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Abstract— Small gate delay faults (SDFs) are not detectable 

at-speed, if they can only be propagated along short paths. These 

hidden delay faults (HDFs) do not influence the circuit’s behavior 

initially, but they may indicate design marginalities leading to 

early-life failures, and therefore they cannot be neglected. HDFs 

can be detected by faster-than-at-speed test (FAST), where typi-

cally several different frequencies are used to maximize the cov-

erage. A given set of test patterns P potentially detects a HDF if it 

contains a test pattern sensitizing a path through the fault site, 

and the efficiency of FAST can be measured as the ratio of actu-

ally detected HDFs to potentially detected HDFs. 

The paper at hand targets maximum test efficiency with a 

minimum number of frequencies. The procedure starts with a 

test set for transition delay faults and a set of preselected equidis-

tant frequencies. Timing-accurate simulation of this initial setup 

identifies the hard-to-detect faults, which are then targeted by a 

more complex timing-aware ATPG procedure. For the yet unde-

tected HDFs, a minimum number of frequencies are determined 

using an efficient hypergraph algorithm.  

Experimental results show that with this approach, the num-

ber of test frequencies required for maximum test efficiency can 

be reduced considerably. Furthermore, test set inflation is limited 

as timing-aware ATPG is only used for a small subset of HDFs. 

 

I. INTRODUCTION 

Hidden delay faults (HDFs) are small gate delay faults for 

which even the slack of the longest sensitizable path is too 

large to observe the fault effect at nominal (at-speed) fre-

quency. Consequently, HDFs are immune to timing-aware 

ATPG and cannot even be detected by at-speed testing. Al-

though they are not visible during normal operation and will 

not be observed in the field, they may point to design mar-

ginalities, and thus to potential early-life failures (ELFs) 

[Kim10]. Therefore, it is important to screen out as many 

HDFs as possible already during manufacturing test. Faster-

than-at-speed test (FAST) addresses this problem by applying 

the test patterns with frequencies above the nominal system 

frequency [Yan03]. To maximize the HDF coverage, in gen-

eral, several different frequencies distributed over the interval 

[fnom, fmax] are required, where fmax is the highest frequency 

during test and fnom denotes the nominal test frequency.  

The maximal frequency fmax depends on the capabilities of 

the automatic test equipment (ATE) or the on-chip clock gen-

erators [McLaurin00, Press06, Tayade08, Pei10]. Typically 

fmax is up to 3 times higher than the nominal clock rate 

[Amodeo05, Ahmed06, Lee08]. For the selection of interme-

diate frequencies mainly two strategies have been followed so 

far. The first strategy simply uses a preselected set F of equi-

distant frequencies in [fnom, fmax], e.g. 1.5 · fnom, 2 · fnom, 

2.5 · fnom, and 3 · fnom = fmax, and tries to adjust the test set 

appropriately. Here, basic schemes sample each pattern for 

multiple frequencies [Yan03, Lee08], while more sophisti-

cated approaches select or generate patterns specifically for 

each frequency [Krusemann04, Ahmed06, Yoneda11, Fu12]. 

In contrast to that, the second strategy works with a given set 

of test patterns P and determines a minimum set of frequen-

cies, such that maximum test efficiency is achieved, i.e. all 

HDFs can be detected whose associated transition faults are 

covered by P [Hellebrand14]. 

Working with a set F of preselected equidistant frequencies 

can facilitate clock generation, but the number of test patterns 

may increase considerably. Furthermore, complete HDF cov-

erage cannot be guaranteed, as some faults may become visi-

ble only with specific frequencies outside F. On the other 

hand, optimizing frequencies with respect to a given test set P 

provides the best possible HDF coverage achievable with P 

and technically feasible frequencies not exceeding fmax. This 

supports low cost test generation, and the results in [Helle-

brand14] indicate that typically a small number of frequencies 

can provide maximum test efficiency. However, these results 

have only been verified with symbolic simulation and may be 

too optimistic. Furthermore, the computational effort for 

solving the underlying optimization problem may grow very 

high for larger circuits.  

This paper presents a new hybrid approach for selecting 

FAST frequencies, which combines the advantages of both 

previous strategies. To the best of our knowledge, it is the first 

approach that achieves the following goals at the same time: 

� maximum test efficiency possible with frequencies not 

exceeding fmax, 

� verification by exact timing-aware fault simulation, 

� minimum number of frequencies. 

Moreover, it limits the test size and keeps the computational 

effort low. The procedure starts with a test set for transition 



faults and a preselected set of equidistant frequencies. Addi-

tional timing-aware patterns are then generated only for the 

remaining hard-to-detect faults, and optimal frequency selec-

tion is based on the complete test set combining the patterns 

for transition test with the timing-aware patterns.  

The remainder of this paper is organized as follows. Section 

II introduces the terminology and summarizes the necessary 

background. Subsequently, the new approach for frequency 

selection is explained in detail in Sections III and IV. Section 

V demonstrates its effectiveness with the help of experimental 

data, and finally, Section V concludes the paper. 

II. BACKGROUND 

This section provides the necessary background and the 

terminology to understand the proposed approach for selecting 

FAST frequencies.  

A. Detection Ranges and Frequency Selection 

This paper assumes a gate being faulty, if its delay exceeds 

3σ, where σ is the standard deviation of the gate delay. De-

pending on the test set and the test frequency, such a fault can 

be a hidden fault as specified in Definition 1. 

Definition 1: Let ϕ be a gate delay fault, P a set of test pat-

terns, and let f be a frequency. If ϕ is not detected by P at 

frequency f, then ϕ is called a hidden delay fault with respect 

to P and f. 

To clearly show under which conditions a small delay fault 

is a hidden delay fault, the set of all hidden delay faults with 

respect to a test set P and a set of frequencies F is denoted by 

Φ(P, F).  

Frequencies f are associated with observation times t = 1/f, 

assuming that the test response is sampled at the end of the 

clock period. The maximum frequency fmax corresponds to a 

minimum observation time tmin, and the nominal frequency fnom 

to the nominal observation time tnom.  

Definition 2: Let ϕ be a gate delay fault, P a set of test pat-

terns, and let t ∈ [tmin, tnom] be a point in time. Then t is called 

a detecting observation time, if ϕ is detected by capturing the 

test responses for P at time t. The set I(ϕ) of all detecting 

observation times is called the detection range of ϕ with 

respect to P. 

For each observation time in the detection range there is at 

least one circuit output and at least one test pattern, such that 

the fault free and faulty test responses are different. Figure 1 

shows a simple example considering only a single output and 

a single test pattern.  

Clearly the output waveforms differ, however, the fault ef-

fect is not visible at the nominal observation time tnom. The 

detection range I(ϕ) of ϕ is the union of the intervals in which 

the fault free and faulty waveform differ. Note that differences 

below the minimum observation time tmin are neglected. Figure 

1 also shows that small glitches in the waveforms are not 

considered for the detection range due to pulse filtering in 

CMOS technology. 

 

Figure 1. Detection range of a fault ϕ. 

 

Based on the detection ranges for all HDFs, in [Helle-

brand14] the selection of test frequencies has been formulated 

as the following optimization problem: 

 Optimum Frequency Selection: Given a set Φ of hidden 

delay faults and their detection ranges I(ϕ) for all ϕ ∈ Φ. Find 

a minimum set of observation times T = {t0, ..., tn-1}, such that 

for each ϕ ∈ Φ the intersection I(ϕ) ∩ T is not empty. If there 

are two or more solutions with the same cardinality, select the 

one with larger observation times. 

The problem Optimum Frequency Selection corresponds to 

a hitting set problem, which is an NP-complete problem 

[Karp72]. Therefore only a simple heuristic has been used in 

[Hellebrand14]. 

B. Accurate Timing Simulation 

To limit the simulation effort for determining the detection 

ranges, in [Hellebrand14] only a symbolic path analysis was 

used. In this work, timing accurate simulation of small delay 

faults becomes feasible using the recently developed high-

throughput simulation algorithm of [Schneider15]. It fully 

exploits data parallelism as well as structural parallelism in-

herent in patterns, gates, and faults by mapping the simulation 

task to a graphics processor (GPU).  

The algorithm simulates signal waveforms and supports in-

dividual rising and falling pin-to-pin delays as well as glitch 

filtering at gates. It can correctly evaluate fault activation and 

propagation by glitches along reconvergent signals. 

III. HYBRID FREQUENCY SELECTION 

As already pointed out above, the proposed hybrid approach 

for frequency selection proceeds in several steps. The flow-

chart of Figure 2 summarizes the procedure, the inputs of 

which are a set of test patterns Pinit for transition delay faults, 

the nominal test frequency fnom with observation time tnom, the 

maximum possible frequency fmax with observation time tmin, 

and a parameter k specifying the number of equidistant fre-

quencies.  

In the preprocessing phase the transition faults detected by 

Pinit are extracted and mapped to the initial fault set of poten-

tially detectable small delay faults. Then a topological check 

sorts out all small delay faults for which either the longest 

topological path is too short to detect the fault at fmax or the 

shortest topological path is large enough to detect the fault at-



speed. In the first case that fault could only be detected with a 

frequency higher than fmax. In the second case the fault will 

always be detected by an at-speed test regardless of the actu-

ally sensitized path. The remaining faults are called relevant 

small delay faults. 

 

Figure 2. Workflow for frequency selection. 

 

In the next step accurate timing simulation is performed for 

the relevant small delay faults to find the set of hidden delay 

faults Φ(Pinit, fnom) as well as their detection ranges. 

Then k equidistant frequencies are added to fnom by defining 

k equidistant observation times t0, ..., tk-1 as follows: 

  t0 = tmin = 0.3 · tnom, and 

  ti = tmin + i · (tnom – tmin)/k, 0 < i < k. 

This provides Tinit := {t0, ..., tk-1} and the set of correspond-

ing frequencies is denoted by Finit. The new observation times 

in Tinit are checked against the detection ranges I(ϕ) for all ϕ ∈ 

Φ(Pinit, fnom). If the intersection I(ϕ) ∩ Tinit is not empty, then ϕ 

can be deleted from Φ(Pinit, fnom). As a result, the set of hard-

to-detect hidden delays Φ(Pinit, Finit) is obtained.  

For the faults in Φ(Pinit, Finit), additional test patterns are 

generated in the next step. Since Φ(Pinit, Finit) is usually small, 

more sophisticated ATPG methods can be used, e.g. timing-

aware ATPG [Lin06], [Yilmaz10], [Zolotov10], [Eggers-

gluess11], [Sauer13]. This yields an additional set of test 

patterns Padd. Timing accurate simulation is performed again 

with the patterns from Padd. This determines the hidden delay 

faults Φ(Ptotal, fnom) with respect to Ptotal := Pinit ∪ Padd and the 

nominal test frequency fnom, as well as an update of the 

detection ranges, such that for each fault ϕ ∈ Φ(Ptotal, fnom) the 

detection range I(ϕ) is now available.  

In the last step, the problem Optimum Frequency Selection 

is solved using the hypergraph algorithm described in [Shi10], 

a short summary of which can be found in section IV. The 

selection is based on the set of hidden delay faults 

Φ(Ptotal, fnom) and the updated detection ranges for Ptotal. The 

solution provides the final set of optimal frequencies Fopt 

guaranteeing maximum test efficiency. Please note that the 

preselected frequencies Finit are not necessarily contained in 

Fopt. Although the preselected frequencies in Finit may not be 

needed for the actual test, the experimental results will show 

that analyzing the low-cost scenario with Finit and Pinit is an 

excellent strategy to identify the hard faults and direct timing-

aware ATPG.  

In all simulation and analysis steps, the detecting 

observation times are associated with the respective test 

patterns. Thus, for each frequency the actually required 

patterns from Ptotal can be selected without any extra effort. 

IV. HYPERGRAPH-BASED OPTIMIZATION 

This section briefly summarizes how the hypergraph algo-

rithm in [Shi10] is applied to solve the problem Optimum 

Frequency Selection. A hypergraph H = (V, E) consists of a set 

of vertices V and a set of edges E ⊂ P(V). The degree deg(v) 

of a vertex v ∈ V is the number of edges connected to v, while 

the degree of an edge e ∈ E is its cardinality denoted by 

rank(e). A discrete hitting set problem corresponds to the 

following hypergraph problem. 

Minimum Hitting Set for Hypergraphs: Let H = (V, E) be a 

hypergraph. Find a minimum hitting set Vhit ⊂ V, such that for 

each e ∈ E the intersection e ∩ Vhit is not empty. 

The algorithm described in [Shi10] performs depth first 

search in a binary tree to explore all possible candidates for 

Vhit. In each step it is decided whether a vertex is added to the 

solution or not. Vertices are considered in the order of de-

creasing degrees. Searching the complete tree guarantees the 

optimal solution O(2|V|) time. To reduce the problem size as 

much as possible, the following reduction rules are applied 

before each decision in the search tree.  

Vertex domination: For a vertex v ∈ V let h(v) denote the 

set of edges “hit” by v. If there are two vertices v1, v2 ∈ V, 

such that h(v1) ⊂ h(v2), then v1 can be replaced by v2 in any 

solution, and thus can be removed from the hypergraph. 

Edge domination: If there are two edges e1, e2 ∈ E with e1 

⊂ e2, then each hit of e1 is also a hit of e2, and e2 can be de-

leted from the hypergraph. 

Essential vertices: If there is an edge e ∈ E containing only 

a single vertex v ∈ V, then v must be part of the solution. 

Degree-2 neighborhood: For a vertex v ∈ V define the 

degree-2 neighborhood as B
2
(v) := {w ∈ V | v = w or there is 

an e ∈ E with e = {v, w}}. If there is a v ∈ V, such that the 



number of edges connected to vertices in B
2
(v) \ {v} but not to 

v is smaller than |B
2
(v)| - 1, then v is added to the solution. 

While the first three rules are standard reduction rules for 

hitting set problems preserving the optimality of the solution, 

the fourth rule exploits the specific properties of degree-2 

edges in hypergraphs. The overall runtime of the algorithm is 

O(1.23801
|V|), which makes the algorithm very attractive for 

larger problem instances [Shi10].  

To map Optimum Frequency Selection to the Minimum 

Hitting Set Problem for Hypergraphs, the atomic intervals 

contained in the detection ranges are determined.  

Definition 3: Let I be a set of detection ranges. An interval 

I is considered as an atomic interval of I, if it can be obtained 

as an intersection of intervals in the detection ranges and it is 

minimal with this property, i.e. if there is an interval J in the 

detection ranges with I ∩ J ⊂ I, then I ∩ J = I. 

 As illustrated in Figure 3 the atomic intervals are obtained 

by intersecting the time axis with the start and end points of all 

intervals in all detection ranges. The set of vertices V is then 

defined as the set of all atomic intervals.  

 

Figure 3: Mapping detection ranges to vertices. 

 

The set of edges E is defined by creating an edge for each 

detection range and connecting it to all vertices hitting the 

detection range. Figure 4 shows the complete hypergraph for 

the example of Figure 3. 

 

Figure 4: Hypergraph for the detection ranges of Figure 3. 

 

Working with atomic intervals instead of just mapping the 

start and end points to vertices makes the problem formulation 

robust with respect to small process variations. No fixed ob-

servation times are associated with a solution, but rather small 

time windows for which the resulting FAST behavior is 

equivalent. 

V. EXPERIMENTAL RESULTS 

Experiments have been performed for a collection of 

ITC’99 [ITC99] and NXP benchmark circuits. Table I charac-

terizes the analyzed circuits after synthesis for a 90 nm 

technology library. The columns show the number of gates, 

the number of primary and pseudo-primary inputs, as well as 

the number of primary and pseudo-primary outputs. 

TABLE I. ANALYZED CIRCUITS 

Circuit Gates PIs+PPIs POs+PPOs 

b14 1 12438 260 214 

b15 1 6533 572 418 

b17 1 21858 1827 1348 

b18 1 75618 4116 3085 

b20 1 25547 533 450 

b21 1 25561 534 450 

b22 1 38568 786 664 

p45k 22414 3739 2550 

p78k 46504 3148 3484 

p81k 78665 4029 3952 

p89k 56662 4627 4557 

p100k 53836 5902 5829 

p141k 105347 11290 10502 

 

The initial set of test patterns Pinit has been generated by a 

commercial tool targeting transition faults (TF), and the addi-

tional set Padd has been obtained by performing timing-aware 

ATPG with the same tool. Table II shows the number initial 

number of small delay defects in column 2. As explained in 

section III, these faults correspond to the small delay faults 

which are potentially detectable by Pinit. The number of rele-

vant small delay faults after topological analysis is reported in 

column 3. Finally column 4 lists the number of hidden delay 

faults with respect to Pinit and the nominal test frequency fnom. 

TABLE II. SMALL AND HIDDEN DELAYS AT NOMINAL FREQUENCY 

Circuit # SDF # Relevant SDFs # HDFs 

Φ(Pinit, fnom) 

b14 1 25126 20956 18972 

b15 1 31504 15201 6817 

b17 1 97878 62464 50777 

b18 1 255960 147859 120470 

b20 1 59155 50058 49855 

b21 1 59761 50170 46631 

b22 1 93262 81291 75642 

p45k 127295 74851 66742 

p78k 268989 232626 203575 

p81k 434642 383678 372728 

p89k 314225 216031 193019 

p100k 301279 169612 149800 

p141k 575885 338336 317576 

 

For almost all circuits the timing aware patterns in Padd are 

not able to detect any additional small delays at nominal fre-

quency. Only for circuit p78k one additional fault is detected 

at speed. 

Table III shows the results of the hybrid frequency selection 

described in Section III. For all circuits, k = 6 equidistant 

frequencies were preselected. 



TABLE III. RESULTS OF OPTIMAL FREQUENCY SELECTION 

 Pinit Ptotal 

Circuit # Pattern  

pairs 

HDF coverage  

with Finit  

# Frequencies for 

100% test efficiency  

# Pattern 

pairs 

HDF coverage  

with Finit 

# Frequencies for 

100% test efficiency 

b14 1 655 94.61% 23 885 96.61% 19 

b15 1 302 85.14% 17 1102 94.28% 12 

b17 1 492 93.59% 32 1438 95.82% 24 

b18 1 1002 93.46% 30 2726 95.55% 26 

b20 1 943 96.57% 28 1513 98.43% 20 

b21 1 928 96.31% 29 1587 98.23% 22 

b22 1 1109 96.59% 35 2129 98.61% 25 

p45k 2756 97.73% 12 7888 98.08% 12 

p78k 51 99.49% 25 252 99.92% 14 

p81k 311 98.68% 34 4892 99.17% 31 

p89k 797 95.39% 36 3695 97.26% 31 

p100k 2633 96.37% 34 6736 97.43% 24 

p141k 812 97.25% 54 7305 98.87% 34 

 

 

Columns 2 to 4 show the results achievable with the initial 

test set Pinit. The number of pattern pairs is given in the second 

column. The percentages in the third column show that using 

the preselected frequencies in Finit already a large part of the 

initially hidden delay faults in Φ(Pinit, fnom) can be detected, 

but complete coverage of all relevant small delay faults is not 

possible. For comparison, the fourth column shows the 

optimal number of frequencies required to obtain maximum 

test efficiency, when the algorithm only uses the detection 

ranges for Pinit,. Columns 5 to 7 present the same analysis for 

the combination of transition delay and timing-aware patterns 

in Ptotal. The hidden delay faults targeted in this step are the 

faults in Φ(Ptotal, fnom). The results show that working with 

Ptotal considerably improves the results in both cases. Overall, 

Table III shows that maximum test efficiency, and thus 

complete coverage of all relevant small delay faults, is 

possible with at most 34 frequencies when the options of a 

commercial ATPG tool are properly exploited.  

The required number of frequencies can be further reduced, 

if a small reduction of test efficiency is accepted. To illustrate 

this, Figure 5 shows the test efficiency as a function of the 

number of frequencies for circuit p141k. The solid line 

corresponds to the results of frequency selection working with 

the initial test Pinit only, and the dotted line characterizes the 

results with Ptotal. As the remaining circuits exhibit similar be-

havior, the respective results are not displayed for simplicity. 

The curves in Figure 5 show that a relatively high coverage of 

relevant small delay faults can already be reached with very 

few frequencies (usually less than 10). Moreover, relying on a 

combination of transition fault and timing-aware patterns 

provides a much faster increase in test efficiency as indicated 

by the steeper curve. 

As already discussed in Section III, the preselected fre-

quencies Finit may not be part of the solution. As shown in the 

figure, the circuit contains a few extremely hard faults. Conse-

quently, the optimal solution contains many frequencies that 

detect only a single fault. Although it is very difficult to reach 

maximum test efficiency, the proposed approach can achieve 

this goal with a minimum number of frequencies. 

Due to the high reduction achieved by the timing-aware 

patterns the number of frequencies is still within an acceptable 

range. Verified by timing-accurate fault simulation, it provides 

the maximum efficiency for a test with frequencies technically 

limited by fmax. The computing time for the hybrid frequency 

selection is dominated by the timing-accurate fault simulation. 

For the largest circuit p141k, the simulation time is in the 

range of several hours, while the hypergraph algorithm for 

frequency selection only needs a few seconds. 

 

Figure 5. Test efficiency for circuit p141k as a function of the number of 

frequencies used with Pinit, (solid lines) and with Ptotal (dashed lines). 

VI. CONCLUSIONS 

Implementing faster-than-at-speed with preselected equi-

distant frequencies allows a simple setup, but it cannot 

guarantee complete coverage of hidden delay faults.  



Nevertheless, an analysis of this scenario with a basic test 

set helps to identify the hard faults and guide timing-aware 

ATPG. The presented approach combines transition delay 

patterns with timing-aware patterns for the hard faults to 

derive an optimal selection of frequencies. The solution 

guarantees maximum test efficiency with a minimum number 

of frequencies not exceeding fmax. The solution is verified by 

exact timing-aware fault simulation. Furthermore, it is robust 

against small delay variations, as each selected frequency 

corresponds to a small time window for which the resulting 

FAST behavior is equivalent. 
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