
Low-Overhead Fault-Tolerance for the

Preconditioned Conjugate Gradient Solver

Schöll, Alexander; Braun, Claus; Kochte, Michael A.; Wunderlich,

Hans-Joachim

Proceedings of the International Symposium on Defect and Fault Tolerance in VLSI and

Nanotechnology Systems (DFT’15) Amherst, Massachusetts, USA, 12-14 October 2015

doi: http://dx.doi.org/10.1109/DFT.2015.7315136

Abstract: Linear system solvers are an integral part for many different compute-intensive applications and
they benefit from the compute power of heterogeneous computer architectures. However, the growing spectrum
of reliability threats for such nano-scaled CMOS devices makes the integration of fault tolerance mandatory.
The preconditioned conjugate gradient (PCG) method is one widely used solver as it finds solutions typically
faster compared to direct methods. Although this iterative approach is able to tolerate certain errors, latest
research shows that the PCG solver is still vulnerable to transient effects. Even single errors, for instance,
caused by marginal hardware, harsh environments, or particle radiation, can considerably affect execution
times, or lead to silent data corruption. In this work, a novel fault-tolerant PCG solver with extremely low
runtime overhead is proposed. Since the error detection method does not involve expensive operations, it
scales very well with increasing problem sizes. In case of errors, the method selects between three different
correction methods according to the identified error. Experimental results show a runtime overhead for error
detection ranging only from 0.04% to 1.70%.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic
reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form
to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

http://dx.doi.org/10.1109/DFT.2015.7315136

Low-Overhead Fault-Tolerance for the

Preconditioned Conjugate Gradient Solver

Alexander Schöll, Claus Braun, Michael A. Kochte and Hans-Joachim Wunderlich

Institute of Computer Architecture and Computer Engineering, University of Stuttgart

Pfaffenwaldring 47, D-70569, Germany, Email: {schoell,braun,kochte,wu}@informatik.uni-stuttgart.de

Abstract—Linear system solvers are an integral part for
many different compute-intensive applications and they benefit
from the compute power of heterogeneous computer archi-
tectures. However, the growing spectrum of reliability threats
for such nano-scaled CMOS devices makes the integration
of fault tolerance mandatory. The preconditioned conjugate
gradient (PCG) method is one widely used solver as it finds
solutions typically faster compared to direct methods. Although
this iterative approach is able to tolerate certain errors, latest
research shows that the PCG solver is still vulnerable to
transient effects. Even single errors, for instance, caused by
marginal hardware, harsh environments, or particle radiation,
can considerably affect execution times, or lead to silent data
corruption. In this work, a novel fault-tolerant PCG solver
with extremely low runtime overhead is proposed. Since the
error detection method does not involve expensive operations,
it scales very well with increasing problem sizes. In case of
errors, the method selects between three different correction
methods according to the identified error. Experimental results
show a runtime overhead for error detection ranging only from
0.04% to 1.70%.

Keywords-Fault Tolerance, Sparse Linear System Solving,
Preconditioned Conjugate Gradient, ABFT

I. INTRODUCTION

Linear systems play an essential role in many large-scale

applications in science and engineering [1], including struc-

tural mechanics [2], computational fluid dynamics [3], or

power grid analysis [4]. For this reason, the efficient solution

of linear systems is an integral computational task in high-

performance computing. The preconditioned conjugate gra-

dient (PCG) solver [5] is one of the most important methods

for solving large linear systems of the form Ax = b. Com-

pared to direct methods like e.g. the Gaussian-Elimination,

PCG finds a solution typically faster. At the same time,

the underlying operations are parallelizable, which makes

the PCG solver well suited for heterogeneous computing

systems comprising multi-core CPUs and many-core GPUs.

Recent works in this area gain significant speedups [6, 7] by

exploiting different characteristics of the underlying linear

algebra operations.

However, such modern nano-scaled CMOS devices be-

come increasingly vulnerable to a growing spectrum of reli-

ability threats such as transient events, latent defects, stress

and aging mechanisms as well as marginal hardware due

to process variations [8, 9]. Future manufacturing processes

will allow even smaller chip feature sizes resulting in an

increased vulnerability, which demands the application of

fault tolerance measures [10]. Compared to direct methods,

iterative solvers such as PCG exhibit an inherent robustness

against transient effects causing soft errors [5]. However,

iterative methods are still considerably vulnerable to soft

errors as recent works [11, 12] shows. Single errors may

lead to silent data corruption and are able to degrade the

performance of PCG by factors of up to 200x. In case

of silent data corruption (SDC), the derived solution may

not satisfy the original problem Ax = b, despite apparent

convergence.

An approach to detect errors is to evaluate the computed

solution x using the original problem Ax = b after the com-

pletion of PCG. However, the execution of PCG has to be

repeated in case of errors, until a correct result is obtained.

Without a fault-tolerance technique, which already detects

errors during the execution, possible errors remain unde-

tected until the end of the execution. Different fault tolerance

approaches were proposed that tackle the vulnerability of

PCG to different extents. These are discussed in Section III.

Some of them limit the fault detection only to certain subsets

of the PCG operations. A majority of them induce significant

runtime overheads since they utilize additional expensive

matrix-vector multiplications to detect errors. Besides, some

approaches use traditional checkpointing techniques, which

induce high cost in recomputing erroneous results compared

to immediate correction approaches [13].

In [14], we proposed a fault-tolerance technique with

reduced computational complexity compared to the existing

methods for error detection (cf. Section IV). Here, we

propose both an improved error detection criterion and

a new error recovery scheme, which allow a significant

reduction in runtime overhead while the error coverage is

not only maintained, but often improved. In case of errors,

the proposed error recovery scheme selects between three

different correction methods adaptively. The proposed fault-

tolerance technique is evaluated on many-core GPUs as

GPU-accelerated scientific computing is gaining popularity

while it is increasingly vulnerable to reliability threats [15].

II. PRECONDITIONED CONJUGATE GRADIENT METHOD

The PCG method [5] is an iterative approach, which is

suitable for solving large linear systems Ax = b, when

A is a symmetric positive-definite matrix. The fundamental

1

operations of the PCG solver are shown in Algorithm 1.

The inputs include a coefficient matrix A, a right-hand side

vector b, an initial guess vector x0, a preconditioner M ,

a tolerance ǫ to accept a sufficient approximation, and an

upper limit for the number of iterations kmax.

Each successive iteration of the PCG loop provides an

improved approximation xk with respect to the exact solu-

tion. PCG composes the solution x as a linear combina-

Algorithm 1: Preconditioned Conjugate Gradient

Input: A,M ,b, x0, ǫ, kmax

1 r0 ← b−Ax0 ; // Initial residual

2 s0 ←M−1r0; // Preconditioning

3 p0 ← s0; // Initial search direction

4 δ0 ← rT0 r0; // Approximation error

5 k ← 0 ; // Iteration count

/* PCG loop */

6 while δk > ǫ ∧ k < kmax do
7 wk ← Apk;

8 γ ← rTk sk;
9 α← γ

pT
k
wk

;

10 xk+1 ← xk + αpk; // Improve approximation

11 rk+1 ← rk − αwk; // Update residual

12 sk+1 ←M−1rk+1; // Preconditioning

13 δk+1 ← rTk+1rk+1;

14 β ←
rT
k+1

sk+1

γ
;

15 pk+1 ← sk+1 + βpk; // New search direction

16 k ← k + 1;
17 end

tion of search directions p0, p1, p2, ..., pN and x = x0 +∑
k≤N

αkpk. In every subsequent iteration, a new search

direction pk is computed from the residual rk such that

pi ⊥ Apk, k 6= i. Therefore, each residual rk is orthogonal

to both each preceding search direction pi as well as each

residual ri with i < k. The time complexity of PCG depends

on both the size and the condition number of the matrix A

[5]. A suitable preconditioner M is able to diminish the

condition number of the matrix A, which improves the rate

of convergence. As will be further discussed below, the

proposed fault-tolerant PCG solver is independent of the

utilized preconditioning operation.

III. STATE OF THE ART

The investigation of fault tolerance for linear algebra

algorithms is an active research area. Algorithm-Based Fault

Tolerance (ABFT) [16] allows the protection of important

linear algebra operations such as matrix multiplication and

LU decomposition. ABFT evaluates checksum mismatches

between encoded input data and encoded results to detect

errors. More sophisticated ABFT methods address the in-

fluence of rounding errors in the encoding of checksums

[17]. Manifestations of faults that impact, for instance, the

control flow or corrupt data in the memory can be treated by

low-overhead techniques such as error-detecting/correcting

codes, signature monitoring, or assertions [18, 19].

Error detection codes, however, are not able to protect all

operations in PCG efficiently such as inner products. There-

fore, fault tolerance for PCG demands different methods

to achieve complete protection. The vulnerability of PCG

was assessed over the last decade: The insufficient ability

of PCG to detect errors resulting in silent data corruptions

is presented in [11]. The influence of soft errors on the

performance of linear solvers is discussed in [12] while a

performance degradation of PCG by factors of up to 200x

is demonstrated. Besides, different fault tolerance techniques

were proposed: The evaluation of checksum invariants dur-

ing matrix-vector multiplications is proposed in [20] to

detect errors. During error-free executions, the reported

overhead of this technique is on average 11.3%. In [21], a

partial recomputation scheme is presented that localizes and

corrects errors during sparse matrix-vector multiplications.

In [22], inherent relations between internal values in PCG

are exploited for error detection. If an incorrect solution is

detected after the completion of PCG, then PCG is repeated

on the obtained residual Ad = r = (b − Ax). The method

aims to avoid repetitions of PCG on the original problem.

However, the technique awaits the result after complete

convergence of PCG, before it applies error detection. A self-

stabilizing approach which requires system modes that are

inherently fault-tolerant is proposed in [23]. A stabilization

scheme is presented that exploits the convergence conditions

of PCG to transform arbitrary states to valid states. In

[24], a technique is proposed that periodically checks the

residual vector and the orthogonality of consecutive search

direction vectors. In our previous work [14], we presented

a fault-tolerance technique for PCG with an reported error

detection overhead ranging from 0.1% to 5.4%. That tech-

nique outperformed the existing approaches in terms of both

runtime overhead as well as error coverage. In this work, we

propose an improved fault-tolerance technique for PCG with

extremely low runtime overhead. At the same time, the error

coverage is not only maintained, but often improved.

In summary, the discussed approaches address fault tol-

erance for PCG to different degrees. The approaches in

[20, 21] limit the error detection to certain subroutines

of the PCG solver. The approaches in [23, 24] on the

other hand cover complete PCG iterations. However, they

exhibit significant overheads to detect errors, since they

require expensive sparse matrix-vector multiplications with

complexity O(NNZ) with NNZ ≫ N . NNZ is the number

of non-zero elements in the matrix A with size N×N.

IV. FAULT-TOLERANT PRECONDITIONED CONJUGATE

GRADIENT SOLVER

In this work, an improved fault-tolerant preconditioned

conjugate gradient solver with extremely low runtime over-

head is proposed. Since errors are detected during the

execution of the solver, this technique prevents the repe-

tition of complete executions. The proposed error detec-

tion scheme is very efficient because it does not require

2

expensive sparse matrix-vector multiplications. Instead, it

is based on the periodic evaluation of additional inner

products with complexity O(N). Therefore, the runtime

overhead for error detection is vanishing with increasing

matrix sizes. A new error detection criterion is presented

below, which is referred to as σ-criterion. In combination

with our previously proposed λ-criterion [14], the complete

set of vectors used in PCG is covered for error detection.

Therefore, the error detection latency is reduced, which

allows to increase the error checking interval, i.e. the

number of PCG iterations after which error detection is

performed, without loss in error coverage (cf. Section VII).

Thus, the runtime overhead is reduced. Besides, our error

correction technique is complemented by a new corrective

roll-back recovery technique. Now, our proposed adaptive

error correction method identifies the degree of corruption

and trades off three different correction methods against

each other. Therefore, the proposed fault-tolerance method

provides efficient error detection and reduces the number

of expensive recomputations to correct corrupted results.

Figure 1 shows the steps of our fault-tolerant preconditioned

conjugate gradient solver. The first two steps comprise the

preparation of PCG and the computation of a PCG iteration

which together form the operations in the original PCG

solver as shown in Algorithm 1. Steps 3 to 6 are added

to establish fault tolerance. Our proposed error detection

scheme is performed in the third step (cf. Section V).

If no error is detected, then a checkpoint is periodically

generated in a reliable storage (e.g. ECC-protected memory

[25]). Both error detection criteria, λ and σ, are periodically

computed in the fifth step. In case of errors, our adaptive

error recovery scheme selects the most promising technique

in the sixth step, namely online correction, complete roll-

back and corrective roll-back (cf. Section VI).

V. ERROR DETECTION

Our proposed error detection scheme exploits specific

relations between successive iterations during the execution

of PCG. The convergence of PCG and the correctness of

the final result is ensured, if those relations are maintained

throughout the whole execution [5]. Soft errors, resulting

from e.g. transient effects corrupt these relations and become

therefore detectable. Thus, the periodic evaluation of those

relations ensures a reliable error detection for the PCG

solver. In particular, to detect errors between iterations i and

k with k > i, the following criteria are evaluated.

λ ≈ xT

k
wi ∧

rT
k
pi

δk · σ
≈ 0 if k > i. (1)

The former is referred to as λ-criterion, while the latter

is referred to as σ-criterion. In our previous work [14],

we derived the λ-criterion and presented its error detection

ability for the PCG solver. Now, we complement our error

detection technique by the σ-criterion, which extends the

scope of error detection to the complete set of vectors

involved in each iteration of PCG.

Error Detection

 𝜆 ≈ 𝑘𝑇 𝑖 ∧ 1𝛿𝑘⋅𝜎 𝑟𝑘𝑇𝑝𝑖 ≈ 0 ?

Online

Correction

Complete

Roll-back

Adaptive Error Correction

Selection of the most promising

 error correction method

PCG Iteration

While 𝛿𝑘 > 𝜖 ∧ 𝑘 < 𝑘𝑚𝑎𝑥 do

false:

error

detected

2

Create checkpoint

Calculate error detection criteria

 𝜆 ← 𝑏𝑇 𝑝𝑖 𝜎 ← 𝑝𝑖

4

5

3

6

Preparation of PCG 1

true

P
e
ri

o
d
ic

P
e
ri

o
d
ic

P
e
ri

o
d
ic

Corrective

Roll-back

Figure 1. Overview of the Fault-Tolerant Preconditioned Conjugate
Gradient Algorithm.

Derivation of the λ and σ-criteria

The λ-criterion is based on the combined evaluation of

specific orthogonality and residual relations, which ensure

that iteration k is related to each preceding iteration i with

k > i. At each iteration k, the residual rk is orthogonal to

every preceding search direction pi [5].

rk ⊥ pi ⇐⇒
rT
k
pi

‖rk‖‖pi‖
≈ 0 if k > i. (2)

The residual rk at each iteration k is calculated as

rk = b−Axk (3)

The combination of Equations 2 and 3 allows the derivation

of the following equation [14]:

bT pi ≈ xT

k
wi (4)

The inner product bT pi on the left-hand side does not involve

vectors from the current iteration k. Thus, this inner product

can be calculated during the preceding iteration i. The result

is stored in the scalar λ:

λ = bT pi (5)

The σ-criterion detects errors in the residual rk based on the

orthogonality relation

rT
k
pi

‖rk‖‖pi‖
≈ 0 if k > i. (6)

The norm of the residual rk is already computed as δk during

iteration k, which corresponds to Line 13 of Algorithm 1.

The norm of the preceding search direction pi is independent

of any successive computation after iteration i. Thus, its

3

result is stored in the scalar σ. Finally

rT
k
pi

δk · σ
≈ 0 if k > i with δk = ‖rk‖ ∧ σ = ‖pi‖. (7)

VI. ERROR CORRECTION

To correct errors during the execution of the PCG solver,

we presented an error correction scheme in our previ-

ous work [14], which utilized two correction techniques,

namely online correction and complete roll-back. These

error correction techniques are now complemented by a new

corrective roll-back recovery technique. Our new adaptive

error correction method identifies the degree of corruption

of the intermediate solution to trade off these three different

correction methods against each other. An online correction

is attempted to correct erroneous intermediate results without

any roll-back. If such a correction is not promising, the error

recovery scheme performs a complete roll-back to avoid

complete recomputations of PCG. If the utilized checkpoint

appears to be corrupted, a corrective roll-back is performed

to avoid endless loops.

A. Identifying Degrees of Corruption for the PCG Solver

Occurring errors are able to corrupt the different relation-

ships between the iterations of the PCG solver. However,

errors can take an apparently corrupted approximation xk

closer to the actual solution. Therefore, if the residual rk
in the approximation xk is closer to zero compared to the

residual in the approximation ri of a checkpoint, then it is

promising for PCG to continue using xk. In that case, PCG

is likely to require fewer additional iterations to converge

compared to a roll-back recovery. Otherwise, if the residual

rk of the approximation xk is larger than ri, then a roll-

back to iteration i is more reasonable. The details of on-line

correction and roll-back recovery are presented below.

A prerequisite to compute the residuals is the absence

of floating-point exceptions such as NaN and Inf. Such

elements are replaced by random values if the underlying

values are not recoverable.

B. Online Correction, Complete and Corrective Roll-back

An erroneous iteration k is corrected if the continuation

using xk is promising to converge in fewer iterations com-

pared to a roll-back to the last checkpoint. Online correction

re-establishes the residual and orthogonality relations for

successive iterations after iteration k. The following steps are

performed for correction: First, the residual rk is recomputed

in the approximation xk. Second, the search direction pk is

computed using the preconditioned residual pk = M−1rk.

During complete roll-back recovery, the stored vectors are

copied to the vectors of the current iteration. Corrective roll-

back recovery is performed if a checkpoint is used more

than once for error recovery. In this case, only the stored

approximation xi is restored and the remaining vectors are

corrected according to xi. The residual rk is recomputed in

the approximation xk and the search direction pk is set to

the preconditioned residual pk = M−1rk. Afterwards, the

execution of PCG is continued in both cases.

VII. EXPERIMENTAL RESULTS

The proposed fault-tolerance approach for PCG was

evaluated with respect to the runtime overhead for error

detection, achievable error coverage, and runtime overhead

for error correction. Our method is compared with three

recent fault tolerance methods for the PCG solver. The first

method is the approach from our previous work [14]. The

second method is the periodic correction of the residual

which is proposed in different degrees in [23] as well as

in [22]. The third method is the periodic evaluation of

orthogonality and residual relationships which is proposed

in [24].

A. Experimental Setup

For the experiments, the PCG algorithm was tailored to

a heterogeneous computing system comprising of multi-

core CPUs and many-core GPUs. All parallelizable linear

algebra operations were mapped to GPU architectures and

GPU-accelerated linear algebra libraries were utilized. All

experiments have been performed in double precision on a

Nvidia Titan Black GPU. As benchmarks, 25 matrices from

the Florida Sparse Matrix Collection [26] were evaluated

which are shown shown in Table I. Besides the names

Name N NNZ Portion of 0s Condition

nos3 960 15844 98.28% 3.77e+04
bcsstk10 1086 22070 98.13% 5.24e+05
msc01050 1050 26198 97.62% 4.58e+15
bcsstk21 3600 26600 99.79% 1.76e+07
bcsstk11 1473 34241 98.42% 2.21e+08
ex3 1821 52685 98.41% 1.68e+10
ex10hs 2548 57308 99.12% 5.48e+11
nasa2146 2146 72250 98.43% 1.72e+03
sts4098 4098 72356 99.57% 2.17e+08
bcsstk13 2003 83883 97.91% 1.10e+10
msc04515 4515 97707 99.52% 2.27e+06
ex9 3363 99471 99.12% 1.17e+13
aft01 8205 125567 99.81% 4.39e+18
bodyy6 19366 134208 99.96% 7.69e+04
muu 7102 170134 99.66% 7.65e+01
s3rmt3m3 5357 207123 99.28% 2.40e+10
s3rmt3m1 5489 217669 99.28% 2.48e+10
bcsstk28 4410 219024 98.87% 9.45e+08
s3rmq4m1 5489 262943 99.13% 1.77e+10
bcsstk16 4884 290378 98.78% 4.94e+09
bcsstk38 8032 355460 99.45% 5.52e+16
msc23052 23052 1142686 98.95% 9.97e+09
msc10848 10848 1229776 98.95% 9.97e+09
nd3k 9000 3279690 95.95% 1.56e+07
ship 001 34920 3896496 99.68% 3.16e+12

Table I
OVERVIEW OF EVALUATED MATRICES [26].

and sizes of the matrices (N×N), the number of nonzero

elements (NNZ) are presented. As a side information, the

portion of 0s within the matrices and the condition number

are presented (cf. Section II). The evaluated matrices were

stored in the compressed sparse row storage format [27].

4

The chosen input parameters are described below. For the

initial guess x0, a random vector was generated. If the right-

hand side b was not available for a matrix, then a random

solution x was generated. Using x, the right-hand side b was

computed with Ax = b. We set all thresholds and intervals

according to related work for fair comparison. The error

tolerance ǫ was set to 10−6 as proposed in [21]. The error

detection threshold used in the comparison of floating-point

values was set to 10−10 as proposed in [24]. The checkpoint

generation interval was set to 20 iterations and both sampling

and error detection interval were set to 10 iterations as

proposed in [23, 24]. The approach from our previous work

[14] performs error detection after each iteration. Besides,

the Jacobi-Preconditioner was applied for preconditioning

[5]. In addition to these results, we conducted experiments

with other preconditioners such as SSOR and Incomplete

Cholesky. However, the obtained results do not reveal sig-

nificant differences.

B. Error Model

Different implementations of FPUs exist that may have

different error propagation patterns for transient events. In

accordance to related works [11, 20, 21, 23, 24], the errors

are injected in results of intermediate arithmetic operations,

comprising both vectors and scalars. 1500 error injection

experiments were evaluated for each matrix. The results of

the underlying floating point instructions were modified by

randomized bursts of bit flips (1 to 64 bits per randomly

chosen vector element or scalar). Each injection comprised

the random selection of both an iteration and one of the

operations in PCG to generate an erroneous result. Bit

flips were also injected into operations that perform error

detection.

C. Error Detection Overhead in Error-Free Execution

To investigate the runtime overhead for error detection,

we applied the different fault-tolerance techniques to the

PCG algorithm and compared the runtime in error-free exe-

cutions. Figure 2 shows the results of this investigation. The

evaluated matrices are ordered by the number of non-zero

elements. The error detection overhead which is introduced

by our method ranges from 0.04% to 1.7%. The overhead

of our method becomes smaller with increasing numbers of

non-zero elements, since it does not require matrix-vector

multiplications. Therefore, our method scales very well

with increasing problem sizes. The compared methods show

an almost uniform overhead ranging from 7.8% to 9.9%

[22, 23] as well as from 6.7% to 9.3% [24] respectively.

For the three largest matrices, msc10848, nd3k and ship 001,

the overhead of the proposed method is only between 0.4%

and 1.5% compared to the overhead of the methods from

related works [22–24]. Compared to our previous work, the

overhead is only 33.7% on average. This reduction can be

explained by the increased error detection interval.

0.01%

0.10%

1.00%

10.00%

This Work Previous Work [14] "Residual Correction" [22,23] "Orthogonality & Roll-Back" [24]

Figure 2. Average error detection overhead in error-free execution.

0.01%

0.10%

1.00%

10.00%

SDC This Work Diverged This Work SDC Previous Work Diverged Previous Work
SDC "Residual Correction" Diverged "Residual Correction" SDC "Orth. & Roll-Back" Diverged "Orth. & Roll-Back"

Figure 3. Portion of execution failures separated into SDCs and executions that exceeded the specified limit of iterations.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

This Work Previous Work "Residual Correction" "Orthogonality & Roll-Back"

Figure 4. Average error correction overhead in case of errors.

5

D. Error Coverage and Error Correction Results

The error coverage corresponds to the portion of erro-

neous executions which converged to a correct result after

error detection and correction and did not exceed a certain

limit of iterations. We defined limits for both the number

of iterations and the maximum deviation to the correct

solution to evaluate silent data corruptions (i.e. convergence

to a wrong result). Each experiment that exceeded at least

one of those limits was considered a failure. The limit for

the number of iterations was set to 200.000 iterations. The

maximum acceptable deviation was set to 10−10. Figure 3

shows the portion of execution failures separated into SDCs

and diverged executions that exceeded the limit of iterations.

The error coverage of our method is at least as high as the

error coverage of the compared methods. At the same time,

the error coverage is significantly increased for the majority

of the evaluated matrices. Compared to our previous work,

the error coverage is not only maintained, but often improved

although the error detection interval was increased from 1

to 10 iterations. The number of executions which resulted

in SDC is at most as high as the related work. Our method

significantly reduces the overall number of SDCs. Figure

4 shows the runtime overhead for error correction of the

different fault tolerance methods. The methods are compared

by the average overhead required for successful convergence

providing a correct result in erroneous cases. Our method

reduces the error correction overhead on average by 17.1%

compared to our previous work. Compared to related work,

our method reduces the error correction overhead on average

by 59.3% [22, 23] and 47.2% [24] respectively.

VIII. CONCLUSION

Efficient linear system solvers are an essential prerequisite

for many compute-intensive applications. However, strong

reliability requirements are imposed on such applications.

The growing spectrum of reliability threats for CMOS

devices makes the application of fault tolerance measures

mandatory. In this work, we presented a new fault-tolerant

preconditioned conjugate gradient solver with extremely

low runtime overhead. The method achieves a significant

reduction of both, the error detection overhead as well

as the number of expensive recomputations. Our method

scales very well with increasing problem sizes, since it

does not involve matrix-vector multiplications. Experimental

results show a runtime overhead for error detection ranging

from 0.04% to 1.7%. Compared to our previous work, this

method reduces the error detection overhead on average

by 66.3%. For the largest matrices, the runtime overhead

of the proposed method is only between 0.4% and 1.5%

compared to related works. At the same time, the error

coverage is at least as high as and often higher than the

coverage of the related work. For erroneous executions,

our proposed method significantly reduces the number of

additional iterations to achieve correct results.

ACKNOWLEDGMENT

The authors would like to thank the German Research Foundation (DFG)
for financial support of the project within the Cluster of Excellence in
Simulation Technology (EXC 310/2) at the University of Stuttgart.

BIBLIOGRAPHY

[1] S. Khaitan and A. Gupta, High Performance Computing in Power and Energy
Systems, ser. Power Systems. Springer Berlin Heidelberg, 2012.

[2] I. Smith, D. Griffiths, and L. Margetts, Programming the Finite Element Method.
Wiley, Oct 2013.

[3] D. Yuen et al., GPU Solutions to Multi-scale Problems in Science and Engi-
neering, ser. Lecture Notes in Earth System Sciences. Springer, 2013.

[4] K. Daloukas et al., “A 3-D Fast Transform-based Preconditioner for Large-Scale
Power Grid Analysis on Massively Parallel Architectures”, in Intl. Symposium on
Quality Electronic Design (ISQED), Santa Clara, USA, Mar. 2014, pp. 723–730.

[5] Y. Saad, Iterative Methods for Sparse Linear Systems. Siam, 2003.

[6] M. Ament et al., “A Parallel Preconditioned Conjugate Gradient Solver for the
Poisson Problem on a Multi-GPU Platform”, in 18th Euromicro Intl. Conference
on Parallel, Distributed and Network-Based Processing (PDP), Pisa, Italy, Feb.
2010, pp. 583–592.

[7] E. Müller et al., “Matrix-free GPU Implementation of a Preconditioned Conju-
gate Gradient Solver for Anisotropic Elliptic PDEs”, Computing and Visualiza-
tion in Science, vol. 16, no. 2, pp. 41–58, 2013.

[8] I. Haque and V. Pande, “Hard Data on Soft Errors: A Large-Scale Assessment
of Real-World Error Rates in GPGPU”, in 10th IEEE/ACM Intl. Conference on
Cluster, Cloud and Grid Computing (CCGrid’10), Melbourne, Australia, May
2010, pp. 691–696.

[9] “The International Technology Roadmap for Semiconductors 2013 Edition”.
[Online]. Available: http://www.itrs.net/Links/2013ITRS/Home2013.htm

[10] F. Cappello et al., “Toward Exascale Resilience: 2014 Update”, in Supercom-
puting Frontiers and Innovations, vol. 1, no. 1, 2014.

[11] G. Bronevetsky and B. de Supinski, “Soft Error Vulnerability of Iterative Linear
Algebra Methods”, in Proc. of the Intl. Conference on Supercomputing, Island
of Kos, Greece, Nov. 2008, pp. 155–164.

[12] M. Shantharam, S. Srinivasmurthy, and P. Raghavan, “Characterizing the Impact
of Soft Errors on Iterative Methods in Scientific Computing”, in Proc. of the
Intl. Conference on Supercomputing, Seattle, USA, Nov. 2011, pp. 152–161.

[13] A. Moody et al., “Design, Modeling, and Evaluation of a Scalable Multi-level
Checkpointing System”, in Proc. of the ACM/IEEE Intl. Conference for High
Performance Computing, Networking, Storage and Analysis, New Orleans, USA,
Nov. 2010, pp. 1–11.

[14] A. Schöll et al., “Efficient On-Line Fault-Tolerance for the Preconditioned
Conjugate Gradient Method”, in Proc. of the IEEE Intl. On-Line Testing
Symposium (IOLTS), Elia, Greece, Jul. 2015, pp. 95–100.

[15] D. A. Oliveira et al., “Modern GPUs Radiation Sensitivity Evaluation and
Mitigation Through Duplication With Comparison”, IEEE Transactions on
Nuclear Science, vol. 61, no. 6, pp. 3115–3122, Dec. 2014.

[16] K.-H. Huang and J. A. Abraham, “Algorithm-Based Fault Tolerance for Matrix
Operations”, IEEE Trans. on Computers, vol. 33, no. 6, pp. 518–528, Jun. 1984.

[17] C. Braun, S. Halder, and H.-J. Wunderlich, “A-ABFT: Autonomous Algorithm-
Based Fault Tolerance for Matrix Multiplications on Graphics Processing Units”,
in Proc. of The 44th IEEE/IFIP Intl. Conference on Dependable Systems and
Networks (DSN), Atlanta, USA, Jun. 2014, pp. 443–454.

[18] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Control-Flow Checking by Software
Signatures”, IEEE Trans. on Reliability, vol. 51, no. 1, pp. 111–122, Aug. 2002.

[19] K. Wilken and J. P. Shen, “Continuous Signature Monitoring: Low-cost Concur-
rent Detection of Processor Control Errors”, IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 9, no. 6, pp. 629–641, Jun. 1990.

[20] M. Shantharam, S. Srinivasmurthy, and P. Raghavan, “Fault Tolerant Precondi-
tioned Conjugate Gradient for Sparse Linear System Solution”, in Proc. of the
ACM Intl. Conference on Supercomputing, Venice, Italy, Jun. 2012, pp. 69–78.

[21] J. Sloan, R. Kumar, and G. Bronevetsky, “An Algorithmic Approach to Error
Localization and Partial Recomputation for Low-Overhead Fault Tolerance”,
in Proc. of the 43rd IEEE/IFIP Intl. Conference on Dependable Systems and
Networks (DSN), Budapest, Hungary, Jun. 2013, pp. 1–12.

[22] F. Oboril et al., “Numerical Defect Correction as an Algorithm-Based Fault
Tolerance Technique for Iterative Solvers”, in IEEE Pacific Rim Intl. Symp. on
Dependable Computing (PRDC), Pasadena, USA, Dec. 2011, pp. 144–153.

[23] P. Sao and R. Vuduc, “Self-stabilizing Iterative Solvers”, in Proc. of the
Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems,
Nov. 2013, pp. 4:1–4:8.

[24] Z. Chen, “Online-ABFT: An Online Algorithm Based Fault Tolerance Scheme
for Soft Error Detection in Iterative Methods”, in Proc. of the 18th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,
Shenzhen, China, Feb. 2013, pp. 167–176.

[25] I. Koren and C. M. Krishna, Fault-Tolerant Systems, M. Kaufmann, Ed.
Elsevier, 2010.

[26] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix Collection”,
ACM Trans. on Mathematical Software, vol. 38, no. 1, pp. 1:1–1:25, Nov. 2011.

[27] E. F. D’Azevedo, M. R. Fahey, and R. T. Mills, “Vectorized Sparse Matrix
Multiply for Compressed Row Storage Format”, in Computational Science, ser.
Lecture Notes in Computer Science, 2005, vol. 3514, pp. 99–106.

6

