
Reconfigurable Scan Networks: Modeling,

Verification, and Optimal Pattern Generation

Baranowski, Rafal; Kochte, Michael A.; Wunderlich, Hans-Joachim

ACM Transactions on Design Automation of Electronic Systems (TODAES) Vol. 20(2)

February 2015

doi: http://dl.acm.org/citation.cfm?id=2699863

Abstract: Efficient access to on-chip instrumentation is a key requirement for post-silicon validation, test,
debug, bringup, and diagnosis. Reconfigurable scan networks, as proposed by e.g. IEEE P1687 and IEEE Std
1149.1-2013, emerge as an effective and affordable means to cope with the increasing complexity of on-chip
infrastructure. Reconfigurable scan networks are often hierarchical and may have complex structural and
functional dependencies. Common approaches for scan verification based on static structural analysis and
functional simulation are not sufficient to ensure correct operation of these types of architectures. To access
an instrument in a reconfigurable scan network, a scan-in bit sequence must be generated according to the
current state and structure of the network. Due to sequential and combinational dependencies, the access
pattern generation process (pattern retargeting) poses a complex decision and optimization problem. This
article presents the first generalized formal model that considers structural and functional dependencies of re-
configurable scan networks and is directly applicable to P1687-based and 1149.1-2013-based scan architectures.
This model enables efficient formal verification of complex scan networks, as well as automatic generation of
access patterns. The proposed pattern generation method supports concurrent access to multiple target scan
registers (access merging) and generates short scan-in sequences.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic
reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form
to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by ACM.1

1 ACM COPYRIGHT NOTICE

c©2015 ACM. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

http://dl.acm.org/citation.cfm?id=2699863

Reconfigurable Scan Networks: Modeling, Verification, and Optimal
Pattern Generation

RAFAL BARANOWSKI, MICHAEL A. KOCHTE, and HANS-JOACHIM WUNDERLICH,

University of Stuttgart

Efficient access to on-chip instrumentation is a key requirement for post-silicon validation, test, debug,
bringup, and diagnosis. Reconfigurable scan networks, as proposed by e.g. IEEE P1687 and IEEE Std 1149.1-
2013, emerge as an effective and affordable means to cope with the increasing complexity of on-chip infras-
tructure.

Reconfigurable scan networks are often hierarchical and may have complex structural and functional
dependencies. Common approaches for scan verification based on static structural analysis and functional
simulation are not sufficient to ensure correct operation of these types of architectures. To access an instru-
ment in a reconfigurable scan network, a scan-in bit sequence must be generated according to the current
state and structure of the network. Due to sequential and combinational dependencies, the access pattern
generation process (pattern retargeting) poses a complex decision and optimization problem.

This article presents the first generalized formal model that considers structural and functional depen-
dencies of reconfigurable scan networks and is directly applicable to P1687-based and 1149.1-2013-based
scan architectures. This model enables efficient formal verification of complex scan networks, as well as au-
tomatic generation of access patterns. The proposed pattern generation method supports concurrent access
to multiple target scan registers (access merging) and generates short scan-in sequences.

Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: Design Aids

General Terms: Algorithms, Verification, Performance

Additional Key Words and Phrases: Access pattern generation, design for debug & diagnosis, DFT verifica-
tion, IJTAG, JTAG, pattern retargeting, P1687, reconfigurable scan network, 1149.1-2013

ACM Reference Format:

Rafal Baranowski, Michael A. Kochte, and Hans-Joachim Wunderlich. 2014. Reconfigurable Scan Networks:
Modeling, Verification, and Optimal Pattern Generation. ACM Trans. Des. Autom. Electron. Syst. V, N, Arti-
cle A (January YYYY), 26 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

To assure short time to market and high system dependability, a significant fraction of
nanoelectronic systems is devoted to embedded instrumentation that facilitates test,
post-silicon validation, debug, and bringup. On-chip instrumentation is also used dur-
ing operation in the field for power-up initialization, system monitoring, reprogram-
ming, error management, and repair [Stollon 2011; Larsson and Sibin 2012; Rearick
and Volz 2006].

This work was supported by the German Research Foundation (DFG) under grant WU 245/17-1 (ACCESS).
This article is an extended version of [Baranowski et al. 2012] and [Baranowski et al. 2013].
Authors’ address: Rafal Baranowski, Michael A. Kochte, and Hans-Joachim Wunderlich, Universität
Stuttgart, Institut für Technische Informatik, Pfaffenwaldring 47, D-70569 Stuttgart, Germany.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1084-4309/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:2 R. Baranowski et al.

Embedded instrumentation is most often accessed using scan techniques via
the four-wire Test Access Port (TAP) defined by IEEE Std 1149.1-1990 (a.k.a.
JTAG) [1149.1 2013]. The 1149.1 TAP has become a de facto standard for efficient,
low-cost access to on-chip instruments [Rearick et al. 2005; Larsson and Sibin 2012].
Embedded instruments are interfaced with the 1149.1 circuitry using scan registers
called Test Data Registers (TDR). To access an instrument via 1149.1 TAP, an instruc-
tion word enabling the corresponding TDR is first loaded into the 1149.1 Instruction
Register (IR). Similarly, in scan networks based on IEEE 1500 wrappers, the content
of the Wrapper Instruction Register (WIR) defines which registers (scan chains) are
currently accessible.

The flexibility of conventional 1149.1-based (1500-based) scan architectures is lim-
ited: Only the IR (WIR) may configure the scan path through which scan data are
shifted, i.e., a single register defines which instruments (registers) are currently ac-
cessible. When the number of instruments interfaced with such architectures is high,
either the access time or the area and routing overhead is high [Rearick et al. 2005;
Larsson and Sibin 2012].

To allow flexible access to individual instruments and reduce performance and area
overhead, custom scan architectures can be used, which are here collectively referred
to as Reconfigurable Scan Networks (RSN). In RSNs, the path through which scan
data are shifted (scan path or access mode) is determined by the state of many regis-
ters distributed arbitrarily over the network. In principle, conventional 1149.1-based
and 1500-based scan networks are RSNs, but their reconfigurability is limited to a
single register. Examples of RSNs with distributed configuration include the recent
IEEE Std 1149.1-2013, which proposes segment selectors and TDRs with hierarchi-
cally excludable segments [1149.1 2013]. The ongoing effort IEEE P1687, also known
as IJTAG (Internal JTAG), allows RSNs with nearly arbitrary, user-defined structure
and functionality [Rearick et al. 2005; Eklow and Bennetts 2006; Larsson and Sibin
2012]. Such RSNs emerge as an effective means to access the instrumentation of com-
plex Systems-on-a-Chip (SoC).

An example of an RSN compliant with IEEE P1687 is given in Figure 1. Scan data
are shifted from the primary scan-input, through a subset of scan registers called scan
segments, to the primary scan-output. The scan path (access mode) is configured by
bits a and b of Segment 1. Segments 2 and 3 can be used e.g. as an interface to on-chip
instruments.

The time to access a scan segment in an RSN is proportional to the length of the scan
path. Access time can be significantly reduced by choosing access modes in which ir-
relevant segments are bypassed. Given the target pattern for the target scan segment,
the process of computing the required scan-in sequence (scan data) is called access pat-
tern generation, or pattern retargeting in IEEE P1687. For instance in Figure 1, given
a pattern for Segment 2, access pattern generation is the search for a scan-in sequence
that first sets ab = 01 or ab = 10 and then applies the target pattern to Segment 2.

The high performance and flexibility offered by RSNs comes at a price: As the num-
ber of possible access modes can be exponential in the RSN size, existing verifica-
tion algorithms for traditional scan networks cannot efficiently handle them. General-
purpose formal verification tools also face scalability issues in deeply sequential cir-
cuits such as RSNs. For similar reasons, designing an access pattern generation algo-
rithm that works for arbitrary RSNs and guarantees minimal access time is challeng-
ing.

This article presents a novel modeling method based on temporal abstraction for
complex reconfigurable scan networks. It is applicable to a wide range of RSN archi-
tectures, including—but not limited to—structures compliant with IEEE P1687. Com-
pared with cycle-accurate models, the proposed RSN model has a significantly reduced

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Reconfigurable Scan Networks: Modeling, Verification, and Optimal Pattern Generation A:3

primary

scan-out

primary

scan-in Segment 2

0

1...

0

1

&

≥1

...
Segment 1

a b

Segment 3

Fig. 1. Example of a reconfigurable scan network

sequential depth. It enables efficient formal verification and access pattern generation
for arbitrary reconfigurable scan networks.

The next section reviews the state of the art and discusses the contributions of this
work. Section 3 introduces the structure and terminology of RSNs. Section 4 describes
our RSN modeling method. The application of this model to formal verification is dis-
cussed in Section 5. Section 6 presents the access pattern generation procedure, fol-
lowed by experimental results in Section 7. A conclusion is given in Section 8.

2. RELATED WORK AND CONTRIBUTIONS

2.1. Verification

Since on-chip instrumentation is key to rapid production ramp-up and high product
quality, its access mechanism must be thoroughly verified to avoid costly design bugs.
Design rules, either imposed by a standard or recommended as good design practice,
are usually verified by structural analysis: Multiple drivers, broken scan chains, and
loop-backs can be found by structural traversal of the network [Fisher 2002]. The struc-
ture of the IEEE 1149.1 circuitry, including the TAP controller and TDR connectivity,
can be verified by logic tracing [Melocco et al. 2003].

The functionality of the 1149.1 circuitry can be validated by simulation using au-
tomatically generated stimuli [Bruce Jr et al. 1996]. Similarly, the functionality of
IEEE 1500 wrappers can be validated by coverage-driven, constrained-random simu-
lation [Diamantidis et al. 2005]. The stimuli are chosen in such a way as to maximize
coverage of behavioral rules [Benso et al. 2008]. Such simulation-based techniques can
verify that the scan infrastructure works correctly in predefined scenarios, but cannot
guarantee the absence of design errors in general.

Accessibility of scan registers requires that a primary input sensitizing condition
exists, such that the scan network functions as a shift register [Eichelberger and
Williams 1977]. Certain properties of scan infrastructures, such as the functionality
of a reset signal or the equivalence of two scan network models, can be verified by
a reduction to combinational equivalence checking [Kamepalli et al. 2006]. The func-
tionality of the 1149.1 circuitry can be verified by symbolic simulation [Bryant 1990;
Singh et al. 1997] or four-valued logic simulation using preconditioning and checking
sequences [Dahbura et al. 1989; Melocco et al. 2003].

2.2. Access Pattern Generation

In reconfigurable scan networks, access to a scan register may be realized in many
ways, using different scan-in sequences. Possible solutions greatly differ in the number
of bits that need to be shifted in. The goal of optimal access pattern generation is to
find the shortest scan-in sequence that implements the access to a set of target scan
segments.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:4 R. Baranowski et al.

 SIB

CR
1

0

Lower-level segment

SI
SO

TO FROM

SIB
SI SO

TO FROM

Segment 1

SIB
SI SO

TO FROM

SIB
SI SO

TO FROM

Segment 3

SIB
SI SO

TO FROM

Segment 2

scan-outscan-in

(a) (b)

Fig. 2. (a) Segment Insertion Bit (SIB) and (b) a hierarchical RSN based on SIBs

Recently, algorithms for optimal construction of scan hierarchies compliant with
IEEE Std 1149.1-2013 and IEEE P1687 were proposed in [Ghani Zadegan et al. 2011],
and methods for access time analysis were developed in [Ghani Zadegan et al. 2012;
Larsson and Ghani Zadegan 2012]. These and similar contributions are based on scan
networks with reconfigurability limited to Segment Insertion Bits (SIB). As shown in
Figure 2a, a SIB is a simple network component that either bypasses or connects a
lower-level scan segment (or a scan network) to the higher-level scan chain, depending
on the state of the one-bit configuration register (CR). In IEEE Std 1149.1-2013, this
bypassing concept is realized with so called segment selectors and excludable segments.
In such architectures, optimal access pattern generation is a straightforward task: The
scan-in sequence required to access any scan segment is easily found by examining the
current state of all SIBs. All SIBs that enclose the target scan segment must be opened,
and all remaining SIBs must be closed to optimize the access time.

2.3. Motivation

While the existing verification techniques efficiently handle simple scan chains and
the IEEE 1149.1 circuitry, the verification of arbitrary reconfigurable scan networks
poses a much more difficult problem. The number of access modes that need to be
verified may be exponential in the size of the RSN: with n register bits defining the
configuration, the number of distinct access modes may reach 2n. In core-based design,
scan networks may be composed of third-party modules (IP cores), the behavior of
which may not be fully disclosed. As a consequence, certain configurations may be
illegal or contradictory, causing integration issues, such as exclusive or limited access
to certain scan registers. An exhaustive search may be required to find a valid access
sequence or to prove inaccessibility.

An example of a design bug caused by erroneous integration of network components
is explained using Figure 1: Assume that the OR gate is by mistake replaced with an
AND gate. Clearly, in this case there does not exist any assignment to bits a and b such
that Segment 2 belongs to the scan path—there is a combinational dependency that
cannot be satisfied. Such problems may arise in P1687 architectures when legacy or
third-party components are integrated into a system-level RSN. To prevent such de-
sign bugs, architectural design rules can be established, but this may lead to overly
restrictive architectures and reduce design flexibility. To detect the design bug caused
by replacing the OR gate in Figure 1, a combinational Automatic Test Pattern Gen-
erator (ATPG) can be used to prove Segment 2 inaccessible because the dependency
is of combinational nature. However, such dependencies can also be sequential: even
if there exists an assignment to control signals that puts the target segment on the
active scan path, this assignment may be not reachable from the initial state of the

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Reconfigurable Scan Networks: Modeling, Verification, and Optimal Pattern Generation A:5

network. Due to such sequential dependencies, both the verification of and access pat-
tern generation for RSNs are hard decision problems. Deep state space exploration
may be required to verify design correctness or find an access sequence to embedded
instruments. While state-of-the-art ATPG and model checking algorithms can handle
sequential depths of several dozens of clock cycles, access to a reconfigurable scan net-
work may require justification over hundreds of thousands cycles. This is for instance
the case in hierarchical RSNs with wide scan registers: to access a scan register at the
lowest hierarchy level, scan data may need to be flushed through the RSN many times
setting registers at higher hierarchy levels. The sequential nature of scan registers is
the main reason for the high sequential depth of cycle-accurate RSN models.

2.4. Contributions

This article presents an abstraction-based RSN modeling method that is applicable to
complex reconfigurable scan architectures, including arbitrary P1687 structures. Com-
pared with conventional cycle-accurate models, the abstract model has a significantly
reduced sequential depth. It enables efficient formal verification and pattern genera-
tion for most complex RSNs with distributed configuration and control signals driven
by arbitrary combinational logic. The presented modeling is a generalization of our re-
cent modeling techniques from [Baranowski et al. 2012] and [Baranowski et al. 2013],
extended with handling of unknown values.

Our unified model is applicable to both formal verification and optimal access pat-
tern generation. As an example, we describe the use of the model in bounded model
checking to formally prove certain properties of the RSN, such as observability and
controllability of scan registers. The abstract model is also used to generate access
patterns with reduced access time. We present a mapping of access pattern generation
to a pseudo-Boolean optimization problem and propose a fast, parallelized pattern gen-
eration procedure. The optimization method can handle large RSNs and is more gen-
eral than algorithms that are developed for only specific reconfigurable architectures,
such as [Ghani Zadegan et al. 2012] for the SIB architecture. Our experimental re-
sults show that such an optimization method is crucial for complex RSNs, reducing
the access time by up to a factor 88.

3. RSN STRUCTURE AND TERMINOLOGY

Reconfigurable scan networks can be viewed as scan registers with configurable scan
path and variable length. In this paper, we follow a general definition of RSNs at
Register-Transfer Level (RTL) and abstract from gate-level implementation details.
The modeling method presented in the next section allows arbitrary architectures that
follow the rules described below. The correspondence of our RSN definition to existing
standards is discussed at the end of this section.

Figure 3 presents a simple RSN example and explains the basic terminology. The
one-bit scan segments S1 and S3 control the access to two multi-bit segments S2 and
S4, respectively. The scan-in data are shifted through segments S2 and S4 only if the
previous access assured that S1 = S3 = 1.

RSNs are sequential circuits composed of registers or latches, multiplexers, and com-
binational logic. An RSN has a global clock and reset input port, a primary scan-input
and -output, as well as three global control inputs that activate the three scan opera-
tions: capture, shift, and update, as defined by IEEE Std 1149.1 [1149.1 2013]. If the
RSN is accessed through a 1149.1-compliant Test Access Port (TAP), the entire RSN
is connected to the 1149.1 circuitry as a Test Data Register (TDR) and the global con-
trol inputs are driven by the TAP controller. Optionally, an RSN may have primary
data input and output ports for communication with on-chip instruments, as well as
primary control input ports for network configuration.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6 R. Baranowski et al.

1

0

S2

select(S2)

single- or multi-bit

scan segments

scan

multiplexer

internal control signal

active scan path

for S1=1 and S3=0

primary

scan-in
primary

scan-out
S1

1

0

S4

select(S4)

S3

RSN

update

shift

capture
 &

int. control signal

clock

...

primary data/control inputs

...

primary

data

outputs

reset

Fig. 3. Example of a reconfigurable scan network and its terminology

(a) (b)

capture

shift

update

S

TCK ...

...

...

...

C U

Scan Segment

Shift register

Shadow register

scan-in scan-out

update

shift

capture

control signals

in
te

rn
a

lselect

updis

capdis

g
lo

b
a

l

clock

data-in data-out

reset

Fig. 4. (a) Scan segment; (b) Capture, Shift, Update (CSU) operation

3.1. Scan Segments and Scan Paths

The basic building block of an RSN is a scan segment with a scan-in and a scan-out port.
Scan segments are used primarily to communicate with on-chip instrumentation (cf.
S2 and S4 in Figure 3). A scan segment is essentially a shift register composed of one or
more scan cells sharing a set of control signals. A scan segment is optionally equipped
with a shadow register that can be loaded in parallel from the shift register and set
to an initial state with the global reset. This structure may be used to communicate
with instruments bidirectionally or to drive internal control signals (cf. S1 and S3 in
Figure 3). Figure 4a presents a block diagram of a scan segment with optional elements
marked by a dashed line.

A scan segment supports up to three scan operations which are activated by the
global control signals—capture, shift, and update:

— During a capture operation, the shift register is loaded with data from the data-in
port (e.g. from an attached instrument) or remains stable if no such port exists. The
shadow register (if it exists) is stable during the capture operation.

— During a shift operation, data are shifted from the segment’s scan-input, through
its register bits, down to the scan-output of the segment. The shadow register (if it
exists) is stable during the shift operation.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Reconfigurable Scan Networks: Modeling, Verification, and Optimal Pattern Generation A:7

— During an update operation, the shadow register (if it exists) is loaded with data
from the shift register. These data are then available at the data-out port (e.g. to an
attached instrument or internal control signal). If the shadow register does not exist,
the update operation has no effect on the segment. After the update operation, the
state of the shift register is assumed unknown (can be any value).

When none of the scan operations nor a reset is performed, both shift registers and
shadow registers remain stable. To inhibit the scan operations, a scan segment may
possess up to three optional control ports:

— Select port (select) specifies if the capture, shift, and update operation is performed
on the segment.

— Capture disable port (capdis) invalidates the capture operation on the scan segment,
regardless of the select port state.

— Update disable port (updis) invalidates the update operation, regardless of the select
port state. Only scan segments that contain a shadow register may include this port.

The functionality of the capdis and updis ports of a scan segment may be implemented
by gating the global control signals capture and update, respectively, at the segment’s
boundary. The select port may be implemented by local clock gating.

Scan segments are chained via scan-out and scan-in ports, either directly, via buffers
or inverters, or through scan multiplexers of any width. A scan multiplexer controls the
path through which data are shifted in an RSN. For instance, the two two-input scan
multiplexers in Figure 3 allow to bypass scan segments S2 and S4. The control signal
of a scan multiplexer is called address and specifies the selected scan input.

A non-circular sequence of chained scan segments is referred to as scan chain. A
scan path is scan chain starting at a primary scan-input and ending at a primary
scan-output. We allow arbitrary scan architectures composed of any combination of
scan segments and scan multiplexers except for circular architectures.

3.2. Control and Data Signals

The control ports of scan segments (select, capdis, updis) and multiplexers (address)
are driven by signals that are collectively referred to as internal control signals. In-
ternal control signals may only change in consequence of the update operation, and
must have a defined reset state. They can be driven by arbitrary combinational logic
blocks that take their inputs from shadow registers of scan segments distributed over
the RSN, as well as from primary control inputs. (The shadow register is mandatory
for scan segments driving internal control signals, cf. Figure 4). For instance, the select
port of scan segment S2 in Figure 3 is driven directly by the shadow register of S1,
while the select of S4 is generated by a logic gate driven by the shadow registers of S1
and S3 (shadow registers themselves are not explicitly shown in the figure).

The data-in ports of scan segments may be driven by arbitrary combinational logic
blocks driven by shadow registers and primary data inputs. The data-out ports of scan
segments may drive the primary data outputs of an RSN, either directly or through
arbitrary combinational logic. The primary data inputs and outputs are used for bidi-
rectional communication with instruments.

3.3. Scan Network Operation

Scan data are shifted in an RSN from the primary scan-input, through an active scan
path, down to the primary scan-output. The flow of the active scan path depends on
the logic state of the RSN itself: the select signals of all scan segments on the active
scan path are asserted, and all on-path multiplexers select the on-path inputs. For

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8 R. Baranowski et al.

instance, in Figure 3, if S1 = 1 and S3 = 0, the active scan path goes through S1, S2,
and S3, while S4 is bypassed.

A scan configuration of an RSN is the logic state of its sequential elements and
primary data/control inputs. The scan configuration determines which scan segments
in the network are currently accessible. (In fact, the state of shadow registers and
primary control inputs alone is sufficient to determine how data are shifted through
the RSN.) A scan configuration is valid if and only if: (i) an active scan path exists
and (ii) scan segments that do not belong to the active scan path are deselected. This
ensures that the scan data are delivered to the target scan segments, the captured
data are shifted towards the primary scan-output, and the shadow registers of all scan
segments that do not take part in the access (i.e., do not belong to the active scan
path) are stable. For instance, the control signals driving the select ports of S2 and S4

in Figure 3 ensure that these segments are selected if and only if they are chosen by
the multiplexers and hence form the active scan path. This guarantees that if S2 or S4
does not belong to the active scan path, the data held by its shadow register are not
lost during the update operation.

The operation of an RSN is synchronized with the global clock signal. The basic
access to the scan network is an atomic (inseparable) operation that consists of three
phases: Capture, Shift, and Update (CSU). Each phase is activated by its respective
global control signal, as shown in Figure 4b. During the capture phase, at the rising
clock edge the scan segments on the active scan path are loaded with data from their
data-in ports. These data are shifted out of the network during the shift phase at each
rising clock edge, while new data are shifted in. Finally, during the update phase, at
the falling clock edge the shifted-in data are latched in the optional shadow registers
of scan segments on the active scan path (if no shadow register is present in a scan
segment, the update operation has no effect on the segment). Note that the capture
and update phases of a CSU operation require a constant number of clock cycles to
complete. In contrast, the shift phase may take any number of cycles (zero or more)
and usually lasts as long as is necessary to shift through the full active scan path.

A read or write access to a scan register in the network requires that the accessed
register is part of an active scan path (cf. Figure 3). A scan access is a sequence of CSU
operations required to reconfigure the scan network and access the target registers.
Access time is the number of clock cycles that are required to perform the scan access,
including the update and capture cycles of each CSU.

Reconfigurable scan networks, as defined above, constitute a superset of IEEE
1149.1 scan architectures: We allow the multiplexed scan network composed of an
IR, bypass and boundary scan registers, and multiple TDRs. In addition to excludable
and selectable TDR segments defined in IEEE Std 1149.1-2013 [1149.1 2013], we al-
low arbitrary signals generated internally in the scan network to control the capture,
shift, and update operations of individual scan segments. Our definition of RSNs is
also a superset of structures defined in a recent revision of IEEE P1687, as we do
not pose any structural constraints on the composition of control signals: we allow for
arbitrary control of scan segments generated by combinational blocks that take their
input from any scan registers distributed over the network. For the sake of brevity,
the IEEE P1687 data registers are not explicitly represented in this work, but can be
handled in a straightforward way as non-scannable registers. This extension is given
in [Baranowski 2014]. Moreover, the presented RSN definition includes serial scan
architectures composed of IEEE 1500-based wrappers. The restriction to serial archi-
tectures results from the fact that the RSN is assumed to have a single primary scan
input and output, and a single active scan path. In principle, both the definition and
the modeling method can be extended to support multiple primary scan inputs and
outputs, as well as multiple (parallel) active scan paths. However, this would require

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Reconfigurable Scan Networks: Modeling, Verification, and Optimal Pattern Generation A:9

a different approach to access pattern generation, which is beyond the scope of this
article.

4. CSU-ACCURATE RSN MODEL (CAM)

In the following, we describe a formal way of modeling RSNs by temporal abstraction.
The model can be easily derived from any structural description of an RSN: either a
gate- or RT-level netlist, or high-level representations, e.g. in Instrument Connectivity
Language (ICL) defined by IEEE P1687.

The state of scan segments and control signals is modeled in three-valued logic
with three symbols {0, 1, X} to represent logic value 0, logic value 1, and an unknown
(X) value, respectively. The unknown value is used to model partially specified initial
scan configurations (the state of uninitialized registers), and the high-impedance (un-
known) state of tri-state logic gates. The interpretation of logic operators over three-
valued variables follows Kleene’s strongest regular three-valued logic [Kleene 1950].

Definition 4.1. The Capture-shift-update-Accurate Model (CAM) of an RSN is a tu-
ple M = {S, I, C, Active} that consists of a set of state elements S, a set of external
control inputs I, a set of scan configurations C ⊆ {0, 1, X}|S∪I|, and a predicate Active.
Each state element s ∈ S corresponds uniquely to a one-bit scan register in the net-
work. Each scan configuration c ∈ C defines the state of all scan elements in S and
all external control inputs in I. The predicate Active : C × S → {0, 1, X} assigns each
state element s ∈ S in scan configuration c ∈ C a value denoted by Active(c, s).

Each scan configuration c ∈ C is also treated as a function c : S ∪ I → {0, 1, X} that
maps each element e ∈ S ∪ I to its state denoted as c(e). If s ∈ S is part of a scan
segment that contains a shadow register, c(s) corresponds to the state of the shadow
register. Otherwise, if s is part of a segment with no shadow register, c(s) corresponds
to the state of the shift register upon the last update or reset operation.

By Select(c, s), Updis(c, s) and Capdis(c, s) we denote the state of the select, updis
and capdis control signals of scan segment s ∈ S in scan configuration c ∈ C, respec-
tively. Predicate Active(c, s) is defined as follows:

Active(c, s) :=

0 if Select(c, s) = 0,

1 if Select(c, s) = 1 and c is valid,

X otherwise.

(1)

Thus, an element s belongs to the active scan path exactly when Active(c, s) = 1.

Please note that the CAM is defined over one-bit scan registers instead of scan seg-
ments only for the sake of simplicity. In a practical implementation, the CAM can be
optimized by grouping scan registers with same control signals together and deriving
only one set of control signals and one Active predicate per group.

In the following, we describe the construction of predicates (Section 4.1) and we
define the CSU-accurate transition relation of the CAM (Section 4.2).

4.1. Valid Scan Configuration

To construct the predicates, we need to distinguish valid scan configurations from in-
valid ones (cf. Section 3). To this end, we construct a predicate V : C → {0, 1} that
evaluates to 1 if and only if the scan configuration is valid, i.e. when there exists a
well formed scan path and all off-path scan segments are deselected. We construct the
predicate V piecewise as a conjunction of the form:

V (c) :=
∧

s∈S

v(c, s), (2)

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10 R. Baranowski et al.

p s n

(a)

(b)

(c)
select(s) select(n)select(p)

p s

n1

n2
...

select(p) select(s)

select(n1)

select(n2)

p1

p2
...

select(p1)

select(p2) s

select(s)

address

addr
(p1)

addr
(p2)

n

select(n)

Fig. 5. (a) Chained, (b) branching and (c) multiplexed scan substructures

where v(c, s) is a predicate that evaluates to true exactly when the local scan configu-
ration of the scan segment s is valid in c ∈ C, as explained below.

For a scan segment s with a single predecessor p ∈ pred(s) and a single successor
n ∈ succ(s) (cf. Figure 5a), it is required that both p and n be selected if s is selected,
such that scan data are not lost. Thus:

v(c, s) := (Select(c, s) = 1) ⇒ [(Select(c, p) = 1) ∧ (Select(c, n) = 1)]. (3)

For a scan segment s with a single predecessor p and multiple successors (cf. Fig-
ure 5b), a valid scan configuration requires that exactly one successor of s is selected
if s is selected. Formula (4) specifies that at least one successor of s is selected if s is
selected:

(Select(c, s) = 1) ⇒
∨

n∈succ(s)

(Select(c, n) = 1). (4)

Formula (5) ensures that at most one successor of s can be selected at any time:

∀nk,nl∈succ(s),nk 6=nl
: [(Select(c, nk) = 1) ⇒ (Select(c, nl) 6= 1)]. (5)

The following formula v(c, s) states the requirement for a valid scan configuration for
a segment s with one predecessor p and multiple successors using formulas (4) and (5):

v(c, s) := [(Select(c, s) = 1) ⇒ (Select(c, p) = 1)] ∧ (4) ∧ (5). (6)

This assures that in case of a branching scan path (fanout>1) only one branch is active,
i.e. there are not multiple selected successors.

For a scan segment s with a single successor n and multiple predecessors selected
by a multiplexer (cf. Figure 5c), a valid scan configuration requires that exactly one
predecessor of s is selected if s is selected. Formula (7) below states that at least one
predecessor must be selected if s is selected:

(Select(c, s) = 1) ⇒
∨

p∈pred(s)

(Select(c, p) = 1). (7)

If a predecessor of s is selected, the address of the multiplexer must be correctly set:

∀p∈pred(s) : [(Select(c, p) = 1) ⇒ (Address(c, s) = addr(p))], (8)

where addr(p) is the multiplexer address for p (i.e. a constant, cf. Figure 5c).
The requirement for a valid scan configuration for segment s with one successor n

and multiple predecessors is captured by the following formula:

v(c, s) := [(Select(c, s) = 1) ⇒ (Select(c, n) = 1)] ∧ (7) ∧ (8). (9)

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Reconfigurable Scan Networks: Modeling, Verification, and Optimal Pattern Generation A:11

This assures that in case of a multiplexed scan path the active path is correctly routed.
In case of a node s with multiple predecessors and multiple successors, the following

formula captures the condition for a valid scan configuration: v(c, s) := (4)∧(5)∧(7)∧(8).
Since V (c) =

∧

s∈S v(c, s) holds exactly when c is valid, predicate Active can be de-
rived as:

Active(c, s) :=

0 if Select(c, s) = 0,

1 if (Select(c, s) = 1) ∧ V (c),

X otherwise.

(10)

The Select predicates are obtained by traversing the input cones of the corresponding
select signals in the RSN netlist.

The presented modeling requires that the active scan path includes only scan seg-
ments, multiplexers, buffers and inverters. This requirement is also posed by IEEE
P1687 to prevent that scan data are altered while shifting. Arbitrary logic on scan
paths—e.g. test compression structures—are handled in our modeling by black-boxing:
We define that a scan configuration is invalid if such structures belong to the active
scan path. To this end, for each scan segment sb of a black-boxed component, the pred-
icate V (c) is extended with the constraint Select(c, sb) = 0. In access pattern genera-
tion (Section 6), this assures that scan data are never shifted through the black-boxed
components. In formal verification (Section 5), such constraints constitute an assump-
tion that the black-boxed components never belong to the active scan path.

A similar technique can be applied to handle RSN modules with unknown structure
or functionality (e.g. protected third-party IP): If such a module behaves as a fixed-
length scan chain, it can be represented in our modeling as a simple scan segment
with the specified length. If the length of the module cannot be determined, it must
never belong to the active scan path. This is achieved with additional constraints in
predicate V , as explained above.

4.2. Transition Relation of the CSU-Accurate Model (CAM)

The CAM transition relation models the effect of a CSU operation which we consider
atomic. A CSU operation may arbitrarily change the state of all scan segments on the
active scan path, since any data may be shifted into those segments from the primary
scan input. We describe this behavior with a transition relation, as defined below.

Definition 4.2. The transition relation of a CAM M = {S, I, C, Active} is defined as
a set T ⊆ C × C with the following characteristic function:

T (c1, c2) :=
∧

s∈S

[Stable(c1, s) ⇒ (c2(s) = c1(s))] ∧ [Unknown(c1, s) ⇒ (c2(s) = X)], (11)

where c1, c2 ∈ C while Stable(·) and Unknown(·) are Boolean functions defined as fol-
lows:

Stable(c, s) := (Active(c, s) = 0) ∨ (Updis(c, s) = 1), (12)

Unknown(c, s) := [(Active(c, s) = X) ∧ (Updis(c, s) 6= 1)]∨

[(Active(c, s) = 1) ∧ (Updis(c, s) = X)].
(13)

The transition relation T includes all pairs of scan configurations (c1, c2), such that c2
can be reached from c1 within one CSU operation.

The characteristic function of the transition relation defines the requirement for
state changes: If an element s does not belong to the active scan path or its updis signal
is active in scan configuration c1, the state of s must not differ in the consecutive scan

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12 R. Baranowski et al.

s0
CSU operation

sk

s0 s1
C

s2
S S

sk-1
S

sk
U

...(a)

(b)

Fig. 6. State transitions during one CSU operation in (a) a cycle-accurate RSN model and (b) a CSU-
accurate model (CAM)

configuration c2. Additionally, if the scan configuration c1 is invalid or the activation
condition of s is unknown, the state of s is assumed unknown in the consecutive scan
configuration c2. As a consequence, the state of s may change freely only when s is se-
lected in a valid scan configuration c1, i.e. when Active(c1, s) = 1 and Updis(c1, s) = 0.

5. FORMAL VERIFICATION

With appropriate design rules, the verification of certain properties of simple reconfig-
urable scan networks may not be required. For instance, the SIB-based architecture
proposed in [Ghani Zadegan et al. 2011] consist of hierarchically connected SIBs and
scan segments, and no combinational logic is allowed for control signals (cf. Figure 2).
In this RSN architecture, the accessibility of a scan chain (e.g. a scan segment or a
chain of scan segments and SIBs) requires that the following recursive rule is fulfilled:
(1) the parent SIB of the scan chain (SIB to which the chain is connected to) works cor-
rectly, (2) the parent SIB is properly connected to the higher level chain, (3) the higher
level chain is also accessible. While the first condition is easily checked by exhaustive
simulation of the SIB, the second condition can be enforced with a structural design
rule.

In contrast, the verification of arbitrary RSN architectures with control signals
driven by combinational logic poses a much more difficult problem. Due to the high se-
quential depth, existing formal verification algorithms are ineffective in proving RSN
properties such as accessibility, as shown in Section 7.6. The CSU-Accurate Model
(CAM) is used to improve the scalability of existing model checking methods and en-
able formal verification of complex RSNs. In principle, the CAM can be used within
any formal verification technique that models the circuit with a transition relation,
e.g. in a symbolic or SAT-based model checker.

In the following, we study the implications of CSU-accurate modeling in formal veri-
fication and discuss its limitations. As an example, we show an application of the CAM
to prove accessibility properties using Bounded Model Checking (BMC). Finally, we
define a class of robust RSNs, explain their advantages, and show how to prove the
robustness property.

5.1. Implications of CSU-Accurate Modeling

Intuitively, the CAM can be viewed as an abstract FSM that exactly models the RSN
state but abstracts its temporal behavior. One state transition (clock cycle) in the ab-
stract FSM corresponds to a full CSU operation, i.e. multiple clock cycles in the cycle-
accurate RSN model. An example is given in Figure 6, where k state transitions during
one CSU operation (a) are combined into a single transition in the CAM (b).

CSU-accurate modeling is sound (for a proof please refer to [Baranowski 2014]): A
property that holds in the CAM is guaranteed to hold in the cycle-accurate model,
under the assumption that all internal control signals (e.g. the address of a scan mul-
tiplexer) are stable during the capture and shift phases of a CSU operation. This as-
sumption holds trivially for all control signals generated internally to the RSN, as they

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Reconfigurable Scan Networks: Modeling, Verification, and Optimal Pattern Generation A:13

are driven by shadow registers of scan segments, and has to be ensured for external
control inputs (if any). If an external control input is unstable during the capture or
shift phase, the active scan path may change during the shift operation and scan data
may be lost. Therefore, the stability of external control inputs during the capture and
shift phases must be proven in the system model. The existence of shadow registers in
scan segments driving internal control signals is assured by structural analysis of the
netlist or enforced with design rules, as in IEEE P1687.

CSU-accurate modeling is pessimistic: According to the CAM transition relation (cf.
formula (11)), the content of all scan segments is assumed undefined in an invalid scan
configuration, although it may be well defined in the cycle-accurate model. Thus, the
CAM may produce spurious counterexamples to a property, even if the property holds
in the cycle-accurate model. However, for scan networks in which invalid scan config-
urations are not reachable, a property that is disproved in the CAM is guaranteed to
be false in the cycle-accurate model. In Section 5.4, we show how to prove that only
valid scan configurations are reachable, in which case the CSU-accurate abstraction is
complete, i.e., causes no spurious counterexamples.

5.2. Bounded Model Checking

Bounded model checking (BMC) is a successful formal verification technique based on
propositional decision procedures (SAT). The goal of BMC is to check whether a given
temporal logic formula holds in a finite-state automaton F for all bounded executions
of F (sequences of consecutive states in F of bounded length) rooted in one of the initial
states of F [Biere et al. 2003]. The method is very efficient in detecting design bugs and
significantly outperforms BDD-based symbolic model checkers. Extensions of BMC to
unbounded LTL model checking include, for instance, techniques based on state space
interpolation [McMillan 2003] and induction [Sheeran et al. 2000].

Given a temporal logic property P of a finite-state automaton F , bounded model
checking consists in searching for an execution sequence (counterexample) that refutes
P within a certain number of transitions (steps). The property is disproved (counterex-
ample is found) if, for a certain number of steps n ∈ N

+, the following Boolean formula
is satisfiable:

ϕn := I ∧

[

n−1
∧

i=0

Ti

]

∧ (¬Pn), (14)

where I is the characteristic function of the initial states of F , Ti is the characteristic
function of the transition relation of F in i-th step, and Pn is a propositional represen-
tation of the temporal property P for n steps. The formula is typically transformed to
conjunctive normal form (CNF) and its satisfiability is checked with a SAT solver.

In the following, we show the application of BMC for proving accessibility of the
RSN using the CAM. For the details on translating general LTL formulas to bounded
propositional formulas please refer to [Biere et al. 2003].

5.3. Accessibility Proof

To assure that a scan segment can be both read from and written to, it is necessary
to prove that it is observable and controllable. A necessary requirement is that there
exists a scan path from a primary scan input, through the segment, down to a pri-
mary scan output. To determine if a structural connection exists, a static connectivity
check can be used [Remmers et al. 2004]. For complex scan architectures with arbi-
trary control signals, the necessary and sufficient requirement is the justification of
control signals over one or multiple CSU operations.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14 R. Baranowski et al.

We define that a scan segment is accessible in an initial scan configuration (or a set
of initial scan configurations) if and only if there exists a scan-in sequence that puts
the scan segment on the active scan path while the corresponding update and capture
disable signals are inactive. Given the CAM of an RSN M = {S, I, C, Active}, proving
the accessibility of a scan segment s ∈ S is equivalent to disproving the following LTL
formula in the CAM:

G¬[(Active(s) = 1) ∧ (Updis(s) = 0) ∧ (Capdis(s) = 0)]. (15)

The LTL formula states that for all sequences of scan configurations in the CAM, the
scan segment s does not belong to the active scan path or the access to it is disabled
through the corresponding updis and capdis signals. Note that our definition of acces-
sibility refers to a certain (possibly partially specified) initial scan configuration. It is
not guaranteed that a scan segment which is accessible in the initial scan configuration
is accessible in all reachable scan configurations.

We disprove this property and hence prove accessibility of the scan segments with
the bounded model checking approach. To this end, the LTL property is translated
into a bounded propositional formula over n CSU operations. The proof of accessibility
within n CSU operations reduces to checking the satisfiability of the following Boolean
formula:

Check(s, c0, n) := 1(c0) ∧
∧

i=1...n

T (ci−1, ci)∧

∨

i=0...n

[(Active(s) = 1) ∧ (Updis(s) = 0) ∧ (Capdis(s) = 0)] ,
(16)

where 1(c0) is the characteristic function of an initial scan configuration c0 ∈ C and for
0 < i ≤ n, ci represents the scan configuration in the i-th time step (after the i-th CSU
operation). The formula Check(s, c0, n) is satisfiable if and only if the scan segment s is
accessible within n CSU operations.

The accessibility proof is an iterative procedure that checks the satisfiability of for-
mula (16) for an increasing number of CSU operation (n = 1, 2, . . .) until the formula
is satisfiable, or until a predefined bound for the allowed number of CSU operations
is reached. To improve SAT solving performance, incremental solving techniques are
employed: the Boolean formula (SAT instance) generated for n CSU operations is ex-
tended with additional clauses for the characteristic function of the transition relation
and reused in iteration n+ 1.

5.4. Verification of Robustness

We define that a reconfigurable scan network is robust if all scan configurations that
are reachable from the initial configuration are valid, i.e., the selected scan segments
always form an active scan path regardless of the input data sequence. More formally,
an RSN is robust if and only if the LTL property GV holds in the CAM, i.e., the Boolean
validity predicate V (cf. Section 4.1) is always true.

The main advantage of robust RSNs compared with non-robust networks lies in
a lower verification effort: as shown in Section 7.4, many design bugs affect the ro-
bustness property and hence can be efficiently detected just by checking robustness.
Furthermore, for robust RSNs, the CSU-accurate model is complete: a property that
holds in the RSN will also hold in the CAM, i.e., the CAM abstraction cannot cause
spurious counterexamples (cf. Section 5.1). The reason is that the CAM fully captures
the effects that a CSU operation causes in the cycle-accurate model (for a proof, please
refer to [Baranowski 2014]). Moreover, as all reachable scan configurations are valid,
the CAM can be simplified by removing the validity predicate V from the predicates,

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Reconfigurable Scan Networks: Modeling, Verification, and Optimal Pattern Generation A:15

simply defining that Active(c, s) := Select(c, s) for all c ∈ C and s ∈ S. This signifi-
cantly simplifies the CAM and makes formal verification and pattern generation even
more efficient.

The robustness property GV can be proven in the CAM using any unbounded LTL
model-checking method. In the following, as an example, we show the application of a
SAT-based inductive technique [Sheeran et al. 2000] to prove this property. Although
the inductive technique is incomplete as discussed below, it is very efficient. For a
more detailed discussion of robustness and for verification techniques for robust RSNs
please refer to [Baranowski 2014].

The robustness property can be proven on a CAM M = {S, I, C, Active} with transi-
tion relation T by showing that:

(1) V holds in the initial scan configuration c0 ∈ C of M , i.e., V (c0) is true, and
(2) V is an invariant of the transition relation T , i.e. ∀(c1,c2)∈T [V (c1) ⇒ V (c2)].

If both conditions hold, the network is robust, as the initial scan configuration is valid,
and the validity is preserved by any CSU operation.

The two conditions for robustness can be formulated as a satisfiability problem and
solved with a SAT solver. The first condition holds if all initial states are valid, which
is exactly when the following Boolean formula is unsatisfiable:

1(c0) ∧ ¬V (c0), (17)

where 1(c0) is the characteristic function of the initial configuration c0 ∈ C. The valid-
ity is an invariant of the transition relation T (second condition holds) if and only if
the following formula is unsatisfiable:

V (ci) ∧ T (ci, ci+1) ∧ ¬V (ci+1). (18)

If both formula (17) and (18) are unsatisfiable, the RSN is robust. Otherwise, the sat-
isfying assignment from the SAT solver provides a counterexample with a transition
from a valid scan configuration into an invalid one.

Note that the first requirement of robustness is a necessary condition, while the
second is not, i.e., the RSN may be robust even though V is not an invariant of the
transition relation. This is the case if all valid scan configurations that lead to invalid
configurations are not reachable from the initial scan configuration. As a consequence,
this method proves a stronger requirement and may pessimistically classify a robust
network as non-robust. The advantage of this method lies in its efficiency, as it reduces
to a Boolean satisfiability problem instead of unbounded LTL model checking. As our
experimental results show (Section 7.3), this technique can rapidly prove robustness
even for large RSN architectures and hence can be used as a quick preprocessing step
before using a full-featured model checker.

6. ACCESS PATTERN GENERATION

An access to a scan segment may require several CSU operations to put the target
scan segment on the active scan path. The process of computing the required scan-in
sequence is called access pattern generation, or pattern retargeting in IEEE P1687.

In the following, we formulate the problem of computing minimal (shortest) access
patterns. As the search for the global minimum may be prohibitively expensive in
large RSNs, we propose an affordable pattern generation procedure which supports
arbitrary RSN architectures that are modeled with the CAM. The proposed method is
applicable to access merging, i.e. generation of efficient scan-in sequences that access
multiple scan elements during one or multiple CSU operations.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16 R. Baranowski et al.

Cycles

CSUs
nmin

N
o

 a
c
c
e

s
s

p
o

s
s
ib

le

local global
minimum

CSU overhead

nbound

Fig. 7. Example of a minimal access time curve

6.1. Problem Formulation

We search for the sequence of bits that must be shifted into the RSN during one or
multiple CSU operations to reach a certain target scan configuration with minimal
access time. We specify a scan access by its initial scan configuration c0 ∈ C and target
scan configuration ct ∈ C. We denote the access by (c0, ct).

Given is the CAM of an RSN M = {S, I, C, Active} with transition relation T , and
a scan access (c0, ct). Access pattern generation is the computation of a sequence of
n ∈ N

+ consecutive scan configurations c1, c2, . . . , cn such that the following conditions
hold:

(cn = ct) ∧ ∀i=1...n ((ci−1, ci) ∈ T) (19)

and the solution minimizes the access time (number of required clock cycles) expressed
with the following pseudo-Boolean cost function:

Cycles(c0, . . . , cn) := D · n+

n−1
∑

i=0

∑

s∈S

(Active(ci, s) = 1), (20)

where D is a constant that amounts to the number of cycles required to perform the
capture and update operation. Note that n is the number of CSU operations required
for the optimal solution, which is a priori unknown.

Condition (19) is satisfied exactly when c0, c1, . . . , cn is a valid sequence of consecu-
tive scan configurations, such that the last configuration equals the target scan con-
figuration. Access time Cycles(c0, c1, . . . , cn = ct) given by formula (20) amounts to the
time required to perform capture and update cycles (D ·n) plus the number of required
shift cycles in each scan configuration, except for the target scan configuration ct. Con-
stant D amounts to at least 4 cycles if the RSN is accessed through a 1149.1 TAP due to
the overhead of the TAP controller, or more if pause cycles are required. The number of
required shift cycles, i.e. the scan-in sequence length, equals the number of predicates
that evaluate to 1, since each predicate corresponds to a one-bit scan register, and the
predicate is true if the corresponding scan register is part of the active scan path.

The search for the access sequence with the globally minimal access time is a hard
problem: The global minimum is not necessarily found for the minimal number nmin of
CSU operations required to perform the access, i.e., to satisfy formula (19). Often, the
access time can be reduced by allowing additional CSU operations (see Figure 7).

Note that a CSU operation always incurs an access overhead of D cycles, and hence
an access pattern with n CSU operations takes at least n ·D cycles (this time is de-
picted by the line “CSU overhead” in Figure 7). Therefore, an access pattern with the
globally minimal access time can be found with an iterative procedure: Compute short-
est access patterns with 1, 2, 3 . . . CSU operations. Let Cyclesn denote the access time
of the pattern with n CSU operations, and set nbound := ⌈Cyclesn/D⌉. The access time
of the pattern with n CSUs is the global minimum if there does not exist any other
solution with up to nbound CSUs with lower access time.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Reconfigurable Scan Networks: Modeling, Verification, and Optimal Pattern Generation A:17

In practice, due to limited computational resources, the search for all solutions with
up to nbound CSU operations is often impractical. In contrast, the search for the first lo-
cal minimum (cf. Figure 7) is more tractable. Moreover, our experiments show that the
search beyond the first local minimum seldom leads to further access time reduction.

The following section explains merging of concurrent read and write accesses to mul-
tiple scan segments. Section 6.3 describes how we generate an access sequence with
the minimal access time for a given (fixed) number of CSU operations. In Section 6.4
we present an affordable pattern generation procedure.

6.2. Access Merging

The challenge of access merging is to find the optimal order of multiple accesses to
scan segments that results in a minimal scan-in sequence. The target scan segments
must have their target values in the final scan configuration ct, but the order in which
the merged accesses are performed is not specified. It is therefore sufficient to specify
the concurrent access to multiple scan segments by its initial and target scan configu-
rations (c0, ct).

Specifying read accesses in this way restricts them to the last CSU operation. To
improve merging flexibility, a read access may be specified by ensuring that during n
CSU operations the target segment s ∈ S is read in at least one of the intermediate
scan configurations, i.e.,

∨

i=0...n−1[(Active(ci, s) = 1) ∧ (Capdis(ci, s) = 0)] is true.
Condition (19) is extended with such a disjunction for each read access.

6.3. Mapping to Pseudo-Boolean Optimization

A pseudo-Boolean optimization problem is to find an assignment to the Boolean vari-
ables (x1, x2, . . . , xk) that leads to the minimal value of a pseudo-Boolean cost function
A among all assignments that satisfy a Boolean formula Ψ. The pseudo-Boolean cost
function has the form:

A(x1, x2, . . . , xk) = a0 +

k
∑

i=1

ai · xi, (21)

where a0, a1, . . . , ak ∈ Z and xi ∈ {0, 1}. Pseudo-Boolean optimization can be performed,
for instance, by incremental SAT solving techniques with pseudo-Boolean constraint
translation to SAT [Eén and Sörensson 2006], or speculative model enumeration tech-
niques [Gebser et al. 2011].

According to condition (19), an access (c0, ct) is implemented by a sequence of scan
configurations c0, c1, . . . , cn exactly when the following Boolean formula is satisfied:

Access(c0, ct, n) := 1(c0) ∧
∧

i=1...n

T (ci−1, ci) ∧
∧

s∈S

(cn(s) = ct(s)) , (22)

where 1(c0) is the characteristic function of the initial configuration c0 and for
0 < i ≤ n, ci represents the scan configuration in the i-th time step (after the i-th CSU
operation). This formula is transformed into a conjunctive normal form (CNF) or a
set of clauses. If the formula is satisfiable, there exists a sequence of scan configura-
tions c0, c1, . . . , cn that describes a valid scan access, such that cn = ct. Otherwise, if
the formula is unsatisfiable, no scan access with n CSU operations exists.

The formula Access(c0, ct, n), given by (22), is subject to pseudo-Boolean optimization
with the cost function Cycles(c0, c1, . . . , cn), given by (20). The satisfying assignment
(optimization solution) provides the state of all scan segments in scan configurations
c1 . . . cn−1. The scan-in sequence that implements the scan access is derived from the
satisfying assignment: The i-th CSU operation is fully specified by a pair of scan con-
figurations ci−1 and ci. Configuration ci−1 specifies the active scan path. An element

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:18 R. Baranowski et al.

C
H

IL
D

P
R
O
C
’S

P
A

R
E

N
T

P
R

O
C

E
S

S

PSEUDO-BOOLEAN

OPTIMIZATION

RESULT EVALUATION

SAT SOLVING

SAT INSTANCE CREATION
n=1

UNSAT

n=2

UNSAT

nmin

SAT

nmin+1 nmin+2

Cycles0

Cycles1

Cycles2

Cyclesmin

Fig. 8. Parallel execution of the pattern generation procedure (horizontal lines represent processing; verti-
cal lines represent inter-process communication)

s ∈ S belongs to the active scan path if Active(ci−1, s) = 1. Configuration ci specifies
the content of scan segments and so provides the scan-in sequence for the i-th CSU
operation. The resulting scan-in sequence is guaranteed to have the minimal access
time among all solutions with n CSU operations.

6.4. Pattern Generation Procedure

Our pattern generation procedure is based on a heuristic that finds a local access time
minimum (cf. Figure 7): we search for access sequences with increasing number of CSU
operations as long as allowing more CSU operations provides a reduction of access
time.

Let Cyclesn be the value of the cost function (20) after optimization with n CSU
operations. Potentially, a solution with lower access time can be found if more CSU
operations are allowed. The SAT instance is extended to n + 1 CSU operations to find
the value of the cost function Cyclesn+1. If the cost of the new solution is higher than
the previous one, i.e. when Cyclesn+1 > Cyclesn, the pattern generation procedure
terminates. Otherwise, the number of CSU operations is increased and the procedure
is repeated until the user specified bound nmax is reached.

Let nt be the number of CSU operations at which the pattern generation procedure
terminates. The procedure guarantees that the final solution has the minimal access
time among all solutions with n ≤ nt + 1 CSU operations. There may exist a global
minimum with lower access time that requires nopt > nt+1 CSU operations. However,
experimental results show that the first local minimum is often the global minimum
and increasing the number of CSU operations beyond nt + 1 rarely provides better
results.

6.5. Implementation

The pattern generation procedure is implemented using the clasp toolkit [Gebser et al.
2007], which includes a Boolean SAT solver and a pseudo-Boolean optimization en-
gine. As the SAT solver is generally faster than the pseudo-Boolean optimizer, we use
it initially to find the minimal number of CSU operations nmin that is required to im-
plement the access. After nmin is found, pseudo-Boolean optimization is performed for
increasing number of CSU operations, as described in Section 6.4.

Our framework exploits parallelism in the pattern generation procedure: After nmin

is found, pseudo-Boolean optimization for n ≥ nmin CSU operations is performed in par-
allel. A parent process is responsible for the generation of SAT instances with growing
number of CSU operations. The optimization of each instance is performed in a par-
allel child process. For retrieval of optimal assignments, inter-process communication
is implemented using POSIX pipes. Figure 8 illustrates the parallel execution of the
pattern generation procedure.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Reconfigurable Scan Networks: Modeling, Verification, and Optimal Pattern Generation A:19

7. EVALUATION

The proposed modeling approach is evaluated on several RSN benchmarks in two use
cases: design verification and access pattern generation. To exploit the parallelism of
the pattern generation procedure, the experiments are run on an Intel Xeon CPU with
12 cores operating at 3.33 GHz.

The results presented in the following sections are validated by cycle-accurate sim-
ulation in a commercial logic simulator. For this purpose, the RSN models are auto-
matically translated to hardware Verilog models. The generated patterns are used as
stimuli for the primary scan input of a network. During simulation, assertions verify
that the scan access is performed correctly.

7.1. Benchmark Circuits

We evaluate our approach on two hierarchical RSN architectures: one implemented
with multiplexers and the other implemented with Segment Insertion Bits (SIBs). The
RSNs are synthesized for ITC’02 benchmarks, which are in widespread use for evalu-
ation of test scheduling methods [Marinissen et al. 2002]. Benchmark hierarchies are
reflected in the RSN architectures: Each module is assigned a dedicated RSN with one
scan input and one scan output. The scan network of a module includes scan segments
that represent the module’s boundary and internal scan chains, as well as the RSNs of
constituent submodules.

The MUX-based architecture supports two access modes: configuration access and
data access. Configuration access allows to reconfigure the scan chain by attaching
or detaching internal scan segments or submodules. Figure 9 shows the MUX-based
architecture for the top-level part of the p34392 benchmark. The scan chain of each
module starts with a one-bit configuration register AM that sets the configuration mode
(AM = 0), in which only the configuration registers (C) can be accessed, or data access
mode (AM = 1). Once configured, this architecture allows faster access compared to the
SIB-based scheme, as fewer control registers are present on the active scan path in the
data access mode.

The SIB-based scan architecture implements hierarchical scan bypasses with SIBs.
A SIB consists of a one-bit configuration register and a scan multiplexer that either
bypasses or connects the lower-level scan segment (or a scan network) to the higher-
level scan chain, depending on the content of the configuration register. The scan chain
of a single module is composed of several SIBs, as in [Ghani Zadegan et al. 2011]. SIBs
provide configurable access to the scan segments of the core, its submodules, as well as
its inputs and outputs. Figure 10 shows such a scan architecture for the top-level part
of the p34392 benchmark.

The initial scan configuration (after reset) is 0 for all control scan segments (e.g. C
and AM in Figure 9) and unknown (X) for all data segments (e.g. INPUTS and OUTPUTS in
Figure 9). If required, both MUX- and SIB-based architectures can be extended with
pipelining registers at chosen scan multiplexers to prevent long combinational paths
through multiple multiplexers, as in [Ghani Zadegan et al. 2012].

Table I presents the characteristics of our benchmark RSNs. For the MUX-based
benchmarks, the number of multiplexers is given in the second column, the total num-
ber of scan segments (including configuration segments) in the third column, and the
total number of scan flip-flops in the fourth column. The characteristics of the SIB-
based benchmarks are listed in the last three columns of this table. In the MUX-based
architecture, the number of scan segments is higher due to the additional segments AM
that set the access mode for each module (cf. Figure 9).

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:20 R. Baranowski et al.

Module 0

Module 2

Module 1

INPUTS

SCAN

OUT
SCAN

IN
OUTPUTSAM

C C

INPUTS OUTPUTSAM

C C

C C

SEGM. 1

C

…

…

…

…

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Fig. 9. MUX-based scan architecture for the p34392 benchmark (note: select signals of scan segments are
omitted for better readability)

Module 0

Module 2

Module 1

SIB
SI SO

TO FROM

OUTPUTS

SIB
SI SO

TO FROM

INPUTS

SIB
SI SO

TO FROM

SIB
SI SO

TO FROM

OUTPUTS

SIB
SI SO

TO FROM

INPUTS

SIB
SI SO

TO FROM

SEGM. 1

SIB
SI SO

TO FROM

…

… SCAN

OUT

SCAN

IN

Fig. 10. SIB-based scan architecture for the p34392 benchmark (note: select signals of scan segments are
omitted for better readability)

Table I. Characteristics of the benchmark scan networks

MUX-based Architecture SIB-based Architecture
Num. Total Total Num. Total Total

Design MUX #scan #scan SIB #scan #scan
segm. bits segm. bits

u226 59 99 1 475 50 90 1 466
d281 67 117 3 880 59 109 3 872
d695 178 335 8 407 168 325 8 397
h953 63 109 5 649 55 101 5 641
g1023 94 159 5 400 80 145 5 386
f2126 45 81 15 834 41 77 15 830
q12710 30 51 26 188 25 47 26 183
p22810 311 565 30 139 283 537 30 111
p34392 142 245 23 261 123 226 23 242
p93791 653 1241 98 637 621 1209 98 605
t512505 191 319 77 037 160 288 77 006
a586710 47 79 41 682 40 72 41 675

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Reconfigurable Scan Networks: Modeling, Verification, and Optimal Pattern Generation A:21

Table II. Accessibility verification effort for the MUX-based scan archi-
tecture

Design Access len. Clauses Conflicts t
max
solve

ttotal

avg / max max avg / max [s] [s]
u226 3.5 / 5 20 617 1.6 / 8 0.02 0.9
d281 3.7 / 5 23 797 1.7 / 9 0.02 1.4
d695 3.9 / 5 65 189 1.9 / 10 0.06 11.8
h953 3.6 / 5 22 293 2.4 / 17 0.03 1.2
g1023 3.6 / 5 32 917 2.0 / 27 0.03 2.6
f2126 3.7 / 5 16 213 2.2 / 16 0.02 0.7
q12710 3.6 / 5 10 573 2.4 / 8 0.01 0.3
p22810 3.9 / 7 150 787 5.6 / 88 0.15 36.5
p34392 4.4 / 7 67 367 9.1 / 107 0.07 8.1
p93791 4.1 / 7 322 891 6.5 / 223 0.57 187.1
t512505 3.6 / 5 66 465 3.8 / 38 0.06 10.3
a586710 4.0 / 7 22 105 4.1 / 41 0.02 0.7

Table III. Accessibility verification effort for the SIB-based
scan architecture

Design Access len. Clauses t
max
solve

ttotal

avg / max max [s] [s]
u226 2.3 / 3 10 431 0.02 0.4
d281 2.4 / 3 12 482 0.01 0.7
d695 2.5 / 3 36 574 0.04 6.0
h953 2.3 / 3 11 594 0.01 0.6
g1023 2.3 / 3 16 826 0.02 1.2
f2126 2.4 / 3 8 698 0.01 0.2
q12710 2.4 / 3 5 368 0.01 0.1
p22810 2.5 / 4 77 376 0.05 17.2
p34392 2.7 / 4 33 028 0.03 3.5
p93791 2.5 / 4 172 082 0.14 94.5
t512505 2.3 / 3 33 685 0.03 4.8
a586710 2.5 / 4 10 521 0.01 0.3

7.2. Verification of Accessibility

The integrity of the benchmark scan architectures is verified using bounded model
checking, as described in Section 5.3. We formally prove that all scan segments are
observable and controllable.

Table II and III present the results of network verification for the MUX- and SIB-
based architectures, respectively. Column “Access length” gives the average and max-
imal number of CSU operations to access a single scan segment. Under “Clauses” we
give the maximum number of clauses contained in the SAT instance after the minimal
number of CSU operations is found. Column tmax

solve is the maximum solve time for the
check of a single scan segment (iteration), whereas ttotal is the total design verification
time.

Although the size of SAT instances grows up to about 323 000 clauses, the maxi-
mum solve time for a single iteration is just 0.6 s in the worst case, and about 150 ms
on average for the largest RSN (p93791). This is due to the fact that the majority of
clauses describes signal propagation with just two literals, which is efficiently handled
by state-of-the-art SAT solvers. For most of the RSNs, the total validation time is below
10 s, and raises to about 3 minutes for the largest RSN.

The verification of SIB-based benchmarks does not require the solver to backtrack
since a solution is found by direct implications. Contrary to the SIB-based design, the
MUX-based architecture may cause temporal conflicts and backtracking if the solver
takes a wrong decision on the access order to configuration registers. The average and

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:22 R. Baranowski et al.

maximum number of times the solver needs to backtrack is given in Table II under
“Conflicts”.

7.3. Verification of Robustness

Our benchmark circuits are proven robust using the technique presented in Sec-
tion 5.4. The verification is successful for all considered benchmarks, i.e., we are able
to formally prove that the scan configuration remains valid regardless of the applied
input sequence. For the largest benchmark p93791, the proof for the MUX-based ar-
chitecture takes up to 84 s, and up to 81 s for the SIB-based architecture.

As the benchmark circuits are robust, we can simplify their CAMs by remov-
ing the validity predicate V from Active predicates, i.e., we can define that
Active(c, s) := Select(c, s) for all scan configurations c ∈ C and scan segments s ∈ S
(cf. Section 5.4). This simplification leads to a slightly lower verification effort: com-
pared with the results from the previous section, the verification of accessibility in
the simplified CAM leads to about 8% reduction in the number of clauses, and 4%
reduction of the SAT solver runtime on average. The effort of robustness verification
is amortized when the simplified model is used for several consecutive verification or
pattern generation jobs.

7.4. Debugging Faulty Designs

We apply the bounded model checking method from Section 5.3 to verify the accessi-
bility of faulty RSNs. We mutate the benchmarks from Section 7.1 to model possible
design bugs. Due to space limitations, we consider only four types of MUX-based RSNs
(d281, g1023, p22810, and p93791) and three types of design bugs:

Path bug: The successors of two random scan elements (scan segments or scan mul-
tiplexers) are swapped.

Control bug: The address control signals of two random scan multiplexers are
swapped.

Mux bug: The scan inputs of a random scan multiplexer are swapped.

We assume that if a scan segment cannot be accessed within at most 30 CSU opera-
tions, the segment is inaccessible (i.e., the bound of model checking is set to 30 time
steps). Note that this bound is significantly more than the worst case access length for
fault-free MUX-based benchmarks, which is 7 (cf. Table II).

For each benchmark and each bug type, a hundred of random faulty RSNs is con-
sidered. Table IV presents the verification results: Column “Found” gives the ratio of
faulty RSNs in which the bug is found, i.e., at least one scan segment is not accessi-
ble within 30 CSU operations. Column “Inaccessible” gives the average ratio of scan
segments that are found inaccessible in a faulty RSN. Columns tavgtotal and tmax

total give the
average and maximum verification time, respectively.

The average verification effort for a faulty RSN is similar to the verification time of
its fault-free counterpart (cf. Table II). The maximum verification time is an order of
magnitude more than the average time, and is below 31 minutes in the worst case. The
path bugs and mux bus are always found (each faulty RSN has at least one inaccessible
scan segment), whereas up to 99% of control bugs do not affect the accessibility of scan
segments. This means that it is often possible to find access sequences to all scan
segments in the RSN, even if control signals of two random scan multiplexers are
swapped.

Since design bugs often result in the possibility to put the network into an invalid
scan configuration, they are very likely to violate the robustness property. Indeed, us-
ing the approach from Section 5.4, we successfully prove that all the considered faulty
RSNs are not robust and obtain counterexamples that can help localize the bugs. The

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Reconfigurable Scan Networks: Modeling, Verification, and Optimal Pattern Generation A:23

Table IV. Accessibility verification for faulty MUX-based RSNs

Design Bug type Found Inaccessible t
avg

total
t
max
total

[%] [%] [s] [s]
path 100% 26.7% 2.2 3

d281 control 2% 3.5% 1.2 9
mux 100% 22.2% 2.3 9
path 100% 13.3% 2.8 15

g1023 control 5% 1.9% 1.8 16
mux 100% 20.0% 4.6 18
path 100% 7.6% 29.3 251

p22810 control 2% 1.0% 21.7 267
mux 100% 8.0% 39.0 363
path 100% 7.9% 139.4 152

p93791 control 1% 1.0% 109.5 1301
mux 100% 5.9% 172.1 1859

Table V. Access time reduction (reduction) for the MUX-based scan architecture w.r.t. unoptimized
solution (cycles)

No optimization Optimization effort 2s Optimization effort 20s
Design nmin tavg cycles nt − nmin reduction nt − nmin reduction

avg / max [s] [cycles] avg / max avg / max avg / max avg / max
u226 5.6 / 7 0.03 705 0.4 / 3 1.54 / 6.8x 0.4 / 2 1.54 / 6.8x
d281 5.7 / 7 0.03 1 718 0.8 / 2 1.90 / 13.4x 0.8 / 3 1.91 / 13.7x
d695 6.0 / 7 0.09 3 569 0.5 / 4 1.78 / 11.2x 0.7 / 4 1.84 / 11.2x
h953 5.7 / 7 0.03 2 776 0.9 / 3 1.91 / 16.1x 0.9 / 3 1.91 / 16.1x
g1023 5.9 / 7 0.04 2 482 0.5 / 2 1.89 / 10.7x 0.6 / 2 1.93 / 10.7x
f2126 5.6 / 7 0.02 9 327 0.8 / 3 1.78 / 12.1x 0.9 / 3 1.79 / 12.1x
q12710 5.7 / 7 0.01 17 769 0.8 / 3 1.78 / 12.3x 0.8 / 3 1.78 / 12.3x
p22810 6.0 / 10 0.17 12 335 0.5 / 4 1.65 / 33.3x 0.5 / 3 1.75 / 33.7x
p34392 6.9 / 10 0.09 14 633 0.7 / 3 2.02 / 49.2x 0.8 / 4 2.16 / 49.2x
p93791 6.0 / 9 0.38 21 073 0.8 / 4 1.84 / 28.2x 0.9 / 4 1.99 / 28.2x
t512505 5.7 / 7 0.09 22 146 0.5 / 3 2.31 / 87.8x 0.5 / 3 2.39 / 87.8x
a586710 6.3 / 10 0.02 36 417 1.2 / 6 2.19 / 74.1x 1.3 / 5 2.26 / 74.1x

worst case robustness verification effort in the faulty RSNs is below 2 minutes. There-
fore, many RSN design bugs can be found efficiently by just checking the robustness
property.

7.5. Access Pattern Generation

To evaluate the pattern generation procedure from Section 6, we perform 1000 ex-
periments per benchmark RSN. In each experiment, we search for the shortest scan-in
sequence that merges read or write accesses to 10 randomly chosen scan segments. Op-
timization is performed with up to 6 additional CSU operations, executed in 6 parallel
jobs (cf. Figure 8).

Column “No optimization” in Tables V and VI presents the results of pattern genera-
tion without optimization. A SAT solver is used to iteratively check the satisfiability of
instances with increasing number of CSU operations until a solution is found. For the
1000 experiments, column nmin gives the average and maximal number of CSU opera-
tions that are required to implement an access. Column tavg gives the average pattern
generation time per access. The average access time of the unoptimized patterns is
given in column cycles in clock cycles.

Access time reduction is evaluated in two series of experiments, limiting the max-
imal effort of the pattern generation procedure to 2 and 20 s per access. Table V and
VI give the average and maximal access time reduction (column reduction) w.r.t. the
unoptimized solution obtained with the SAT solver. The average and maximal number

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:24 R. Baranowski et al.

Table VI. Access time reduction (reduction) for the SIB-based scan architec-
ture w.r.t. unoptimized solution (cycles)

No optimization Opt. eff. 2s Opt. eff. 20s
Design nmin tavg cycles reduction reduction

avg / max [s] [cycles] avg / max avg / max
u226 2.6 / 3 0.01 879 1.09 / 1.81x 1.09 / 1.81x
d281 2.7 / 3 0.02 2 039 1.13 / 1.81x 1.13 / 1.81x
d695 2.7 / 3 0.04 4 294 1.14 / 1.61x 1.15 / 1.61x
h953 2.7 / 3 0.01 3 110 1.16 / 1.69x 1.16 / 1.69x
g1023 2.7 / 3 0.02 2 507 1.17 / 1.62x 1.17 / 1.62x
f2126 2.5 / 3 0.01 9 662 1.11 / 1.72x 1.11 / 1.72x
q12710 2.5 / 3 0.01 16 550 1.09 / 1.68x 1.09 / 1.68x
p22810 2.8 / 4 0.08 12 009 1.06 / 1.25x 1.12 / 1.50x
p34392 3.1 / 4 0.04 13 122 1.16 / 1.45x 1.17 / 1.66x
p93791 2.9 / 4 0.19 36 278 1.09 / 1.24x 1.14 / 1.48x
t512505 2.7 / 3 0.04 35 275 1.13 / 1.57x 1.18 / 1.74x
a586710 2.8 / 4 0.01 24 618 1.13 / 1.85x 1.13 / 1.85x

of additional CSU operations that are required to obtain the best solution is given in
column nt − nmin.

The proposed method significantly reduces the access time for the MUX-based
benchmarks (Table V): For almost all circuits, a maximal access time reduction of over
10x is achieved. For the t512505 benchmark, the access time is reduced by up to 88x.
Compared to results obtained with a SAT solver in [Baranowski et al. 2012], the pro-
posed method achieves up to 230x access time reduction (not presented in the table).
This shows that access optimization is crucial to prevent solutions with prohibitively
high access time or data volume. The proposed method also reduces unnecessary access
overhead: for most of the benchmarks, the average access time over the 1000 experi-
ments is nearly halved within 2 s of computational time. Note that the reduction of
access time leads to a proportional reduction in scan data volume.

For the SIB-based architecture, efficient scheduling techniques exist for access time
minimization [Larsson and Ghani Zadegan 2012]. In this architecture optimal pattern
generation reduces to a simple decision problem. In the following, our pattern gener-
ation procedure is evaluated for this architecture only for the sake of completeness.
The results show that the access time for SIB-based benchmarks is reduced by up to
a factor 1.8 w.r.t. the unoptimized solution (Table VI). In contrast to the MUX-based
architecture, the local minimum is always found for the minimal number of CSU op-
erations that is required to implement the access (nmin). The local minimum is usually
found within 2 s of optimization. Extending the effort to 20 s achieves only a minimal
access time reduction for larger benchmarks (italic in Table VI).

The results presented in Table V and VI are obtained with the pattern generation
procedure of Section 6 that terminates as soon as a local minimum is found. We check
if the access time can be improved if we allow more CSU operations. To this end, we
computed shortest access sequences with 6 additional CSU operations over nt. Despite
the additional effort, the resulting access times are exactly the same as those obtained
in the proposed algorithm. For all the examined circuits, the proposed algorithm pro-
vides the best achievable solution among all solutions with at most 6 additional CSU
operations.

7.6. Performance Analysis

In the following, we compare the performance of our CAM-based BMC approach (cf.
Section 5.2) to the performance of a state-of-the-art commercial model checker. The
commercial tool uses a cycle-accurate RT-level RSN model augmented with constraints
which ensure that each access follows the CSU pattern (single capture cycle followed

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Reconfigurable Scan Networks: Modeling, Verification, and Optimal Pattern Generation A:25

Table VII. Performance comparison of a cycle-accurate model checker and the proposed CAM-based
BMC

Cycle-accurate MC CAM-based BMC Speedup
Design tavg tmax aborts tavg tmax

[s] [s] [%] [s] [s] avg max
u226 112.1 488.0 0% 0.01 0.01 12 808x 48 799x
d281 > 1427.7 > 3600.0 25% 0.01 0.01 > 163 166x > 721 049x
d695 > 3600.0 > 3600.0 100% 0.02 0.03 > 171 644x > 180 267x
h953 > 1969.3 > 3600.0 35% 0.01 0.01 > 225 066x > 720 834x
g1023 > 2431.0 > 3600.0 60% 0.01 0.02 > 231 519x > 360 919x
f2126 > 362.1 > 3600.0 5% 0.01 0.01 > 45 261x > 360 521x
q12710 53.4 264.1 0% 0.01 0.01 8 208x 26 411x
p22810 > 3600.0 > 3600.0 100% 0.04 0.06 > 86 860x > 120 154x
p34392 > 3166.3 > 3600.0 80% 0.02 0.03 > 147 269x > 360 469x
p93791 > 3600.0 > 3600.0 100% 0.10 0.18 > 36 789x > 51 502x
t512505 > 2989.7 > 3600.0 55% 0.02 0.03 > 135 893x > 180 286x
a586710 > 594.3 > 3600.0 5% 0.01 0.01 > 69 914x > 621 978x

by zero or more shift cycles followed by single update cycle). To make the job of the
commercial model checker easier, the cycle-accurate model is manually simplified: the
length of all scan segments is reduced to one-bit. Please note that without this simpli-
fication, the commercial tool exceeds the time limit of one hour in the vast majority of
experiments.

For each MUX-based benchmark, we conduct 20 experiments. In each experiment,
we verify the accessibility of 10 randomly chosen scan segments (cf. Section 5.3). Ta-
ble VII shows the average and maximal time that is required to verify accessibility of
10 scan segments using the commercial model checker (columns 2 and 3) and CAM-
based BMC (columns 5 and 6). The solving time of the commercial tool varies widely:
The average proof time is 53.4 s up to over an hour. The commercial tool often ex-
ceeds the time limit of one hour; for three benchmarks none of the experiments is
successful—the abort rate is given in column 4. In contrast, CAM-based BMC is suc-
cessful for all benchmarks in all the experiments and exhibits much more stable run-
times below 0.18 s. This result clearly shows that the proposed CSU-accurate abstrac-
tion provides a great performance improvement over cycle-accurate models.

8. CONCLUSION

Reconfigurable scan networks allow scalable access to on-chip infrastructure. The de-
sign complexity due to hierarchies and IP reuse requires novel EDA tools for scan net-
work verification, pattern generation, and access optimization. In this work, we pro-
pose a model that abstracts the temporal behavior of complex scan networks and thus
allows efficient formal verification and optimization of access sequences. Our modeling
approach supports unknown values and is applicable to a wide range of configurable
architectures. Based on this model, we present an efficient method for verification of
accessibility and robustness. We also propose an access pattern generation method
that supports merging of multiple concurrent accesses and provides the optimal access
time for a given bound on the number of scan operations. The results show that even
for complex reconfigurable scan architectures the proposed method leads to significant
reduction of access time by up to 88x with low computational effort.

ACKNOWLEDGMENTS

The authors thank Christian Zöllin for many insightful discussions about IEEE P1687.

REFERENCES

1149.1 2013. IEEE Standard for Test Access Port and Boundary-Scan Architecture 1149.1-2013. (2013).

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:26 R. Baranowski et al.

R. Baranowski. 2014. Reconfigurable Scan Networks: Formal Verification, Access Optimization, and Protec-
tion. Ph.D. Dissertation. University of Stuttgart. http://elib.uni-stuttgart.de/opus/volltexte/2014/8982

R. Baranowski, M.A. Kochte, and H.-J. Wunderlich. 2012. Modeling, Verification and Pattern Generation for
Reconfigurable Scan Networks. In Proceedings of the IEEE International Test Conference (ITC). Paper
8.2.

R. Baranowski, M.A. Kochte, and H.-J. Wunderlich. 2013. Scan Pattern Retargeting and Merging with Re-
duced Access Time. In Proceedings of the IEEE European Test Symposium (ETS). 39–45.

A. Benso, S. Di Carlo, P. Prinetto, and Y. Zorian. 2008. IEEE Standard 1500 Compliance Verification for
Embedded Cores. IEEE Trans. VLSI Syst. 16, 4 (2008), 397–407.

A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, and Y. Zhu. 2003. Bounded Model Checking. Advances in
Computers 58 (2003), 117–148.

W. C. Bruce Jr, J. E. Drufke Jr, C. O. Eluwa, and J. M. Hudson. 1996. Method for Testing a Test Architecture
within a Circuit. (May 1996). US Patent App. 5,517,637.

R. E. Bryant. 1990. Symbolic Simulation – Techniques and Applications. In Proc. ACM/IEEE Design Au-
tomation Conference (DAC). 517–521.

A.T. Dahbura, M.U. Uyar, and Chi W.Y. 1989. An Optimal Test Sequence for the JTAG/IEEE
P1149.1 Test Access Port Controller. In Proc. IEEE International Test Conference (ITC). 55–62.
DOI:http://dx.doi.org/10.1109/TEST.1989.82277

I. Diamantidis, T. Oikonomou, and S. Diamantidis. 2005. Towards an IEEE P1500 Verification Infrastruc-
ture: A Comprehensive Approach. In Proc. IEEE International Workshop on Infrastructure IP (IIP).
25–30.

E.B. Eichelberger and TW Williams. 1977. A Logic Design Structure for LSI Testability. In Proceedings of
the Design Automation Conference (DAC). 462–468.

B. Eklow and B. Bennetts. 2006. New Techniques for Accessing Embedded Instrumentation: IEEE P1687
(IJTAG). In Proc. IEEE European Test Symposium (ETS). 253–254.

N. Eén and N. Sörensson. 2006. Translating Pseudo-Boolean Constraints into SAT. Journal on Satisfiability,
Boolean Modeling and Computation 2 (2006), 1–26.

R.L. Fisher. 2002. Method and Apparatus to Check the Integrity of Scan Chain Connectivity by Traversing
the Test Logic of the Device. (Nov. 2002). US Patent App. 10/300,513.

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. 2011. Multi-Criteria Optimization in Answer Set Pro-
gramming. In Technical Communications of the International Conference on Logic Programming (ICLP)
(Leibniz International Proceedings in Informatics (LIPIcs)), Vol. 11. Dagstuhl Publishing, Germany, 1–
10.

M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. 2007. clasp : A Conflict-Driven Answer Set Solver.
In Logic Programming and Nonmonotonic Reasoning. LNCS, Vol. 4483. Springer, 260–265.

F. Ghani Zadegan, U. Ingelsson, G. Carlsson, and E. Larsson. 2011. Design Automation for IEEE P1687. In
Proceedings of the Design, Automation Test in Europe Conference (DATE). 1412–1417.

F. Ghani Zadegan, U. Ingelsson, G. Carlsson, and E. Larsson. 2012. Access Time Analysis for IEEE P1687.
IEEE Trans. Computers 61, 10 (October 2012), 1459–1472.

H. B. Kamepalli, P. Sanjeevarao, and C.-J. Park. 2006. Scan Chain Verification Using Symbolic Simulation.
(May 2006). US Patent App. 7,055,118.

S.C. Kleene. 1950. Introduction to Metamathematics. D. Van Nostrand, Princeton, NJ.

E. Larsson and F. Ghani Zadegan. 2012. Accessing Embedded DfT Instruments with IEEE P1687. In Pro-
ceedings of the IEEE Asian Test Symposium (ATS). 71–76.

E. Larsson and K. Sibin. 2012. Fault management in an IEEE P1687 (IJTAG) environment. In IEEE Inter-
national Symposium on Design and Diagnostics of Electronic Circuits Systems (DDECS). 7.

E.J. Marinissen, V. Iyengar, and K. Chakrabarty. 2002. A Set of Benchmarks for Modular Testing of SOCs.
In Proceedings of the IEEE International Test Conference (ITC). 519–528.

K.L. McMillan. 2003. Interpolation and SAT-Based Model Checking. In Computer Aided Verification. Lecture
Notes in Computer Science, Vol. 2725. Springer, 1–13.

K. Melocco, H. Arora, P. Setlak, G. Kunselman, and S. Mardhani. 2003. A Comprehensive Approach to
Assessing and Analyzing 1149.1 Test Logic. In Proc. IEEE International Test Conference (ITC). 358–
367.

J. Rearick, B. Eklow, K. Posse, Al Crouch, and Ben Bennetts. 2005. IJTAG (Internal JTAG): A Step Toward
a DFT Standard. In Proc. IEEE International Test Conference (ITC). Paper 32.4.

J. Rearick and A. Volz. 2006. A Case Study of Using IEEE P1687 (IJTAG) for High-Speed Serial I/O Char-
acterization and Testing. In Proceedings of the IEEE International Test Conference (ITC). Paper 10.2.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Reconfigurable Scan Networks: Modeling, Verification, and Optimal Pattern Generation A:27

J. Remmers, M. Villalba, and R. Fisette. 2004. Hierarchical DFT Methodology - A Case Study. In Proceedings
of the IEEE International Test Conference (ITC). 847–856.

M. Sheeran, S. Singh, and G. Stålmarck. 2000. Checking Safety Properties Using Induction and a SAT-
Solver. In Formal Methods in Computer-Aided Design. Lecture Notes in Computer Science, Vol. 1954.
Springer, 127–144.

H. Singh, G. Patankar, and J. Beausang. 1997. A Symbolic Simulation-Based ANSI/IEEE Std 1149.1 Com-
pliance Checker and BSDL Generator. In Proc. IEEE International Test Conference (ITC). 256–264.

N. Stollon. 2011. On-Chip Instrumentation: Design and Debug for Systems on Chip. Springer US.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

