Erb, and B. Becker, “Improving Test Pattern Generation in
Presence of Unknown Values beyond Restricted Symbolic Logic,” in Proc.
IEEE European Test Symposium (ETS), May 2015.

[14] S. C. Kleene, Introduction to Metamathematics. North-Holland Publishing
Co., Amsterdam, 1952.

[15] T. Larrabee, “Test pattern generation using Boolean satisfiability,” IEEE
Trans. CAD, vol. 11, no. 1, pp. 4–15, jan 1992.

[16] T. Schubert, M. Lewis, and B. Becker, “Antom—solver description,” SAT
Race, 2010.

[17] D. Erb, M. A. Kochte et al., “Accurate QBF-based Test Pattern Generation
in Presence of Unknown Values,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 2015.

TABLE I: RESULTS OF THE PROPOSED ATPG FRAMEWORK IN CONTRAST TO A STATE-OF-THE-ART COMMERCIAL TOOL.

circuit gates faults
X-Ratio Commercial Tool Proposed Optimized Mixed 01X-RSL & accurate fault sim. Time[s]

[%] FC[%] Time[s] FC[%] ∆FC [%pt.] UT[%] UC[%] Aborts Time[s] Speedup to [10] of [10]

c6288 2 416 8 704
1.0 82.46 41 97.38 14.92 2.60 0.02 0 53 0.17X 12
5.0 60.80 81 95.04 34.24 4.75 0.21 0 91 0.24X 22

c7552 4 043 10 816
1.0 91.78 4 92.73 0.94 7.23 0.04 0 4 0.57X 2
2.0 88.50 5 90.20 1.70 7.80 2.00 0 5 0.75X 4
5.0 68.01 9 74.41 6.40 22.68 2.90 0 9 1.17X 10

p78k 74 243 225 476
1.0 97.29 10 98.66 1.37 1.22 0.12 0 17 1.00X 17
2.0 93.59 20 96.94 3.35 2.72 0.34 0 36 1.00X 36
5.0 84.24 38 92.01 7.77 5.99 2.01 0 81 1.40X 114

p89k 88 726 239 090
1.0 91.94 78 92.11 0.16 7.70 0.19 0 79 19.98X 1 579
2.0 86.32 84 86.58 0.26 13.07 0.34 0 122 15.73X 1 924
5.0 71.74 38 72.75 1.02 26.36 0.89 0 260 10.72X 2 789

p100k 96 685 259 322
1.0 95.28 121 96.12 0.84 3.74 0.15 0 135 15.39X 2 080
2.0 91.40 181 93.43 2.03 6.23 0.34 1 349 7.36X 2 565
5.0 80.29 468 83.76 3.53 14.72 1.46 13 2 604 9.50X 24 745

p141k 172 686 452 599
1.0 95.86 40 96.24 0.37 3.39 0.38 0 1 304 2.79X 3 645
2.0 93.90 44 94.51 0.61 5.02 0.47 0 1 811 2.63X 4 755
5.0 85.82 77 87.62 1.80 11.26 1.12 0 4 137 2.53X 10 475

p267k 271 538 658 395
1.0 94.71 42 95.01 0.31 4.84 0.15 0 132 88.77X 11 725
2.0 90.95 49 91.33 0.38 8.17 0.50 0 299 50.43X 15 061
5.0 80.00 84 81.95 1.95 16.25 1.80 0 779 32.02X 24 944

p378k 371 538 1 127 364
1.0 96.83 65 98.51 1.69 1.39 0.10 0 97 - -
2.0 93.59 104 96.95 3.36 2.72 0.34 0 192 - -
5.0 84.46 195 92.16 7.70 5.92 1.92 0 590 - -

p388k 489 271 1 352 303
1.0 93.86 360 97.37 3.51 2.54 0.09 0 1 491 - -
2.0 91.71 634 95.61 3.90 4.17 0.22 10 2 026 - -
5.0 83.03 2 729 88.29 5.26 10.74 0.97 24 6 508 - -

p951k 1 002 883 2 539 361
1.0 96.39 474 96.73 0.35 3.22 0.05 0 1 399 - -
2.0 93.69 797 94.30 0.60 5.54 0.16 0 2 540 - -
5.0 85.28 1 107 86.69 1.40 12.56 0.76 0 4 977 - -


