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Abstract—Unknown (X) values emerge during the design
process as well as during system operation and test application.
X-sources are for instance black boxes in design models, clock-
domain boundaries, analog-to-digital converters, or uncontrolled
or uninitialized sequential elements.

To compute a test pattern for a given fault, well-defined logic
values are required both for fault activation and propagation
to observing outputs. In presence of X-values, conventional test
generation algorithms, based on structural algorithms, Boolean
satisfiability (SAT), or BDD-based reasoning may fail to generate
test patterns or to prove faults untestable.

This work proposes the first efficient stuck-at and transition-
delay fault test generation algorithm able to prove testability or
untestability of faults in presence of X-values. It overcomes the
principal pessimism of conventional algorithms when X-values
are considered by mapping the test generation problem to the
satisfiability of Quantified Boolean Formulae (QBF).

Experiments on ISCAS benchmarks and larger industrial
circuits investigate the increase in fault coverage for conventional
deterministic and potential detection requirements for both
randomized and clustered X-sources.

Index Terms—Unknown values, X-values, ATPG, QBF, SAT,
stuck-at fault, transition-delay fault

I. INTRODUCTION

Unknown (X) values are caused by unspecified inputs or

black boxes in the design, or during test by uncontrolled

sequential elements, at clock domain crossings or A/D bound-

aries. Since both fault activation and propagation require well-

defined values at the fault site and along the propagation

path, X-values compromise the testability of faults in the

circuit. The propagation of X-values can be controlled by X-

blocking design-for-test hardware at additional hardware and

performance cost.

Automatic test pattern generation (ATPG) algorithms for

stuck-at faults are typically based on structural methods such

as the D-algorithm [1], PODEM [2] or FAN algorithm [3], or

on Boolean satisfiability (SAT) reasoning [4], [5].

To model signal states in the circuit in presence of X-

values, n-valued logics with different accuracy have been

introduced. The 5-valued logic for test generation of [1] has

been extended to a 9-valued logic [6] to distinguish between

X-valued signals in the fault-free and faulty circuit.

Two-valued SAT-based test generation algorithms such as

[4], [5], [7], [8] do not model X-values at all. Such algorithms

can be extended to process signal states with X-values [9],

[10]. In [11], 3-valued signal states are used in a SAT-based

test generator for path-delay faults. The minimal encoding of

signal states with X- or high-impedance values for SAT-based

ATPG is discussed in [12], [13].
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Fig. 1. Circuit with X-source at line b.

Restricted symbolic simulation [14] extends the number of

symbols to distinguish different X-states and their inversion.

This allows to reduce the pessimism of forward implication

in test generation [15], unless multiple X-states from different

X-sources converge at a gate.

Encoding the states of X-valued signals in the circuit with

a limited number of symbols, as done in n-valued or restricted

symbolic logics, introduces pessimism in the implication pro-

cess. The limited number of symbols does not allow to reflect

all correlations between X-valued signals. At reconvergences,

where X-canceling may occur, the accurate output value

cannot be computed any more. In consequence, forward and

backward implication during test generation based on n-valued

logics is pessimistic. In general, test generation algorithms

based on n-valued logic cannot prove the untestability of faults

in the support of X-valued signals and may not be able to find

a detecting pattern for all testable faults.

Figure 1 shows an example of a circuit with one X-source

at line b which reconverges at line q. Conventional ATPG

algorithms fail to compute a test pattern for any stuck-at fault

in this circuit. The reason is that the X-value at line b is

propagated to lines e and q. Even if line a is assigned value 1,

the reconvergence of the two complementary values at line q is

evaluated pessimistically as X. However, the stuck-at-0 (stuck-

at-1) faults at c and q are detectable with pattern (a, c) = (1, 1)
((a, c) = (1, 0)).

The accurate computation of signal states in a circuit in

presence of X-values can be achieved by formal reasoning

for register-transfer and gate level simulation [16], [17], [18].

These methods employ symbolic computations by Boolean

satisfiability (SAT), Quantified Boolean Formula (QBF) rea-

soning [19], or Binary Decision Diagrams (BDDs).



Increasing the accuracy in fault simulation can result in

a significant increase of fault coverage [20]. Accurate fault

simulation can be performed even for large circuits by a

combination of heuristics and SAT reasoning [21], [22]. Both

logic and fault simulation in presence of X-values are NP-

complete problems. Yet deterministic test generation for stuck-

at faults in presence of X-values is an NP-hard problem

([22] showed that verification of a guessed solution, i.e. fault

simulation, is an NP-complete problem).

In contrast to propositional formulae used for SAT, QBF

allows a succinct representation for all possible X-values using

universal quantification. The recent advances in the perfor-

mance of QBF solvers, for example conflict driven learning

[23], elimination-based algorithms [24], or preprocessing [25]

enable exact reasoning about fault testability in presence of

Xs even for larger circuits.

In this work we present:

• A mapping of stuck-at fault test generation in presence

of multiple X-sources to the QBF domain to accurately

determine the testability of a fault [26].

• An extended version of this algorithm for transition-delay

faults in presence of X-sources which either generates a

test pattern or proves that such a pattern does not exist.

• The first algorithm computing the exact number of po-

tentially detectable faults, i. e. where the fault effect can

be measured for at least one X-source assignment.

• An extension of the QBF-based test generation algorithm

for further fault detection modes and a discussion of the

benefits.

The developed framework combines accurate reasoning

with efficient hybrid two- and three-valued SAT-based ATPG,

and accurate fault simulation of generated test patterns to keep

the runtime as low as possible. QBF-based reasoning is only

invoked for faults not classified otherwise. In addition, the

impact of different QBF solver techniques on robustness and

runtime are discussed.

Thorough experiments show the effectiveness of the frame-

work for stuck-at and transition-delay faults. The pessimism

of conventional algorithms is evaluated both for randomized

and clustered X-sources.

Section II and Section III give required definitions and a

formal problem statement, followed by the presentation of the

proposed algorithm in Sections IV, V and the discussion of

QBF solving techniques in Section VI. Section VII presents

experimental results on academic and industrial circuits, and

Section VIII summarizes the paper.

II. TERMINOLOGY

A. Unknown Values

An unknown (X) value models an unknown binary state

of a signal. This excludes undefined values that are not binary

resulting for example from undefined voltage levels. Signals

at which unknown values originate are called X-sources. The

set of X-sources is denoted by SX . There are 2|SX | possible

binary assignments AX = {0, 1}|SX | to the X-sources. Nodes

in the transitive fanout of an X-source are called X-dependent.

In three-valued logic, the three symbols {0, 1,XP } are

used to represent logic value 0, logic value 1, and the unknown

binary state XP of either 0 or 1. The signals with value XP

are computed pessimistically in three-valued logic.

Let the functions val(s, p) �→ {0, 1,X} and valf (s, p) �→
{0, 1,X} return the value of signal s under pattern p in

the fault free circuit and in the circuit affected by fault f ,

respectively, in presence of X-values. Note that the X-values

at signals are computed accurately. Let functions val(s, p, a)
and valf (s, p, a) return the binary value {0, 1} of signal s
under input pattern p and X-source assignment a ∈ AX in the

fault-free circuit and in the circuit affected by fault f .

B. Boolean and Quantified Boolean Satisfiability

This section provides a brief overview for the satisfiability

problem (SAT) and Quantified Boolean Formulae (QBF). The

interested reader is referred to [19] for more details.

Deciding the satisfiability of a propositional Boolean for-

mula (SAT) is an NP-complete problem [27]. The formula is

typically provided in conjunctive normal form (CNF). A CNF

is a conjunction of clauses, and a clause is a disjunction of

literals, e. g. (a ∨ ¬b) with the Boolean variables a and b.
A quantified Boolean formula (QBF) is a propositional

formula in which the variables are quantified (or bounded)

by existential (∃) or universal (∀) quantifiers. A QBF can

be transformed into the prenex normal form (PCNF) ψ =
QX1QX2 . . .QXnϕ, with Q ∈ {∃, ∀} and Xi disjoint sets

of Boolean variables. In a PCNF all quantifiers are grouped

together in a so-called prefix and precede a quantifier-free

propositional formula in CNF, called the matrix ϕ. We define

the quantifier level by the number of quantifier alternations

(i. e. from ∃ to ∀ or vise versa), reading the prefix from left

to right. Without loss of generality, we assume that level 0 is

always existential.

As an example, a QBF in PCNF ψ with three quantifier

levels is satisfied if and only if: there exists an assignment for

all variables on quantifier level 0 such that for every assign-

ment for all variables on quantifier level 1, an assignment for

all variables on quantifier level 2 exists, such that the matrix

is satisfied.

Modern QBF solvers are also able to provide a model for

free (unbounded) variables of the QBF. Semantically these

free variables are similar to variables quantified at level 0. To

increase readability, we write in the following that we extract

the model for the variables on level 0 instead of using the

terminology of free variables.

The complexity of QBF satisfiability is determined by

the number of quantifier alternations between existential and

universal quantifiers and vice versa in the prenex form. The

general problem of QBF satisfiability is a PSPACE-complete

problem [28].

III. FAULT DETECTION REQUIREMENTS

In this work, definite and potential detection requirements

of stuck-at and transition-delay faults are distinguished.1

1Section V-F introduces two further detection modes which may be relevant
in certain contexts, e. g. depending on test equipment capabilities or test
response post-processing, but they are not the main focus of this work.
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A. Definite Detection of Faults

The definite detection (DD) of a fault ensures that the fault

effect is measurable at one known circuit output for all possible

states of the X-sources.

A stuck-at fault f is DD for a pattern p if and only if there

is one fixed output o at which the fault effect is observable

for every X-source assignment:

DDf (p) := ∃o ∈ O : val(o, p), valf (o, p) ∈ {0, 1}∧

val(o, p) �= valf (o, p),
(1)

where O is the set of output signals of the circuit.

The definite detection of a transition-delay fault tf at

signal s requires the consideration of two cycles. In the first

cycle, signal s is driven to a defined value φ to activate the

fault. For a slow-to-rise transition-delay fault, φ is 0, for a

slow-to-fall fault, φ equals 1. In the second cycle, the value

of s is inverted and the resulting transition is propagated

from s to an observable circuit output. This corresponds to

detecting the stuck-at-φ fault at signal s in the propagation

cycle. Thus, the definite detection of tf at signal s under pattern

pair (p−1, p) is given as:

DDtf (p−1, p) :=val(s, p−1) = φ ∧

DDStuck-at-φ fault at s(p).
(2)

B. Potential Detection of Faults

A stuck-at fault f is potentially detected (PD) if an output o
exists where the fault effect can be deterministically measured

for at least one X-source assignment. Furthermore, a known

binary value is required for the fault-free circuit. This results

in:

PDf (p) :=¬DDf (p) ∧ ∃o ∈ O :

val(o, p) ∈ {1, 0} ∧ valf (o, p) = X.
(3)

Similar to the potential detection requirement for stuck-

at faults, potential detection of a transition-delay fault tf at

signal s requires that the fault is activated and its effect can

be deterministically measured in the propagation cycle at at

least one output o for at least one logic value assignment to

the X-sources:

PDtf (p−1, p) :=¬DDtf (p−1, p) ∧ val(s, p−1) = φ ∧

PDStuck-at-φ fault at s(p).
(4)

Notice that for both, stuck-at and transition-delay faults,

conventional three-valued modeling and analysis underesti-

mates the number of definitely detected faults since three-

valued simulation overestimates the number of signals with

an X-value. Consequently, three-valued simulation may also

overestimate the number of potentially detected stuck-at or

transition-delay faults.

IV. OVERVIEW OF THE PROPOSED ATPG FRAMEWORK

Before describing the used algorithms in detail, we give

a short overview over the complete ATPG framework. The

framework is able to prove the testability of stuck-at and

transition-delay faults in presence of X-values. Figure 2 shows

the complete flow which combines accurate fault simula-

tion [22], incremental SAT-based test generation with a hybrid

two- and three-valued encoding, a fast topological untestability

check, and accurate QBF-based reasoning to efficiently ana-

lyze the faults.
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Fig. 2. Overview of the ATPG flow.

Using a topological analysis, the faults under analysis are

partitioned into four groups w. r. t. their relation to the X-

sources in the circuit (cf. Figures 2, 3):

1) No structural dependence on the X-sources, i. e. neither

the justification cone of the fault nor its propagation cone

depend on X-sources.

2) A subset of the outputs in the propagation cone depends

on X-sources. The justification cone and at least one

output in the propagation cone do not depend on X-

sources.

3) A subset of the inputs in the justification cone of the

fault depends on X-sources. At least one input in its

justification cone is a controllable input.

4) The justification cone is driven exclusively by X-sources.

Afterwards the faults of each group are processed using the

most suitable algorithms to keep the runtime as low as possible

– while guaranteeing an accurate classification. First, all faults

without X-dependency are processed by the hybrid SAT-based

algorithms based on a pure two-valued signal encoding. In case

a constructed formula is satisfiable, a test pattern is extracted

and accurately simulated to implement fault dropping and to

mark faults as potentially detected (cf. Section III). Otherwise,

the fault is untestable.

All faults for which some outputs or some inputs depend

on X-sources are subsequently processed by the SAT-based

ATPG using a hybrid two- and three-valued encoding. Within

this hybrid approach, gates are only encoded using a classical

three-valued encoding if all inputs are reachable from X-

sources. Otherwise, a pure two-valued encoding or a mixture

of both is used to reduce the size of the generated CNF

significantly. In case a constructed formula is satisfiable, a test
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pattern is extracted and simulated. Otherwise, the SAT-based

approach only allows to prove the untestability if the fault site

itself does not depend on X-sources and fault activation is not

possible. For all other faults which may still be detectable, a

QBF is constructed and analyzed using a QBF solver for the

final classification. Faults for which all inputs depend on X-

sources and which have not been classified as untestable by

the topological untestability check (cf. Section V-B) are also

analyzed using the QBF-based approach.

Finally, each fault classified as untestable is analyzed again

for potential detection by the QBF solver (cf. Section V-E).

V. ATPG ALGORITHMS IN DETAIL

This section describes each algorithm of the ATPG frame-

work in detail focusing on stuck-at faults in all subsections

but Section V-D.

A. Hybrid Two- and Three-Valued SAT-based ATPG

In SAT-based ATPG, a Boolean formula in CNF is con-

structed that represents the fault-free and faulty circuits and

fault detection requirements. The Tseitin transformation [29]

is used to efficiently encode a circuit into CNF. For instance,

the clauses representing an AND gate with two inputs a
and b and output q in two-valued SAT-based ATPG are:

(¬q ∨ a), (¬q ∨ b), (q ∨ ¬a ∨ ¬b). Additional constraints are

added such that the resulting formula is satisfied if and only if

there exists an input assignment such that the same output in

the fault-free and faulty circuit representations show contrary

logic values.

In two-valued SAT-based ATPG, the state of each signal in

the fault-free and faulty circuits is modeled by a single binary

variable, respectively. Consequently, it does not allow to model

X-values. In contrast, three-valued SAT-based ATPG allows to

search for test patterns in presence of X-values by modeling

the three signal states {0,1,XP } both in the fault-free and

faulty circuit. In this three-valued logic, the state of a signal s
is encoded by two binary variables (s1, s2) such that value 0

corresponds to (0, 1), value 1 to (1, 0) and the XP -value to

(0, 0). In a pure three-valued encoding, the number of clauses

is more than doubled compared to two-valued encoding. For

example, an AND gate with inputs a and b and output q
requires the six clauses: (¬q1∨a1), (¬q1∨b1), (q1∨¬a1∨¬b1),
(q2∨¬a2), (q2∨¬b2), (¬q2∨a2∨ b2). Furthermore, for each

signal s the state (s1, s2) = (1, 1) needs to be forbidden, e. g.

by adding the clause (¬s1 ∨ ¬s2).
To reduce the number of clauses, only the gates that may

influence fault activation or propagation need to be modeled.

The support (or cone of influcence) of a fault is the union

of the input cones of outputs reachable from the fault site.

Figure 3 shows the justification and propagation cone, as well

as the support of a fault.

The search for a test pattern is also sped up by introducing

D-chains which explicitly model propagation paths of the fault

effect to outputs [4].

A hybrid two- and three-valued encoding allows to further

minimize the size of the generated formula in presence of X-

values. The two-valued encoding is used for all signals which

Inputs Outputs

Fault  f

Justification

cone

Propagation

cone

x

x

x

X-­sources

x
Support  region  of  f

x

Fig. 3. Support region of stuck-at fault f .

do not depend on X-sources, and three-valued encoding only

for signals depending on X-sources. If no (all) inputs of a gate

depend on X-sources, the gate is transformed using a pure two-

valued (pure three-valued) encoding. If only a subset of the

inputs depends on X-sources, the three-valued gate encoding

is adjusted to model the inputs without X-dependence with

only one variable.

This case is illustrated in Figure 4 for an AND gate at the

border between the two- and three-valued encoded area with

two-valued input a, X-dependent input b, and X-dependent

output q. This gate is represented by the following six clauses:

(¬q1 ∨ a), (¬q1 ∨ b1), (q1 ∨ ¬a ∨ ¬b1), (q2 ∨ a), (q2 ∨ ¬b2),
(¬q2 ∨¬a∨ b2). A similar selective modeling is used in [13].

Inputs Outputs

Fanout  cones  of  

X-­sources

X

X-­sources

X

a

b q

3-­valued  encoding  of  

X-­dependent  nodes

2-­valued  encoding  of  nodes  

without  X-­dependence

Fig. 4. Hybrid two- and three-valued SAT instance.

This results in a CNF formula which empirically is up to

60% smaller and therefore easier to be analyzed by the SAT

solver than a pure three-valued encoding, leading to 20% lower

runtimes.

B. Topological Untestability Check

Fault detection requires fault activation at the fault site. For

faults which are only reachable from X-sources, justification

of a known binary value at the fault site requires X-canceling

at a reconvergence of X-valued signals in the input cone.

A simple tracing of branching signals is performed to

check for such reconvergences. If none are found for signal s,

the faults at s cannot be activated. Consequently, they are

untestable w. r. t. the definite detection criterion of Section III.

If reconvergences are found, the faults may be testable and are

analyzed by the QBF-based approach.

C. QBF-Based Definite Detection of Stuck-at Faults

All faults for which testability or untestability has not

been proven yet are subject to QBF-based ATPG. If the QBF

is satisfiable, the test pattern is extracted from the model

4



provided by the QBF solver. The construction of the QBF

is split into the generation of the matrix and the quantification

of the variables (cf. Section II).

1) Construction of the matrix for ATPG: The matrix of

the QBF in CNF is constructed similar to a classical two-

valued SAT-based ATPG instance explained in Section V-A.

The state of each signal is modeled by a single binary variable.

X-values are not explicitly specified in the matrix but modeled

by universal variable quantification.

To construct the matrix for a fault f , all necessary gates

for the fault-free circuit representation CG and the propagation

cone Cf
P of the fault f in the faulty circuit are modeled as

formulae in CNF (cf. Figure 3). Additionally, D-chains are

added to encode propagation paths from the fault site to the

outputs and to guide the search for a test pattern. For the D-

chains, d-variables are added for each signal in the propagation

cone of the fault. If the signal s has complementary values

in CG and Cf
P , ds evaluates to 1. Finally, a single clause

D :=
�

o∈O do is added to ensure that at least one d-literal of

a circuit output is 1. This leads to the following propositional

formula in CNF:

CUT = CG ∧ Cf
P ∧ (D-chain clauses) ∧ D.

Figure 5 shows an example with two X-sources and a

fault, only detectable by accurate modeling. For this fault,

CG includes a two-valued encoded version of the gates

G1, G2, G3, G4 (cf. Section V-A) assuming that no fault is

present. Cf
P includes a two-valued encoded version of the gates

G2, G3, G4 assuming a logic 0 to be present at signal c and

referencing the signals used in CG otherwise. To model the

propagation path, for each gate in Cf
P one d-variable is intro-

duced which evaluates to 1 if the output of the corresponding

gates in CG and Cf
P show complementary logic values. Using

the signal names as auxiliary variables this leads to the d-

literals df , dq and dr. For the D-chains, further clauses are

added ((dq → df ) and (dr → df )), and at last the clause

(dq ∨ dr) is added to ensure detection at at least one output.

X

a

c

b q

e

f
stuck-­at  0

X

r

1G

2G

3G

d

4G

Fig. 5. Circuit with two X-sources at signals a, b and a stuck-at 0 fault at
signal c only detectable by accurate modeling.

2) Variable Quantification: All variables used in the ma-

trix need to be properly quantified to guarantee a valid test

in case the formula is satisfiable – or otherwise to serve as

a proof that a test pattern does not exist. It is important

to respect the dependencies of the circuit components and

therefore the scope of quantification, i. e. the sequence of

quantifier alternations.

For fault detection, we search for one test pattern that

satisfies the matrix for all possible assignments to the X-

sources. Thus, the variables representing the circuit inputs are

existentially quantified on level 0 and precede the universally

quantified variables representing the X-sources on level 1.

The internal signals S and the d-variables used for the

D-chains are subsequently existentially quantified at level 2,

since they depend on the values of the inputs and X-sources.

This results in the following QBF:

∃ I
����

Controllable
inputs

X-sources
����

∀X ∃S ∃D
� �� �

Int. signals,
D-chain variables

CUT.

This QBF is satisfiable if and only if there exists an

input assignment which excites an observable difference at at

least one (not necessarily the same) output for each possible

assignment to the X-sources.

Enforcing Definite Detection at Circuit Outputs: To estab-

lish definite detection according to Equation (1) of Section III,

the solution space is constrained by limiting the detecting

outputs to a single fixed one.

This constraint is implemented by additional variables oi
for the outputs in the propagation cone which only evaluate

to 1 if the fault effect is observable at output i for all assign-

ments to the X-sources. The clause (o1∨o2∨. . .∨on) enforces

that at least one of the variables oi evaluates to 1 and thus, the

fault is always observable at at least one output. To guarantee

that the observable output is fixed for all possible X-values, the

variables in O = {oi | 1 ≤ i ≤ n} are existentially quantified

at quantifier level 0 preceding the universal quantification of

the X-sources on level 1. The relation between oi and the D-

chains are established by adding one implication per output

(oi → di) to the matrix:

∃O ∃ I ∀X ∃S ∃D
�

CUT ∧
�

i

oi ∧
�

i

(oi → di)
�

.

This enforces a fixed detecting output over all assign-

ments to X-sources. However, the observable difference, i. e.

the signal values in the fault-free and faulty circuit at that

output, is still allowed to be one of the three possibilities

(0/1), (1/0), (xi,¬xi). The last case corresponds to the sit-

uation where an output always shows complementary states

in the fault-free and faulty circuit for all assignments to the

X-sources, but the values in the fault-free and faulty circuit are

not stable for all assignments to the X-sources. In this case, it

is not possible to distinguish between a fault-free and a faulty

circuit during testing.

Enforcing Known Binary Values at Circuit Outputs: A

known binary value at the observing output in the fault-free

circuit is enforced by adding two variables v0i , v
1

i per output to

represent its stable value in the fault-free case when it detects

the fault. This automatically constrains the faulty case as well.

If v0i (v1i ) is true, output i has the stable value 0 (1) in the fault-

free circuit. The two implications (v0i → ¬si) and (v1i → si)
for output i establish that relation, assuming that si ∈ S is

the signal variable representing the value of output i in the

fault-free circuit. In the formula φStable output, the implication

(oi → (v0i ∨ v1i )) ensures that output i has a stable value if oi
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is asserted:

φStable output :=
�

i

�
(oi → (v0i ∨v

1

i ))∧(v
0

i → ¬si)∧(v
1

i → si)
�
.

Since the outputs have to be stable independent from the

X-sources, the variables v0i , v
1

i ∈ V are existentially quantified

on level 0 resulting in the following QBF:

DD := ∃O ∃V ∃ I ∀X ∃S ∃D
�

CUT∧
�

i

oi ∧
�

i

(oi → di) ∧ φStable output

�

As an example, for the circuit shown in Figure 5 with the

X-sources a, b, the controllable input c, and the CNF CUT
described at the end of Section V-C1 (without specifying all

inner variables S), the complete QBF is:

DDCUT := ∃ oq ∃ or ∃ v0q ∃ v1q ∃ v0r ∃ v1r ∃ c ∃ d

∀ a ∀ b

∃ I ∃ df ∃ dq ∃ dr
�

CUT ∧ (oq ∨ or) ∧ (oq → dq) ∧ (or → dr)∧

(oq → (v0q ∨ v1q )) ∧ (v0q → ¬qG) ∧ (v1q → qG)∧

(or → (v0r ∨ v1r)) ∧ (v0r → ¬rG) ∧ (v1r → rG)
�

This QBF is satisfiable if and only if a fault is testable

according to the definite detection condition of Section III. If

the QBF is not satisfiable, a test pattern for definite detection

does not exist.

D. Extension of the QBF Method for Transition-Delay Faults

To generate test patterns for transition-delay faults, at least

two cycles need to be considered. In the first cycle the fault is

activated, and in the second cycle a stuck-at fault is assumed

to be present at the fault site (cf. Section III). Hence, the

QBF-based method presented above is extended by using a

time frame expansion such that in the first cycle, the fault site

is justified to a predefined value, and in the second cycle, a

stuck-at fault is assumed to be present.

Figure 6 shows the support region of transition-delay

fault f with two justification cones for the two cycles and

the propagation cone within the second cycle. The matrix and

the variable quantification are encoded similar to the method

for stuck-at faults. The main differences are: (1) the fault-free

circuit representation CG is extended and contains now signals

and gates from two cycles, (2) a further constraint is added

to adjust the fault-free value in the first cycle (CG
tf1), (3) Cf

P

only references signals and gates of the second cycle. Thus,

the prefix of the QBF presented in Section V-C2 needs no

adjustments, and the new matrix is given by:

CUTtdf = CG ∧ CG
tf1 ∧ Cf

P ∧ (D-chain clauses) ∧ D.

Such a two-cycle modeling is also used for the hybrid two-

and three-valued SAT-based ATPG.

Pseudo-­

primary

inputs

Primary  outputs
Justification  cone  

for  fault  f  in  cycle  1

Fault  f

x

Cycle  2

x x
Primary  inputs

Cycle  1

Pseudo-­

primary

outputs

Propagation  cone  

for  fault  f  in  cycle  2

Fig. 6. Support region of transition-delay fault f .

E. Generation of Potentially Detecting Test Patterns

For some faults in the fanout cone of the X-sources, test

patterns for definite detection do not exist. For these faults, it

may be still worthwhile to analyze whether test patterns for

potential detection exist.

Test pattern generation for potential detection is also

mapped to QBF satisfiability. According to Equation (3) in

Section III, a fault f is potentially detected under a pattern

if there exists one fixed output that has a binary value in the

fault-free circuit and an X-value in the faulty circuit affected

by f . The structure of the QBF instance for potential fault

detection is shown in Figure 7.

Inputs
Outputs

Fault-­free  circuit

Propagation  cone  of  f  (Cf)

Fault  f

Faulty  circuit

Difference  at  

an  output  with  

binary  value?

X
-­s
o
u
rc
e
s
  S
X

  

x

x

x

x

Fig. 7. Principle of the QBF instance for potential detection test generation.

In this instance, the constraints for the fault-free and the

faulty circuits are different: For the fault-free circuit, there

must be one output oi ∈ O with a known binary value v.

For the faulty circuit, it is sufficient that output oi carries the

opposite value ¬v just for one arbitrary X-source assignment.

Thus, for these two parts different variable quantifications are

required. Following the reasoning of the previous sections, this

is represented by the following QBF:

PD := ∃O ∃V ∃ I
�
∀X ∃S (CG ∧

�

i

oi ∧ φStable output)∧

∃X ∃S (Cf
P ∧ ψ)

�
,

ψ :=
�

i

�

oi →
�
(v0i → sfi ) ∨ (v1i → ¬sfi )

��

.

In the fault-free circuit representation, the variables of

the X-sources are universally quantified so that an output

with a known binary value for all X-source assignments is
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searched for. In the faulty circuit representation, it is sufficient

to quantify these variables existentially to detect the fault for

a single X-source assignment. The variables oi ∈ O that

specify the detecting output and the variables v0i , v
1

i ∈ V
representing its value in the fault-free circuit are quantified

at level 0. This ensures that the value difference at the outputs

is present independently of the X-sources in both the fault-free

and faulty circuits. The value of output oi in the faulty circuit

is represented by variable sfi . If this formula is not satisfiable,

then there is no output at which fault f can be potentially

detected.

F. ATPG Extensions for Further Fault Detection Modes

The QBF-based test generation framework allows easy

incorporation of futher detection modes. Such modes may in-

crease fault coverage and are beneficial in certain test contexts

or applications, for example: (1) The detecting output does

not need to be fixed and known. (2) Test post-processing is

used to determine fault detection when only a value difference

between the fault-free and faulty circuits at the outputs can be

established, but the values are unknown.

For the presented QBF-based algorithms, test patterns for

such detection modes can be generated by modifying the

variable quantification of the QBF (cf. Section V-C).

To allow multiple outputs for fault detection as in (1), the

quantification of all variables enforcing detection at a single

fixed circuit outputs (O) is changed from quantifier level 0 to

level 2. This leads to the QBF:

Detmultiple output := ∃V ∃ I ∀X ∃O ∃S ∃D
�

CUT∧
�

i

oi ∧
�

i

(oi → di) ∧ φStable output

�

.

If only a value difference at an output is required as in

(2) above, the quantification of all variables used to enforce a

known binary difference at circuit outputs can be changed:

Detvalue difference := ∃O ∃ I ∀X ∃V ∃S ∃D
�

CUT∧
�

i

oi ∧
�

i

(oi → di) ∧ φStable output

�

.

However, for this kind of detection, the fault effect cannot

be directly measured since the reference value for comparison

is not known. Thus, response post-processing is required to

find a reference output, or multiple cycles can be used for

fault activation and propagation as in [30].

G. Accurate Fault Simulation

Fault simulation is used to find all faults detected by the

generated patterns. We employ the fault simulation algorithm

of [22] which is able to accurately compute the detected stuck-

at faults and transition-delay faults of a pattern in presence of

X-values. For completeness this fault simulation algorithm is

summarized in this section.

The fault simulation algorithm firstly computes the accu-

rate logic values in the fault-free circuit for a given pattern,

and then analyzes all yet undetected faults explicitly. The logic

simulation of the fault-free circuit employs pattern-parallel

logic simulation of randomized X-source assignments and

restricted symbolic simulation to prove signal dependence or

independence of X-sources for as many signals as possible.

For the subset of signals for which the state is only known

pessimistically, a SAT instance is incrementally constructed

to compute the accurate logic value or prove dependence on

at least one X-source.

Once the signal states in the fault-free circuit are known,

the activated faults are processed serially. For each activated

fault f , the fanout cone of f is simulated using randomized

X-source assignments and restricted symbolic simulation in

event-driven manner. If a fault is classified as definite detected

by simulation, further analysis is not required. Otherwise,

a SAT-based analysis of the outputs of the faulty circuit

is conducted to classify the fault as undetected, definitely

detected or potentially detected.

VI. INCREASED ROBUSTNESS USING DIFFERENT QBF

SOLVER TECHNIQUES

The two most successful algorithms for solving QBF

are: 1) search-based and 2) elimination-based algorithms.

The search-based (and conflict-driven) algorithms [23] are

extensions of the pre-dominant technique in SAT solvers. The

elimination-based techniques [24], [31] expand the formula

“inside-out”, i. e. the quantifier prefix is successively elimi-

nated from innermost to outer quantifier level by replacing

the variables and expanding the matrix until either a tautology

or contradiction is deduced. This method is memory-intensive,

and in the worst case the matrix blows-up exponentially. For

(small) hard-to-solve instances, elimination techniques are in

general better suited than search-based solving. Moreover,

many search-based solvers often fail to handle designs with

linear/XOR-based logic efficiently [32].

Modern search-based QBF solvers allow to adjust sev-

eral heuristics and techniques, among others: heuristics for

choosing a variable to decide next, the restart heuristic, or

the initial assignments for variables. In particular, there exist

several decision heuristics [33] in the SAT domain which

are adapted for QBF solvers. The heuristics have a huge

impact concerning the pruned parts of the search space. These

heuristics closely cooperate with restart heuristics preventing

the solver to get lost in non-relevant parts of the search space.

Therefore, restarts are performed from time to time, resetting

the current solver progress (but keeping the learnt information)

in order to prune a different part of the search space. For both

fields there exist heuristics which are better suited for different

kinds of instances, e. g. un/satisfiable instances, or easy- vs.

hard-to-solve instances [34].

The ATPG in [26] uses two timeouts of 1 second and

10 seconds for QBF-based test generation with the search-

based solver QuBE [35]. The heuristics for both timeouts are

identical. The results in [26] show that faults not classified

within 1 second are only rarely classified with the larger

timeout of 10 seconds. However, QBF solving with the larger

timeout consumes most of the runtime of the whole approach.

Furthermore, the number of aborted faults increases especially

for designs with XOR-based logic.

This motivates to increase the robustness of the test gen-

eration approach by two different extensions: firstly, the spe-

7



cialization of a solver for different timeouts, and secondly, the

use of completely different solvers – implementing different

QBF solving algorithms. These two approaches are discussed

in detail in Section VII-B.

VII. EVALUATION

A. Experimental Setup

The proposed algorithms are implemented in C. All SAT

based approaches use the incremental SAT-solver antom [36].

For the QBF-based algorithm, we used an extended QBF

version of antom, named quantom [37], and two timeouts

(1 second and 10 seconds). For the first timeout, quantom is

tuned for easy-to-solve instances. For the 10 second timeout,

quantom is adjusted to handle hard-to-solve instances more

efficiently as discussed in Section VII-B.

We evaluated the algorithms on full-scan circuits of the

largest ISCAS’85 and ISCAS’89 benchmarks, as well as

larger industrial designs from NXP. All measurements were

conducted on a single core of an Intel Xeon CPU at 3.30 Ghz

and 16 GB of memory. In all experiments but Section VII-G

we assume that a fixed and randomly selected subset of circuit

inputs generates X-values. The experiments in Section VII-G

investigate the impact of clustered X-sources.

Five different subsets of X-source inputs are generated per

circuit. The results show the rounded average over these five

experiments per circuit with different percentages of the inputs

selected as X-sources.

For each circuit, the collapsed set of stuck-at faults is

computed, 1024 random patterns are simulated with a fast

three-valued and an accurate fault simulator [22] for each set

of X-sources. The remaining random-pattern resistant faults

are processed using the proposed test generation algorithms.

B. Increased Robustness using Different QBF Solver Tech-

niques

As described in Section VI, the robustness may be in-

creased by using different QBF solving heuristics for the two

timeouts, or even orthogonal QBF solving algorithms. Two

different extensions have been evaluated to measure the impact

on the ATPG runtime and the number of aborted faults.

1) Problem Specific Solver Settings: In extensive experi-

ments we searched for two proper settings for our used solver

quantom and for each timeout: The first setting is dedicated

to easy-to-solve instances and is used for the 1 second timeout.

The second setting is trimmed to solve harder instances and

is used for the 10 second timeout. Exemplary, for the easy-to-

solve instances we use the DLCS decision heuristic [33] and

the glucose restart scheme [34] pruning wide (but not deep)

parts of the search space earlier, therefore this is more likely

to find short (i. e. easy) solutions/contradictions. In contrast,

for hard-to-solve instances we use the decision heuristic of

QuBE [35] and the Luby restart heuristic [38] pruning the

search space deeper (but not wide), and therefore this is in

general better suited for harder benchmarks.

2) Orthogonal Solving Methods: To increase robustness in

presence of XOR-based logic in addition to the search-based

QBF solver quantom (which is still used for the easy-to-solve

instances with a timeout of 1 second), the elimination-based

QBF solver AIGSolve [39] is also employed using a timeout

of 10 seconds. This solver uses Functionally Reduced AND-

Inverter-Graphs (FRAIGs) [40] as underlying data-structure

for representing the formula. FRAIGs are particularly suitable

for circuit designs, since the gates are handled explicitly

and efficiently. Unfortunately, this elimination-based method

produces much overhead for handling the data-structures and

is less suited for easy-to-solve instances. As a consequence,

we used AIGSolve only for the instances which cannot be

classified using quantom within 1 second. Furthermore, the

techniques for eliminating a single variable may require a high

runtime and cannot be aborted efficiently. Thus, AIGSolve

often clearly exceeds the timeout.

The two extension have been evaluated on the ISCAS’85

circuit c7552 with linear/XOR-based error control logic and

an industrial circuit p78k to evaluate the extensions for much

larger instances (cf. Table I for circuit data).

Figure 8 compares the results of the original solver (’Base-

line’) and the two extensions described in this section for

stuck-at fault test pattern generation. For each approach, the

percentage of aborted faults and the runtime in seconds for an

X-ratio of 2% and 5% are shown. The results indicate that the

error control logic of circuit c7552 causes many faults to be

aborted with the timeout for both approaches solely using a

search-based solver.
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Fig. 8. Comparing the number of aborted faults and the runtime for
stuck-at fault test generation of the original solver ’Baseline’ and two
extensions: Problem specific solver settings (’Prob, spec.’) and Orthogonal
solving methods (’Orth. solver’).

In contrast, if the elimination-based solver AIGSolve is

invoked for the hard-to-solve instances, almost all of these

faults are classified. Thus, the results clearly show the advan-

tages of using ’orthogonal solving techinques’ compared to

the baseline algorithm. For circuit c7552, the aborted faults

reduce from on average 1.43% to 0.01%. For 108 faults out

of these 3046 additionally classified faults a test pattern was

found. All others are proven untestable.

Considering the runtime, the use of ’problem specific

solver settings’ reduces the runtime by up to 28.23% com-

pared to the baseline algorithm, while the use of ’orthogonal

solving methods’ reduces the runtime by up to 85.49%. For

both circuits, we also evaluated the overhead in case only

the elimination-based solver AIGSolve is used and hence,

AIGSolve also needs to classify all easy-to-solve instances.

However, while the number of aborts stays on the level of
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’orthogonal solving methods’, the runtime is more than twice

as high as the runtime of ’baseline’.

The used version of AIGSolve has not been tuned for large

netlist-based instances and may require an excessive amout of

memory for intermediate results. For certain faults in circuit

p89k and p100k for instance, the available memory of 16

GB was insufficient to solve the QBF instance. Thus, in the

following experiments, the ’problem specific solver settings’

are used.

C. Definite and Potential Stuck-at Fault Detection

The following experiments assess the achievable fault

coverage by the proposed algorithm for varying X-ratios and

the two circuits c7552 and s13207. Figure 9 shows the increase

in the number of definitely detectable faults ’Def. Detect Inc.’

over conventional three-valued ATPG for the two circuits and

X-ratios from 1 to 99%. The figure also shows the absolute

number of faults marked as potentially detected only by

accurate fault simulation ’Pot. Det. (Fsim)’ or with explicit

potentially detecting pattern generation (cf. Section V-E) ’Pot.

Det. (ATPG)’. Finally, the number of faults aborted by the

QBF solver is given.
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Fig. 9. Increase in definitely detectable faults (Def. Detect Inc.) compared to
three-valued ATPG depending on the X-ratio, absolute number of potentially
detected and aborted faults.

For all investigated X-ratios, the proposed algorithm gen-

erates test patterns for a large number of faults which were

classified as untestable or unclassified by the pessimistic

conventional three-valued ATPG algorithm.

For circuit c7552, up to 1497 more faults are classified as

definitely detected. This correlates to an increase in fault cover-

age of 15.30% points. Accurate fault simulation is already able

to classify up to 1607 untestable faults as potentially detected,

which is 16.50% of all faults. Furthermore, if the potentially

detecting patterns are explicitly generated, the number of

untestable faults marked as potentially detected increases to up

to 1806 faults at an X-ratio of 7%. This correlates to 39.76%

of the untestable faults. Similar results are also achieved for

circuit s13207. Here, fault simulation allows to classify up

to 5.95% and potentially detecting pattern generation up to

8.42% of the faults as potentially detected. For higher X-ratios,

the number of additionally definitely or potentially detected

faults decreases and reaches nearly 0% for an X-ratio of 99%.

This is because different X-ratios and input patterns may lead

to different numbers of reconvergences in the circuit. As a

result, the number of additionally classified faults increases

for lower X-ratios (as additional X-sources lead to further

reconvergences) and decreases for higher X-ratios (as the high

number of X-values prohibits the reconvergences of single X-

values).

D. Stuck-at and Transition-Delay Fault Coverage in Larger

Circuits

Table I shows the result of the accurate ATPG algorithm

targeting stuck-at faults for the largest ISCAS’85 and IS-

CAS’89 benchmark circuits2 as well as three larger industrial

designs from NXP. For each circuit the table lists the size in

number of complex gates and the number of collapsed stuck-at

faults. Per circuit, we conduct experiments for the case of 1%,

2%, and 5% of the circuit inputs as X-sources (’X-ratio’). For

circuit c6288 with only 32 inputs, the case of 2% is omitted

since an X-ratio of 1% and 2% results in a single X-source.

For each of these cases, columns 5 to 7 contain the

results for a three-valued SAT-based ATPG depicting the fault

coverage ’FC’, the fraction of untestable faults ’UT’, and the

fraction of unclassified faults ’UC’.

Columns 8 to 14 show the results of the proposed ATPG.

Column ’∆FC’ lists the increase of fault coverage compared to

three-valued ATPG in percent points. Column ’UT’ shows the

fraction of untestable faults (regarding the definite detection

requirements of Section III) and column ’abort’ shows the

fraction of faults for which no final classification was possible

because of the set timeout. Column ’PD’ lists the number of

untestable faults classified as potentially detected by accurate

fault simulation of the generated pattern set. Finally, columns

12 and 13 show the number of faults classified with timeouts

of 1 second and 10 seconds, and the last column gives the

overall runtime of the accurate ATPG in seconds. On average,

fault simulation of 1024 random patterns classifies 88.2% of

all detected faults while reducing the runtime of the whole test

generation.

The results show that in presence of X-sources, three-

valued ATPG is incapable of generating test patterns for all

testable faults or to prove untestability in case no pattern was

found. This causes a huge number of unclassified faults. In

contrast, the proposed ATPG framework not only increases

the stuck-at fault coverage by up to 32.25% points for the

ISCAS benchmarks (by up to 7.99% points for the industrial

circuits from NXP) but also proves the untestability for almost

all other faults. On average over all circuits, 4.05% of the

faults could be marked as additionally detectable, 9.10% are

marked as untestable, and only for 0.54% of the faults no

final classification was found. For on average 6.18% of the

untestable faults, at least a potentially detecting pattern was

found by accurate fault simulation.

Most of the faults classified by the QBF-based ATPG

are found within the timeout of 1 second. Over 99% of the

faults solved with the 10 secondes timeout are classified as

2The easily testable circuit s35932 has been omitted since a few random
patterns already detect all testable faults for the considered X-ratios.
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untestable. Hence, the overall runtime is dominated by faults

for which untestability was proven.

Table II additionally reports the results for transition-

delay faults for ISCAS’89 and NXP circuits. As for Table I,

the columns show the fault coverage, the fraction of faults

classified as untestable, and the fraction of unclassified faults

for a three-valued SAT-based ATPG and the accurate ATPG.

Furthermore, the number of potentially detected faults, faults

classified within a timeout of 1 or 10 seconds, and the overall

runtime is given.

For transition-delay faults, the proposed ATPG increases

the fault coverage significantly by up to 7.91% points. On

average over all tested circuits and 5% of the inputs selected as

X-sources, 3.06% more faults could be marked as detectable.

Furthermore, most of the faults for which no test pattern could

be generated are proven to be untestable. Out of these 16.36%

untestable faults, for 10.22% a potentially detecting pattern

was found.

The runtime for generating transition-delay faults consider-

ing two cycles is moderate in most cases. For the NXP circuit

p78k, the runtime is even lower compared to the accurate

stuck-at fault classification considering one cycle.

E. Comparison to a Commercial ATPG Tool for Stuck-at

Faults

We additionally compared the proposed accurate ATPG to

a state-of-the-art commercial X-aware ATPG tool using an

abort-limit of 1 000 backtracks per fault. Table III shows the

results for circuit c6288, for which the fault coverage increase

of the accurate analysis is very high, and the three largest

circuits from Table I. For the three larger circuits, the results of

the commercial ATPG are in line with the three-valued ATPG

used in all other experiments (cf. [26]). For circuit c6288,

a 16 bit multiplier with many reconverging paths, the fault

coverage of the commercial tool is even worse compared to

the three-valued ATPG (cf. Table I). Without accurate analysis,

such a result requires the use of X-blocking design-for-test to

achieve a sufficient fault coverage.

Considering all circuits listed in Table III, and 5% of the

inputs selected as X-sources, the proposed accurate QBF-

based ATPG increases the fault coverage on average by

11.51% points compared to the commercial tool. Hence, the

applied commercial tool seems to be incapable of evaluating

reconvergences of X-values accurately.

However, the total runtime of the accurate ATPG is on

average one order of magnitude higher than for the commercial

tool. Most of the runtime is spent for solving QBFs using a

timeout of 10 seconds. As most of these faults are classified

as untestable, the total runtime can be more than halved by

skipping the analysis with a 10 second timeout. This reduces

the fault coverage only slightly. On average over all circuits

and X-values in Table III, the fault coverage would then be less

than 0.01% smaller while the runtime decreases by 68.05%.

Also, a heuristic approach such as [41] can be used if the

runtime is too high for large circuit instances.

Figure 10 depicts the range of the additionally achieved

TABLE I
RESULTS OF THE PROPOSED ACCURATE ATPG IN CONTRAST TO A THREE-VALUED ATPG FOR STUCK-AT FAULTS.

Circuit Gates Faults
X-Ratio 3-val. SAT-based ATPG Proposed QBF-based ATPG

[%] FC [%] UT [%] UC [%] ∆FC [%pt.] UT [%] Abort [%] PD Class. 1s Class. 10s Time [s]

c6288 2 416 8 704
1.0 83.23 0.76 12.81 14.12 2.51 0.10 34 151 2 110
5.0 62.42 1.34 28.19 32.25 4.67 0.28 40 292 6 297

c7552 4 043 10 816
1.0 91.80 0.21 8.00 0.98 6.38 0.85 199 654 18 1 090
2.0 88.51 0.28 11.21 1.72 8.20 1.57 215 793 67 2 168
5.0 68.02 0.62 31.37 6.48 23.15 2.35 219 2 299 182 3 478

s13207 8 027 21 5281
1.0 89.50 1.37 9.13 1.41 9.09 0.00 193 1 768 0 18
2.0 84.26 2.02 13.72 1.42 14.33 0.00 377 2 724 1 27
5.0 78.84 3.80 17.37 1.65 19.52 0.00 595 3 493 1 29

s15850 10 211 25 421
1.0 94.19 1.35 4.46 0.74 5.06 0.01 118 974 1 37
2.0 92.59 1.53 5.88 0.76 6.63 0.01 158 1 338 0 46
5.0 81.51 2.69 15.80 1.85 16.57 0.06 119 3 648 3 241

s38584 21 462 58 263
1.0 93.50 4.85 1.65 0.08 6.42 0.00 196 918 0 18
2.0 90.48 4.74 4.78 0.34 9.18 0.00 356 2 657 0 29
5.0 82.64 4.93 12.43 0.55 16.81 0.00 960 7 016 14 93

s38417 23 537 59 041
1.0 95.54 0.97 3.49 0.17 4.23 0.05 405 1 902 22 440
2.0 93.58 1.30 5.12 0.25 6.07 0.10 689 2 786 34 800
5.0 86.54 2.75 10.71 0.45 12.87 0.15 1 109 5 960 14 1 085

p78k 74 243 225 476
1.0 97.30 0.41 2.29 1.40 1.20 0.11 329 1 607 244 3 656
2.0 93.60 0.88 5.53 3.43 2.74 0.22 578 3 976 467 7 507
5.0 84.25 2.21 13.55 7.99 6.98 0.78 1 667 10 219 1 399 26 989

p89k 88 726 239 090
1.0 91.11 0.73 8.16 1.00 7.32 0.57 771 12 896 2 894 22 694
2.0 85.49 1.00 13.51 1.10 12.82 0.60 890 23 716 4 554 27 993
5.0 70.90 2.40 26.70 1.86 26.51 0.72 1 180 53 957 3 851 32 943

p100k 96 685 259 322
1.0 95.31 0.57 4.11 0.85 3.46 0.38 922 6 721 985 15 474
2.0 91.48 0.90 7.61 2.06 6.01 0.45 922 13 443 1 315 20 405
5.0 80.54 1.92 17.54 3.45 14.52 1.49 2 871 33 219 2 665 65 154
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fault coverage of the proposed accurate ATPG compared to

the commercial tool for the five iterations per circuit and X-

ratio (cf. Section VII-A). For circuit p78k with an average

increase in fault coverage of 7.99% points (Table III), the

increase ranges from 6.53% to 9.29% points. For an X-

ratio of 5%, circuit c6288 has an average increase in fault

coverage of 34.25% points compared to the commercial tool.

For this scenario, the minimum increase in fault coverage is

8.05% points and boosts coverage from 87.34% to 95.40%.

The maximum increase in coverage is 56.50% points, lifting

coverage from 38.97% to 95.47%.

We also evaluated the influence of the abort-limit used

for each fault in the commercial tool. If the abort-limit is

increased to 10 000 backtracks per fault, the fault coverage

increases only slightly. For an X-ratio of 5%, the fault coverage

is on average 0.17% points higher than for the lower abort-

limit. However, the proposed accurate ATPG increases fault
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Fig. 10. Range of fault coverage increase of the proposed accurate ATPG
compared to a commercial ATPG tool.

coverage by another 11.34% points on average. For the higher

abort-limit, the runtime of the commercial tool increases by

on average seven times compared to the lower abort-limit.

TABLE II
RESULTS OF THE PROPOSED ACCURATE ATPG IN CONTRAST TO A THREE-VALUED ATPG FOR TRANSITION-DELAY FAULTS.

Circuit Gates Faults
X-Ratio 3-val. SAT-based ATPG Proposed QBF-based ATPG

[%] FC [%] UT [%] UC [%] ∆FC [%pt.] UT [%] Abort [%] PD Class. 1s Class. 10s Time [s]

s13207 7 951 23 972
1.0 81.32 8.30 10.38 0.34 18.34 0.00 151 2 446 12 51
2.0 77.69 7.38 14.92 0.34 21.97 0.00 199 3 535 11 49
5.0 64.13 7.25 28.63 0.10 35.77 0.00 356 6 839 1 54

s15850 10 211 28 686
1.0 83.33 7.41 9.25 0.50 16.15 0.02 28 2 571 4 70
2.0 80.65 6.65 12.70 0.76 18.57 0.02 62 3 533 4 79
5.0 67.98 5.63 26.39 2.33 29.49 0.21 402 7 110 68 736

s38584 21 462 66 504
1.0 89.47 5.16 5.37 0.06 10.46 0.00 325 3 523 12 88
2.0 85.59 3.29 11.11 0.13 14.25 0.02 792 7 292 13 269
5.0 77.54 2.25 20.22 0.36 22.08 0.03 1 383 13 230 18 351

s38417 23 537 68 744
1.0 94.59 1.39 4.03 0.40 4.97 0.05 219 2528 1 318
2.0 87.67 1.85 10.48 0.70 11.29 0.34 889 6 651 1 21 24
5.0 75.59 3.14 21.27 2.03 21.71 0.67 1 559 13 065 79 4 359

p78k 74 243 308 208
1.0 96.65 0.42 2.93 1.58 1.73 0.04 708 4 369 74 1 347
2.0 93.80 0.41 5.80 3.13 2.94 0.14 1 637 8 394 246 4 632
5.0 84.66 0.52 14.82 7.91 6.82 0.61 4 293 21 116 853 19 781

p89k 88 726 299 028
1.0 85.49 1.72 12.79 0.20 13.99 0.32 977 36 278 671 14 769
2.0 73.69 1.39 24.92 0.71 23.67 1.93 3 973 65 568 1 471 65 151
5.0 50.75 1.25 48.00 4.25 39.74 5.25 9 618 111 866 3 737 167 968

p100k 96 685 324 586
1.0 87.69 0.97 11.34 0.62 11.09 0.60 3 832 33 138 726 24 557
2.0 82.97 0.72 16.31 1.17 14.95 0.91 5 479 46 315 1 274 34 856
5.0 65.06 0.65 34.29 1.45 30.59 2.89 17 585 93 608 5 313 102 448

TABLE III
RESULTS OF THE PROPOSED ACCURATE ATPG COMPARED TO A STATE-OF-THE-ART COMMERCIAL ATPG TOOL.

Circuit
X-Ratio Commercial ATPG Proposed QBF-based ATPG

[%] FC [%] UT [%] UC [%] Time [s] ∆FC [%pt.] UT [%] Time QBF 1s [s] Time QBF 10s [s] Total Runtime [s]

c6288
1.0 82.81 0.39 17.15 119 14.57 2.51 12 90 110
5.0 61.66 0.39 38.81 229 33.38 4.67 30 240 297

p78k
1.0 97.30 0.00 2.71 10 1.39 1.20 531 2 739 3 656
2.0 93.59 0.00 6.41 21 3.43 2.74 1 063 5 612 7 507
5.0 84.24 0.00 15.76 43 7.99 6.98 3 624 19 067 26 989

p89k
1.0 91.94 0.82 7.23 183 0.17 7.32 5 079 13 766 22 694
2.0 86.32 0.81 12.87 219 0.26 12.82 7 193 15 882 27 993
5.0 71.74 0.78 27.48 79 1.03 26.51 7 497 18 142 32 943

p100k
1.0 95.28 0.21 4.51 198 0.88 3.46 2 102 10 094 15 474
2.0 91.42 0.21 8.39 430 2.12 6.01 2 821 12 241 20 405
5.0 80.35 0.19 19.51 1 098 3.64 14.52 7 875 38 833 65 154
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F. Multiple Output and Value Difference Detection Modes

As described in Section V-F, the QBF-based test generation

is extended to support the two detection modes Detmultiple output

and Detvalue difference to increase coverage in certain test appli-

cations. We evaluate the circuits c7552 and s13207 for up to

99% X-sources at the inputs for these two dedection modes.

Figure 11 shows the increase of detected faults w. r. t. these two

detection modes over definite detection (using a logarithmic

scale for the y-axis).
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Fig. 11. Increase in detectable faults for detection modes allowing multiple
outputs or value differences, compared to definite detection for different X-
ratios.

For both circuits the relaxation of one fixed detecting

output to ’multiple outputs’ increases the fault coverage only

slightly by at most 22 faults for the considered X-ratios. This

corresponds to 0.88% of the untestable faults. The runtime

increases by on average 50% compared to the runtime of the

proposed ATPG restricting fault detection to only a single

output. The benefit of allowing multiple outputs for fault

detection during ATPG thus is rather small.

For the detection mode ’value difference’ and circuit

c7552, up to 1200 faults, i. e. up to 27.56% of the untestable

faults, showed unknown but complementary values at at

least one output providing good candidates for further post-

processing.

G. Clustered X-Sources

In order to evaluate the impact of clustered X-sources, we

performed additional experiments for the two largest circuits

from Table I. In a first experiment (cf. Table IV), 5% of the

pseudo-primary inputs out of one, and 10% of the pseudo-

primary inputs out of two scan-chains are selected consecu-

tively as X-sources. In a second experiment (cf. Table V), the

X-sources are clustered by the input signal name: From the

inputs sorted by name, a consecutive subset of 5% and 10%

of the inputs is selected as X-sources. In the third experiment

(cf. Table VI), we evenly distributed the X-sources over all

inputs for 5% and 10%. Hence, for circuit p89k with 4683

inputs, 5% of the inputs are selected as X-sources and in

iteration 1, we selected input 1, 21, 41, . . . as X-sources.

The results in the Tables IV-VI show the average over

5 runs per circuit and X-ratio. Also for clustered X-sources,

the results show the high pessimism in conventional test

generation algorithms. For all experiments, the fault coverage

increases significantly by accurate analysis compared to three-

valued ATPG (column ’3-v. SAT’). For experiment one, the

fault coverage increases by up to 5.31% points, for experiment

two by up to 8.00% points, and for experiment three by up to

8.84% points.

TABLE IV
DETECTED STUCK-AT FAULTS FOR DIFFERENT SCAN-CHAIN

CONFIGURATIONS AS CLUSTERED X-SOURCES.

Circuit
Num. X-Sources 3-v SAT QBF ∆FC Pot. det.
faults Chain [%] FC [%] [%pt.] (PD)

p89k 186 645
1 5.0 63.98 1.82 22 576
2 10.0 63.77 3.11 17 261

p100k 247 375
1 5.0 84.41 2.56 12 096
2 10.0 68.60 5.31 26 190

TABLE V
DETECTED STUCK-AT FAULTS IN CASE X-SOURCES ARE CLUSTERED BY

INPUT SIGNAL NAME.

Circuit
Num. X-Sources 3-v SAT QBF ∆FC Pot. det.
faults [%] FC [%] [%pt.] (PD)

p89k 186 645
5.0 81.52 0.82 3 390

10.0 61.64 1.00 19 945

p100k 247 375
5.0 83.84 5.02 1 249

10.0 75.01 8.00 9 532

TABLE VI
DETECTED STUCK-AT FAULTS IN CASE X-SOURCES ARE EVENLY

DISTRIBUTED OVER THE INPUTS.

Circuit
Num. X-Sources 3-v SAT QBF ∆FC Pot. det.
faults [%] FC [%] [%pt.] (PD)

p89k 186 645
5.0 77.10 0.47 11 309

10.0 46.80 2.62 39 875

p100k 247 375
5.0 80.87 1.37 20 887

10.0 51.84 8.84 43 669

Similar to randomized X-sources, the proposed ATPG

classifies a high fraction of undetectable faults as potentially

detected. In experiment one, for circuit p100k and 5% of

one scan-chain selected as X-sources, for 37.50% of the

undetectable faults, a potentially detecting pattern is computed.

Similar results are achieved in experiment two for circuit p89k

and 10% of the inputs selected as X-sources. Thus, for 23.25%

of the undetectable faults a potentially detecting pattern was

found. For experiment three, up to 48.49% of the undetectable

faults could be classified as potentially detected (p100k, 5%

X-sources).

VIII. CONCLUSIONS

This paper proposed an accurate ATPG algorithm able to

prove the testability or untestability of stuck-at and transition-

delay faults in presence of unknown values. The algorithm

combines hybrid two- and three-valued SAT-based test pattern

generation, accurate fault simulation in presence of unknown

12



values, and QBF-based reasoning. The pessimism of con-

ventional test generation algorithms in presence of unknown

values is overcome by mapping the search for a test pattern

to the satisfiability of a QBF.

In addition, different fault detection modes and increased

robustness by using different QBF solver techniques are

discussed. Finally, the first algorithm accurately computing

patterns for all potentially detectable faults is presented.

The experimental results show that depending on circuit

structure and X-sources, the fault coverage can be significantly

increased by the proposed accurate analysis. For circuit p78k,

the number of untested faults is more than halved by the

proposed method.
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