
Intermittent and Transient Fault Diagnosis

on Sparse Code Signatures

Kochte, Michael; Dalirsani, Atefe; Bernabei, Andrea; Omana,

Martin; Metra, Cecilia; Wunderlich, Hans-Joachim

Proceedings of the 24th IEEE Asian Test Symposium (ATS’15) Mumbai, India, 22-25

November 2015

doi: http://dx.doi.org/10.1109/ATS.2015.34

Abstract: Failure diagnosis of field returns typically requires high quality test stimuli and assumes
that tests can be repeated. For intermittent faults with fault activation conditions depending on the
physical environment, the repetition of tests cannot ensure that the behavior in the field is also observed
during diagnosis, causing field returns diagnosed as no-trouble-found. In safety critical applications, self-
checking circuits, which provide concurrent error detection, are frequently used. To diagnose intermittent
and transient faulty behavior in such circuits, we use the stored encoded circuit outputs in case of a failure
(called signatures) for later analysis in diagnosis. For the first time, a diagnosis algorithm is presented
that is capable of performing the classification of intermittent or transient faults using only the very
limited amount of functional stimuli and signatures observed during operation and stored on chip. The
experimental results demonstrate that even with these harsh limitations it is possible to distinguish
intermittent from transient faulty behavior. This is essential to determine whether a circuit in which
failures have been observed should be subject to later physical failure analysis, since intermittent faulty
behavior has been diagnosed. In case of transient faulty behavior, it may still be operated reliably.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

http://dx.doi.org/10.1109/ATS.2015.34


Intermittent and Transient Fault Diagnosis

on Sparse Code Signatures

M. A. Kochte1, A. Dalirsani1, A. Bernabei2, M. Omana2, C. Metra2, H.-J. Wunderlich1

1 Institut für Technische Informatik, Universität Stuttgart, 70569 Stuttgart, Germany
2 University of Bologna, Bologna 40136, Italy

Abstract—Failure diagnosis of field returns typically requires
high quality test stimuli and assumes that tests can be repeated.
For intermittent faults with fault activation conditions depending
on the physical environment, the repetition of tests cannot ensure
that the behavior in the field is also observed during diagnosis,
causing field returns diagnosed as no-trouble-found.

In safety critical applications, self-checking circuits, which
provide concurrent error detection, are frequently used. To
diagnose intermittent and transient faulty behavior in such
circuits, we use the stored encoded circuit outputs in case of
a failure (called signatures) for later analysis in diagnosis. For
the first time, a diagnosis algorithm is presented that is capable of
performing the classification of intermittent or transient faults
using only the very limited amount of functional stimuli and
signatures observed during operation and stored on chip.

The experimental results demonstrate that even with these
harsh limitations it is possible to distinguish intermittent from
transient faulty behavior. This is essential to determine whether a
circuit in which failures have been observed should be subject to
later physical failure analysis, since intermittent faulty behavior
has been diagnosed. In case of transient faulty behavior, it may
still be operated reliably.

Index Terms—Diagnosis, intermittent, transient, concurrent
error detection, code signature, self-checking, online testing.

I. INTRODUCTION

In safety critical applications, such as medical, industrial, or

automotive applications, failures in the field must be analyzed

and diagnosed to identify potentially systematic root causes

and avoid risks during future operation. Once a failure has

been observed, the circuit can be analyzed in a workshop or

during scheduled maintenance intervals.

In the automotive industry, suspected electronic control units

(ECUs) are typically replaced for safety reasons and sent back

to the OEM (original equipment manufacturer) even if the

execution of functional tests does not reveal any failures in

the workshop. However, returned units are often classified as

no-trouble-found (NTF) or no defect found, i.e. the reported

failure could not be reproduced or diagnosed at the OEM site

[1], [2]. According to [3], the NTF rate of field returns in VLSI

circuits can exceed 50%, which incurs high costs both for

workshops and OEMs for replacements and failure analysis.

If the failure in the circuit has been caused by a single or

multiple transient effects, the unit is not faulty, and there is

no need for a replacement. If, on the other hand, the failure

has been caused by an intermittent or permanent fault, the

unit must be replaced. Intermittent faults are active depending

on some (often unknown) activation condition. This activation

condition may have temporal, Boolean, or other environmental

dependencies. Intermittent faults may emerge due to latent

defects or marginal hardware, circuit aging, adverse operation

conditions (temperature, voltage, electromagnetic radiation,

vibrations, etc.), or combinations thereof. Resulting errors can

occur in bursts [4].

If an intermittent fault is the root cause of a failure in the

field, even a thorough test in the workshop or at the OEM

may not excite the faulty behavior because of complex fault

activation and different operation conditions. For transient

faults, the faulty behavior can also not be reproduced. How-

ever, without an evidence that the observed failures have been

transient, the unit must be replaced to prevent security risks.

By conventional failure analysis based on (re-)execution of

tests followed by diagnosis, permanent faults can be effectively

identified. However, it is in principle difficult to diagnose and

distinguish intermittent from multiple transient faults.

To detect errors at runtime, self-checking circuits, which

provide concurrent error detection, can be used. The employed

concurrent error detection methods include structural redun-

dancy (duplication with comparison), information redundancy

by use of codes [5]–[7], watchdog circuitry [8], or synthesized

assertions [9]. Here we consider self-checking circuits using

separable codes, where data and check bits can be easily split

apart. The generated check bits provide some information

about failures at the time of their occurrence and can be

captured for later analysis. In the following, these check bits

are called signatures and stored in a signature log (SILO,

Fig. 1). After a certain number of observed failures or in reg-

ular intervals, the data in the SILO is extracted and diagnosed

offline to distinguish transient from intermittent root causes.

However, such a diagnosis is very difficult due to

1) extremely limited amount of failure data (low number of

Log$

data$

O
p
e
ra
,
o
n
$

in
$t
h
e
$fi
e
ld
$

Diagnosis$&$

classifica,on$

Permanent/$

intermi9ent$

Transient$

Extrac,on$of$$

Log$data$

O
ffl
in
e
$

(m
a
in
te
n
a
n
ce
)$

Fig. 1. Signature-based diagnosis flow



stimuli and signatures, signatures are highly compacted

responses),

2) low quality of stimuli (not deterministically generated test

patterns or patterns with high diagnostic resolution, but

random or functional input stimuli), and

3) non-repetitiveness of the test.

Conventional diagnosis algorithms focus on the location of

a fault and often assume a permanent nature of the fault. The

model-independent diagnosis in [10] classifies the observed

fault effects as conditional stuck-at faults that are active

depending on an (unknown) arbitrary activation condition. Yet

the algorithm is unable to classify transient and intermittent

effects correctly. Algorithms tailored to highly compacted test

responses [11] also exist, but they cannot distinguish transient

or intermittent faults that happen during operation.

Diagnosis algorithms specifically targeting intermittent

faults build a probabilistic model of the system and refine fault

classification by repeated application of tests and measurement

of responses [12]–[14]. The diagnosis algorithm in [15] splits

up BIST into sessions, repeats failed sessions and analyzes

intermediate test signatures. It uses Bayesian reasoning to

classify ambiguous fault effects. Such approaches are not

suitable for the problem at hand, since the repeated execution

of tests with operation conditions encountered in the field is

in general very difficult.

At system level, errors in memory can be statistically

analyzed at runtime to identify similarities in the observed

behavior and to conclude if a component suffers from transient

or permanent impairments [16]. However, if very few failures

are observed, the result of such reasoning has only little

confidence.

This work presents how failure data available in a self-

checking structure can be used to diagnose intermittent and

transient faults. Code signatures along with the corresponding

input stimuli are stored when failures are detected. A diagnosis

method is presented for offline evaluation of stored data to

distinguish intermittent and transient faults.

The next section gives an overview of the proposed method,

followed by a brief discussion of the used terminology. Section

IV presents the diagnosis algorithm, and Section V discusses

the experimental results.

II. OVERVIEW

A self-checking circuit is capable of detecting errors con-

current to the functional operation. Typically, a checker circuit

checks whether an encoded output is a codeword or not. If it

is not a codeword, an error indication is given.

In the considered architecture (cf. Fig. 2), we consider self-

checking circuits based on separable codes. The separable

check bits are called signature in the following. The circuit

is extended with a storage, called signature log (SILO). Upon

error detection, both the input stimulus and the code signatures

are stored. This requires that the primary and pseudo-primary

inputs are equipped with shadow registers to allow extraction

of the stimuli. The memory of the SILO can be (persistent) sys-

tem memory or chip-internal or external FLASH, for instance.

Combinational Circuit 

Concurrent error 

detection 

Failed 

Good 

Control 

Error 

detected 

Output 

Code signature 

SILO 

(Signature log) 

Sig. 

Input 

|S| stimuli 

Fig. 2. Overview of the signature log (SILO) architecture

Available design-for-debug structures such as trace buffers can

be reused. A small controller is responsible to store the stimuli

and signature data. In principle, the input data can also be

compressed using a low-overhead compression algorithm if a

CPU is available.

Apart from failing input stimuli and corresponding sig-

natures, it is also important to store a set of input stimuli

that did not trigger an error. This information helps during

diagnosis to narrow down possible fault locations and fault

activation patterns. The selection of non-failing input stimuli

can be deterministic (e.g. at regular intervals, or a number of

stimuli after a detected error) or random. However, storing

consecutive input stimuli may impose additional overhead for

at-speed high bandwidth data storage. Here, we assume that

non-failing stimuli are selected at random intervals.

During a maintenance session, or if a certain number of

errors have been detected, the data in the SILO is extracted

for offline analysis. A diagnosis algorithm then analyzes the

stored stimuli and signatures to distinguish intermittent from

transient behavior. If the SILO contains only a single failing

entry, a distinction between a transient and an intermittent

faulty behavior is in principle not possible.

Storing the environmental and internal operation conditions

of the system, like temperature, VDD, or the system state at

the moment of failure, may further improve the diagnostic

resolution. But this is beyond the scope of this paper.

III. TERMINOLOGY AND PROBLEM DESCRIPTION

The goal is to distinguish intermittent and transient faults in

the circuit under diagnosis (CUD) using only the information

stored in the SILO. Intermittent faults shall not be falsely

classified as transient faults to avoid overlooking systematic

reliability threats in the system.

Let S be the set of input stimuli stored in the SILO and |S|
be the number of stored stimuli. Furthermore, F ⊆ S is the

set of failed stimuli, i.e. stimuli that cause an error indication

in the self-checking circuit. For the failed stimuli, the code

signatures are also stored. For the remaining stimuli S \ F ,

the code signature is error-free and can be obtained by logic

simulation.

The task is to determine whether the observed failures have

been caused by an intermittent fault or multiple transient faults



using only the |S| stimuli and |F | failed signatures stored

in the SILO. Since different input stimuli lead to different

signatures, a simple comparison of stored signatures is not

meaningful to distinguish intermittent from transient faults.

In the following, we do not further investigate the classifi-

cation of permanent faults since they can be easily detected

and diagnosed by a structural test or repeated application of

the stored failing simuli.

IV. DIAGNOSIS ALGORITHM FOR SIGNATURE

CLASSIFICATION

The fault model independent diagnosis algorithm ”Pointer”

of [10] is adopted here. Pointer performs an effect-cause

analysis of the input stimuli and responses. It uses the condi-

tional stuck-at line calculus to characterize the faulty behavior

of the circuit under diagnosis (CUD) by considering both

the topology and the defect behavior. A conditional stuck-

at line fault is a stuck-at fault at a location f with an

arbitrary activation condition. This activation condition may

for instance be of Boolean or temporal nature and allows to

model intermittent or transient fault activation.

For each fault location f in the fault machine (circuit model)

and for each stored stimulus s ∈ S, an evidence e(f, s) :=
(∆σs,∆ιs,∆τs,∆γs) is computed by fault simulation and

response comparison between the fault machine under f and

the CUD. ∆σs denotes the number of outputs that fail both in

the CUD and the fault machine (cf. Fig. 3). ∆ιs and ∆τs are

the number of outputs mispredicted by the fault machine. ∆ιs
is the number of outputs that fail in the fault machine, but are

correct in the CUD. ∆τs is the number of outputs that fail

in the CUD, but are correct in the fault machine. ∆γs is the

minimum of ∆ιs and ∆σs. If ∆γs = 0, the conditional stuck-

at fault at f partially explains the faulty behavior of the CUD:

f is active and the failing outputs in the fault machine are a

subset of the CUD (∆ιs = 0), or f is not active (∆σs = 0). If

∆γs > 0, the conditional fault at f is a less suitable suspect.

Circuit under 

diagnosis 

ΔĲ
s 

Fault machine 

(circuit model) 

s s 

f 

Δı
s 

Δι
s 

failing 

outputs 

Fig. 3. Response analysis in Pointer diagnosis (adopted from [10])

The evidences are then summed up over the set of stimuli

yielding e(f, S) := (σS , ιS , τS , γS), with σS :=
P

s∈S
∆σs

(analogous for ιS , τS , γS). In this way, the evidences capture

the information provided by both failing and non-failing

stimuli in S for diagnosis.

The fault locations are then ranked by their evidences, firstly

in increasing order of γS , then in decreasing order of σS and

finally in increasing order of ιS [10]. The most likely candidate

is called the top suspect f̂ with evidence e(f̂ , S). If the top

suspect is indeed the root cause, σS will be maximum among

all suspects and ιS = τS = γS = 0.

Obviously, a single line suspect cannot explain defects

affecting multiple lines. However, the evidence of such a

suspect still allows a classification of the faulty behavior using

the values of ιS and τS [10]. If τS > 0, a single (conditional)

stuck-at fault in the fault machine cannot explain the faulty

behavior. If ιS > 0, then the fault activation depends on

a (unknown) condition, which may be temporal, Boolean,

or related to the environment. Using the evidence, Pointer

classifies the top suspect as single (permanent) stuck-at, single

conditional stuck-at, multiple stuck-at, or multiple conditional

stuck-at fault [10].

Yet this is insufficient for a distinction of transient and

intermittent behavior caused by multiple transient effects or

intermittent faults that affect multiple lines in the circuit. The

evidence of a fault location f is thus extended by φ, the

number of failing stimuli, i.e. stimuli for which σs > 0:

φ :=
�

�{s ∈ S|σs > 0}
�

�.

φ can be used to reason about the temporal nature of the

observed faulty behavior since higher values of φ indicate

frequent observation of failures at one fault location. For

transient events, φ of the respective affected fault locations

equals 1 with high probability. This is because it is unlikely

that different transient faults affect the same location multiple

times (typically only one failing stimulus per transient). In

case of intermittent behavior that has been detected multiple

times, φ will typically have values greater than 1. If there are

multiple transient faults with overlapping output cones (some

common failing signature bits), φ of the top suspect can be

greater than one. This makes the distinction to intermittent

faults impossible. In the worst case, a circuit that suffered

from transient faults is replaced without need. As shown

by the experiments below, this happens in 12.7% of the

investigated scenarios. In most cases, however, φ of the top

suspect is a good classifier to distinguish between transient

and intermittent effects.

V. EVALUATION

The proposed diagnosis scheme is evaluated in experiments

with fault injection of permanent, intermittent, and single and

multiple transient faults (cf. Sec. V-A). In the evaluation, the

achievable diagnostic resolution by use of the signature log

SILO is assessed. The experimental flow is presented in Sec.

V-B, the results are discussed in Sec. V-C.

A. Considered Fault Models

The following fault models are evaluated in the experiments:

Permanent faults: A Byzantine bridge fault between two

signal lines (k, l) is injected into the circuit [17]. Depending

on the input pattern, this fault may alter the values of line l,

line k, or of both lines in the circuit.

The Byzantine bridge fault model has been included in the

evaluation since it causes fault effects originating at two



different lines in the circuit. Since it may be easily confused

with transient effects at different lines, this complicates the

diagnosis task.

Intermittent faults: A Byzantine bridge fault is injected into

the circuit, but it is considered active only for a fraction

act (0 < act < 1) of detecting input stimuli. For the

remaining stimuli that could detect the fault, the fault will

not generate erroneous output values. These stimuli are called

detecting but non-failing stimuli. The lower the values of act

for intermittent faults, the more difficult is their distinction

from transient faults.

As second type of intermittent fault, one intermittent stuck-

at fault is injected into the circuit. The stuck-at fault is

considered active only for the fraction act of the detecting

input stimuli.

Transient faults: Different numbers of single event transients

are injected into the circuit. Depending on the technology and

transferred particle energy, a single or multiple signals in the

circuit can be affected. The time period until the effect of

a transient has been mitigated, may vary as well. Here we

assume that a single line is affected for at most one clock

period and inject a stuck-at fault for one clock cycle. The

fault effect may still propagate to multiple circuit outputs.

B. Evaluation Flow

The fault injection experiments are conducted for the dis-

cussed permanent, intermittent (act = 0.5), and transient

faults. The faults are selected randomly from the fault universe.

In the experiments, random pattern fault simulation is used

to select the failing stimuli. |F | failing patterns and signatures

are stored in the SILO (cf. Sec. III). For an intermittent fault,

the parameter act defines the fraction of detecting stimuli for

which the fault generates erroneous output values.

If the SILO does not contain detecting but non-failing

stimuli, the fault appears as permanently active. To reflect the

intermittent nature of the fault (and increase the difficulty for

the diagnosis), |F | · 1−act

act
detecting but non-failing stimuli are

stored in the SILO.

Each injection, pattern selection, and diagnosis is repeated

N = 20 times, and the results are averaged. In the experi-

ments, |S| is set to 20, and |F | is set to 5. For transient faults,

the SILO contains 1, 3, or 5 failing patterns depending on the

number of injected transients. These numbers are chosen as

an example. Experiments with a much larger number of non-

failing stimuli (|S| = 100) have been conducted as well. The

diagnosis quality did not significantly improve. If |F | << 5,

the distinction between intermittent and transient faults is

more difficult since the available data becomes insufficient.

Experiments with |F | = 3 are briefly discussed at the end of

the section.

In the experiments, a double error detecting (DED) Ham-

ming code, a triple error detecting (TED) Hsiao code, and

a cyclic code are investigated for self-checking circuits. The

original circuit (plain) is also included to assess the diagnostic

quality when responses are not encoded/compacted. This cor-

responds to the achievable diagnostic quality when duplication

with comparison or triple modular redundancy is used and

failing responses are stored.

C. Results

Table I shows the characteristics of the used ISCAS bench-

mark circuits and industrial circuits (p*k) kindly provided by

NXP. The third and fourth columns give the number of primary

and pseudo-primary inputs and outputs. The last three columns

give the number of signature (check) bits depending on the

used error detection code.1

TABLE I. CIRCUIT CHARACTERISTICS

Circuit
Gate

Inputs
Outputs Check bits for code

count (Plain) DED TED Cyclic

s5378 3223 214 228 8 9 12
s9234 5944 247 250 9 10 14

s13207 8668 700 790 10 11 20
s15850 10211 611 684 10 11 20
s35932 16353 1763 2048 12 13 22
s38417 23537 1664 1742 11 12 22
s38584 21462 1464 1730 11 12 22

p45k 38811 3739 2550 12 13 24
p77k 65015 3487 3400 12 13 24
p78k 68263 3148 3484 12 13 20
p81k 106450 4029 3952 12 13 24
p89k 80963 4632 4557 13 14 21

p100k 84356 5902 5829 13 14 23
p141k 152808 11290 10502 14 15 28

1) Size of the SILO: The required size of the SILO in bits

can be computed from the number of inputs (I), the number

of signature size or check bits (C), and |S| and |F | as follows:

size SILO = |S| · I + |F | · C,

assuming that the bit-wise difference between predicted and

generated check bits [6] is stored. For the largest circuit and

the parameters discussed above, 272 Kibits are required if

the uncompacted responses are stored, and 221 Kibits if the

compacted signatures are employed.

2) Discussion of circuit p100k: Figure 4 shows the results

of the diagnosis for circuit p100k and the different codes.

The upper bar chart shows the diagnosis classification of the

top suspect for 1, 3, and 5 transient faults as single stuck-

at, single conditional stuck-at, multiple stuck-at, or multiple

conditional stuck-at fault. A transient fault may be classified

as unconditional single or multiple stuck-at if none of the non-

failing stimuli in the SILO would detect a transient fault at that

fault site. Thus, conditional activation cannot be concluded in

principle from the data available in the SILO.

The black data points in the chart give the value of φ for

the top suspect, averaged over the 20 iterations. If only one

transient is injected, φ = 1. For multiple transients, values

greater than 1 are observed for the DED, TED, and cyclic

code. This happens if there exists a transient at a fault location

1The check bits for a cyclic code are set to at most twice the number of
DED bits and may be smaller if a generator is not found for that number.



●●●● ●●●● ●●●●

1 1 1
●●●● ●●●● ●●●●

1 1.1 1.2

●●●● ●●●● ●●●●

1 1.05 1.15
●●●● ●●●● ●●●●

1 1 1.1

Plain DED

TED Cyclic

0

5

10

15

20

0

5

10

15

20

1 3 5 1 3 5
Number of transient faults

N
u
m

b
e
r 

o
f 
in

s
ta

n
c
e
s

p100k Transient faults

●
● ●

●
● ●

●
● ●

●
● ●

53.85 3.75
●

● ●
●

● ●
●

● ●
●

● ●

53.95 4

●● ● ●● ● ●● ● ●● ●

54.55 4.5
●

● ●
●

● ●
●

● ●
●

● ●

53.9 3.75

Plain DED

TED Cyclic

0

5

10

15

20

0

5

10

15

20

Byz.(0.5)Byz.(1.0) Interm. Byz.(0.5)Byz.(1.0) Interm.
Fault type

N
u
m

b
e
r 

o
f 
in

s
ta

n
c
e
s

p100k Intermittent and permanent faults

Single stuck Single cond. Multi stuck Multi cond.

Fig. 4. Diagnosis result for circuit p100k (black points: φ averaged over 20
iterations)

f in the fault machine that can be detected by more than one

of the failing stimuli F in the SILO and whose fault effect

also propagates to the failing outputs in the stored erroneous

signatures. The low values of φ, however, show that this case

is infrequent. φ > 1 is observed mainly for the DED, TED,

and cyclic codes, which introduce global reconvergences at the

output parity trees and thus, make it more likely that different

fault locations affect the same failing outputs in the erroneous

signatures. In the worst case with 5 injected transient faults

and the DED code, in four out of 20 iterations φ > 1.

The lower chart shows the diagnosis result for Byzantine

bridge faults with act = 0.5 and act = 1.0 (permanently acti-

vated), as well as an intermittent stuck-at fault with act = 0.5.

Since the bridge faults can alter the values of two lines in

the circuit, the evidence of the top suspect may be classified

as multiple stuck-at or multiple conditional stuck-at faults,

depending on the stored stimuli in the SILO. Also, one of the

two, or both of the affected lines may cause errors propagating

to the outputs. Depending on which line is activated more

often, φ may vary.

The values of φ are given as black data points again. For

the intermittent stuck-at fault and 5 stored failing stimuli, the

diagnosis identifies a top suspect that is detected exactly 5

times. For the bridge faults, φ may also equal 1. In that case,

the fault effects could not be classified as intermittent but

are considered transient because of insufficient failure data.

This happens in the worst case four times in the 20 iterations

(cyclic code, act = 1.0). On average over the different

injected Byzantine and intermittent stuck-at faults, such a

wrong diagnosis is observed for only 5.42% of the iterations. If

the circuit goes into operation again and additional failure data

is collected, the diagnosis can be repeated with the union of

all failure data extracted so far, which improves the diagnostic

result.

In summary, the identification of the top suspect using

the diagnosis algorithm on the stored stimuli and signatures

and using the value of φ to reason about the temporal fault

activation is robust for most of the injected faults.

3) Results for all circuits: Table II shows the values of φ

of the top suspects for all investigated circuits, also averaged

over the 20 iterations. The results of the injection of a single

transient fault is omitted since φ = 1 for all circuits and codes.

The last four rows of the table give the averaged values of φ

over all the circuits.

For the plain circuits (no compacted signatures), φ is very

close to 1 for multiple transient events, with a maximum of

φ = 2. For the DED, TED, and cyclic codes, the maximum

value of φ is 4 (5 injected transient faults). Over all circuits,

in 12.7% of the experiments, φ > 1. In such a case, the faulty

behavior is falsely classified as intermittent, and a defect-free

unit would be replaced to avoid safety risks. On average over

all circuits, the values of φ are still below 1.5.

For the intermittent stuck-at fault, φ equals 5. Thus, φ is a

robust and safe means to classify the intermittent nature of this

type of fault. For the Byzantine bridge faults, the values of φ

can be as low as 1, which happens for 4.55% of the iterations.

For these faults, the failure data was insufficent to conclude

the intermittency of the faulty behavior.

The runtime of the diagnosis algorithm for one circuit is at

most 34.9s and has only low memory requirements. It can be

easily conducted on a workstation in a workshop.

4) Results for |F | = 3: The diagnosis experiments are

repeated assuming that only three failing signatures are stored

in the SILO. This makes the distinction of intermittent and

transient faults even more difficult. On average, for intermittent

Byzantine bridges, φ ranges between 2.36 and 2.63 for the

different codes, and for permanent Byzantine bridges between

2.45 and 2.56. Even with this limit on available failure data,

it is possible to correctly identify intermittent faulty behavior

for the majority of fault injections.

VI. CONCLUSION

The failure analysis of field returns incurs high costs. Often,

circuits are classified as no-trouble-found. Here, we propose

a diagnosis method for self-checking circuits. When failures



are observed, the erroneous code signature and corresponding

input stimulus are stored in a signature log on chip. The data

in the signature log is later extracted for offline analysis.

A diagnosis algorithm is presented that allows to classify

the temporary nature of the observed failures. Experimental

results using fault injection demonstrate that the vast majority

of faults are correctly classified. This classification and the

stored information can help to pinpoint the fault location

and activation conditions for intermittent faults and to avoid

needless replacements of units in case of transient faults.

ACKNOWLEDGMENT

This work was partially supported by the German Research

Foundation (DFG) under grant WU 245/13-1 (RM-BIST).

REFERENCES

[1] D. A. Thomas, K. Ayers, and M. Pecht, “The trouble not identified
phenomenon in automotive electronics,” Microelectronics Reliability,
vol. 42, pp. 641–651, 2002.

[2] H. Qi, S. Ganesan, and M. Pecht, “No-fault-found and intermittent
failures in electronic products,” Microelectronics Reliability, vol. 48, pp.
663–674, 2008.

[3] S. Davidson, “Understanding NTF components from the field,” in Proc.

IEEE International Test Conference (ITC), 2005, pp. 1–10, paper 14.1.
[4] C. Constantinescu, “Trends and challenges in VLSI circuit reliability,”

IEEE Micro, vol. 23, no. 4, pp. 14–19, July 2003.
[5] D. A. Anderson and G. Metze, “Design of totally self-checking check

circuits for m-out-of-n codes,” IEEE Trans. Computers, vol. 22, no. 3,
pp. 263–269, Mar. 1973.

[6] N. Touba and E. McCluskey, “Logic synthesis of multilevel circuits
with concurrent error detection,” IEEE Trans. Computer-Aided Design

of Integrated Circuits and Systems, vol. 16, no. 7, pp. 783–789, Jul 1997.
[7] A. Dalirsani, M. A. Kochte, and H.-J. Wunderlich, “SAT-based Code

Synthesis for Fault-Secure Circuits,” in Proc. IEEE Symp. Defect and

Fault Tolerance in VLSI and Nanotech. Systems (DFT), 2013, pp. 38–44.
[8] A. Mahmood and E. McCluskey, “Concurrent error detection using

watchdog processors—a survey,” IEEE Trans. Computers, vol. 37, no. 2,
pp. 160–174, Feb 1988.

[9] R. Vemu, A. Jas et al., “A low-cost concurrent error detection technique
for processor control logic,” in Proc. Design, Automation and Test in

Europe (DATE), March 2008, pp. 897–902.
[10] S. Holst and H.-J. Wunderlich, “Adaptive debug and diagnosis without

fault dictionaries,” Journal of Electronic Testing: Theory and Application

(JETTA), vol. 25, no. 4-5, pp. 259–268, Aug. 2009.
[11] S. Holst and H. Wunderlich, “A diagnosis algorithm for extreme space

compaction,” in Proc. Design, Automation Test in Europe Conference

(DATE), April 2009, pp. 1355–1360.
[12] S. Kamal, “An approach to the diagnosis of intermittent faults,” IEEE

Trans. Computers, vol. C-24, no. 5, pp. 461–467, May 1975.
[13] I. Koren and Z. Kohavi, “Diagnosis of intermittent faults in combina-

tional networks,” IEEE Trans. Computers, vol. 26, no. 11, pp. 1154–
1158, 1977.

[14] J. De Kleer, “Diagnosing multiple persistent and intermittent faults,” in
Proc. International Joint Conference on Artifical Intelligence, 2009, pp.
733–738.

[15] L. Rodrı́guez Gómez, A. Cook et al., “Adaptive Bayesian Diagnosis
of Intermittent Faults,” Journal of Electronic Testing: Theory and

Application (JETTA), vol. 30, no. 5, pp. 527–540, 2014.
[16] R. K. Iyer, L. T. Young, and P. V. K. Iyer, “Automatic recognition of

intermittent failures: An experimental study of field data,” IEEE Trans.

Computers, vol. 39, no. 4, pp. 525–537, Apr. 1990.
[17] M. Renovell, P. Huc, and Y. Bertrand, “CMOS bridging fault modeling,”

in Proc. IEEE VLSI Test Symposium (VTS), Apr 1994, pp. 392–397.

TABLE II. VALUES OF φ OF THE TOP SUSPECT FOR |S| = 20

Circuit Code
Transient Interm. act=0.5 Perm.

3 5 SAF Byz.Br. Byz.Br.

Plain 1.20 1.30 5.00 3.85 3.85
DED 1.15 1.70 5.00 3.70 3.55
TED 1.20 1.50 5.00 4.35 4.45

s5378

Cyclic 1.40 2.05 5.00 4.70 4.60
Plain 1.00 1.05 5.00 4.25 4.10
DED 1.25 1.45 5.00 4.40 4.20
TED 1.30 1.40 5.00 4.50 4.40

s9234

Cyclic 1.15 1.30 5.00 4.10 4.10
Plain 1.00 1.05 5.00 4.10 4.15
DED 1.25 1.50 5.00 3.95 4.05
TED 1.15 1.25 5.00 4.50 4.35

s13207

Cyclic 1.05 1.40 5.00 4.85 4.75
Plain 1.00 1.00 5.00 4.05 3.75
DED 1.05 1.25 5.00 4.45 4.40
TED 1.20 1.40 5.00 3.75 4.20

s15850

Cyclic 1.20 1.40 5.00 4.45 4.25
Plain 1.00 1.00 5.00 3.80 3.85
DED 1.50 1.50 5.00 4.15 3.75
TED 1.10 1.25 5.00 3.50 3.80

s35932

Cyclic 1.00 1.15 5.00 3.90 3.70
Plain 1.05 1.05 5.00 3.55 3.60
DED 1.30 1.75 5.00 3.75 3.85
TED 1.30 1.30 5.00 3.35 3.45

s38417

Cyclic 1.05 1.00 5.00 3.80 4.00
Plain 1.00 1.00 5.00 3.75 3.55
DED 1.10 1.60 5.00 3.45 3.70
TED 1.00 1.40 5.00 4.15 4.00

s38584

Cyclic 1.10 1.25 5.00 3.15 3.50

Plain 1.05 1.05 5.00 3.65 3.40
DED 1.15 1.35 5.00 4.00 4.05
TED 1.10 1.40 5.00 4.60 4.20

p45k

Cyclic 1.10 1.25 5.00 4.40 4.40
Plain 1.00 1.00 5.00 4.50 4.30
DED 1.25 1.20 5.00 4.45 4.40
TED 1.10 1.20 5.00 4.85 4.55

p77k

Cyclic 1.20 1.30 5.00 4.80 4.75
Plain 1.00 1.00 5.00 3.40 3.35
DED 1.25 1.55 5.00 3.10 3.05
TED 1.20 1.65 5.00 2.95 2.90

p78k

Cyclic 1.15 1.40 5.00 3.20 2.70
Plain 1.00 1.00 5.00 4.10 4.20
DED 1.45 1.65 5.00 3.55 3.70
TED 1.20 1.55 5.00 3.85 3.55

p81k

Cyclic 1.30 1.65 5.00 4.50 4.35
Plain 1.00 1.00 5.00 4.00 3.95
DED 1.10 1.05 5.00 4.15 4.05
TED 1.10 1.05 5.00 4.85 4.60

p89k

Cyclic 1.50 1.75 5.00 4.55 4.55
Plain 1.00 1.00 5.00 3.85 3.75
DED 1.10 1.20 5.00 3.95 4.00
TED 1.05 1.15 5.00 4.55 4.50

p100k

Cyclic 1.00 1.10 5.00 3.90 3.75
Plain 1.00 1.00 5.00 3.80 3.80
DED 1.15 1.50 5.00 3.50 3.75
TED 1.15 1.15 5.00 3.60 4.00

p141k

Cyclic 1.15 1.35 5.00 4.15 4.10

Plain 1.02 1.04 5.00 3.90 3.83
DED 1.22 1.45 5.00 3.90 3.89
TED 1.15 1.33 5.00 4.10 4.07

Avg.

Cyclic 1.17 1.38 5.00 4.17 4.11


