
Structural Software-Based Self-Test of

Network-on-Chip

Dalirsani, Atefe; Imhof, Michael E.; Wunderlich, Hans-Joachim

Proceedings of the 32nd IEEE VLSI Test Symposium (VTS’14) Napa, California, USA,

13-17 April 2014

doi: http://dx.doi.org/10.1109/VTS.2014.6818754

Abstract: Software-Based Self-Test (SBST) is extended to the switches of complex Network-on-Chips (NoC).
Test patterns for structural faults are turned into valid packets by using satisfiability (SAT) solvers. The test
technique provides a high fault coverage for both manufacturing test and online test.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic
reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form
to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

http://dx.doi.org/10.1109/VTS.2014.6818754

Structural Software-Based Self-Test

of Network-on-Chip

Atefe Dalirsani, Michael E. Imhof, Hans-Joachim Wunderlich

Institute of Computer Architecture and Computer Engineering, University of Stuttgart, Germany

{dalirsani, imhof}@iti.uni-stuttgart.de, wu@informatik.uni-stuttgart.de

Abstract—Software-Based Self-Test (SBST) is extended to the
switches of complex Network-on-Chips (NoC). Test patterns
for structural faults are turned into valid packets by using
satisfiability (SAT) solvers. The test technique provides a high
fault coverage for both manufacturing test and online test.

Index Terms—Network-on-Chip (NoC), Software-Based Self-
Test (SBST), Automatic Test Pattern Generation (ATPG),
Boolean Satisfiability (SAT)

I. INTRODUCTION

Network-on-Chips are an alternative for many core

System-on-Chips (SoC) enabling high-performance commu-

nication, with advantages for bandwidth, latency and de-

pendability. As the technology scales down and the operation

frequency increases, systems become more vulnerable to

complex defect mechanisms such as latent defects, timing

variations and aging. Consequently, low-cost testing methods

integrated into the chip become attractive for both production

testing and in-field testing.

An NoC comprises a large number of switches which

are connected to each other via communication links. Test

infrastructure like scan-design may be employed to apply

test patterns and reach acceptable test time [1, 2]. Even in

presence of defective components, an NoC may still operate

due to its implicit redundancy, in the worst case with a

degraded performance [3].

Built-In Self-Test (BIST) for in-field testing integrates the

test pattern generation and test response evaluation on-chip.

Structural testing targets faults of a predefined structural

fault model like stuck-at faults and allows measuring the

fault coverage as a quality metric. Depending on the prod-

uct quality requirements, more complex fault models like

transition faults, delay faults, bridging faults or cross-talk

faults may be applied as well. In contrast, functional testing

targets certain functionalities of a system, for instance the

instructions of a microprocessor. As it is impossible to test

the functionality completely, e.g. all possible arguments of

an operation, or all possible instruction orders, it is hard to

estimate the final quality of such a functional test and the

structural fault coverage is rather limited [4].

For functional testing of NoC, references [5–7] use data

encoding in order to detect faults in the communication links

and the switch datapath elements. Test repetition classifies

the transient or permanent nature of the fault. In [8], a

built-in self-test and self-diagnosis circuit is designed for the

mesh topology which traces 20 datapaths (east to west, east

to north, etc.) in order to detect and locate faulty FIFOs

and MUXes in the switches. Similarly, [9] introduces a

functional fault model based on the 20 datapaths in the

switch, targeting the multiplexers of the crossbar in a 2D

mesh NoC with deterministic XY routing. In [10], based on

a system level fault model, an online fault detection for the

NoC switches has been proposed. In [6], a fault detection and

diagnosis mechanism targeting permanent faults is presented

that uses error syndrome collection and packet/flit counting.

The method uses error detecting codes in order to deal with

data faults, and introduces dropped flits/packets, spurious

flits/packets and misrouted packets to describe control faults

in the switch. In [11], all link and router level faults are

mapped to uni-directional links. Based on this fault model,

a reconfiguration scheme is developed that improves the

performance and connectivity in presence of faults. These

techniques will provide some confidence about the correct

functionality of certain parts of the switch, but a high

structural fault coverage is not explicitly targeted.

For microprocessors, the benefits of structural testing and

functional testing are combined by a so-called structural

software-based self-test (SBST) [12–16]. Here, ATPG pro-

vides deterministic, structural test patterns which are trans-

formed into arguments of a sequence of valid instructions.

In a similar way, the paper at hand transforms deterministic

test patterns into valid packets of an NoC.

This paper presents for the first time a structural software-

based self-test (SBST) scheme for Networks-on-Chip. Struc-

tural faults in NoC switches and interconnects are targeted

and tested by valid NoC-packets without the need for dedi-

cated test infrastructure. In fact, the presented SBST scheme

combines the advantages of state-of-the-art structural and

functional test approaches for NoC infrastructure.

Fig. 1 illustrates the principle of SBST in the scope of

NoCs. As an example, in the mesh topology, every switch

is connected to four neighboring switches and a Processing

Element (PE) is attached to each switch.

The Switch Under Test (SUT) is tested by applying a set

of test patterns to its incoming links and observing the test

responses at the outgoing links. The test patterns form valid

NoC packets, hence they can be fed to the NoC externally

as long as they pass the SUT, without requiring to put the

system in a non-functional test mode. Here, we assume that

the set of test packets is generated by software running

on the processing elements (PE) attached to the NoC. The

generated test packets target structural faults in the SUT and

its links under a single fault assumption. The resulting test

S

Switch

under

Test
S

P
E

S

P
E

S

P
E

S

P
E

P
E

Test program

Test data
S

S S

..
.

..
.

...
...

Fig. 1. Target architecture for SBST of a switch

responses are captured and evaluated by the test programs in

the ambient PEs. The SBST starts when all PEs surrounding

the SUT have sufficient resources to run the test program.

A local signal (such as the Ack/Req. signal used for link

flow control) can be utilized to synchronize the launch of

the test programs running on the PEs involved in testing

a SUT (Fig. 1). The switches and PEs give the highest

priority to test packets and bypass their caches. Since the

switches are identical, the SUT access time through all the

incoming links are deterministic. Moreover, once the test

begins, normal packets are not routed through the SUT. The

complete NoC is tested by consecutively testing all contained

switches. Depending on the network topology and the switch

location, the SBST pattern generation is adjusted such that

only available neighboring PEs contribute in testing. For

example, in a 2D mesh a switch at the boundary has three

neighbors, consequently its test patterns contain input values

for only three input ports of the switch.

The key concept of SBST for NoC switches is the

generation of efficient test patterns that achieve a high fault

coverage. Since processing elements have only access to

the functional input and outputs of the switches, functional

patterns are used in SBST. In contrast to scan-based testing,

direct controllability and observability of the sequential

states of the switch (i.e. pseudo primary inputs and outputs)

is not possible. Therefore, achieving a high structural fault

coverage with SBST patterns poses a challenge which is

tackled in this work.

The SBST pattern generation is modeled as a Boolean

satisfiability (SAT) problem in conjunctive normal form

(CNF). The resulting SAT instance reflects three aspects

inherent to SBST test generation for NoCs:

1) Circuit Model: The combinational logic and intercon-

nect of the Switch under Test is described in CNF using

the Tseitin transformation [17]. The sequential behavior

is modeled by time-frame expansion.

2) Fault Model: Classic fault models such as stuck-at

faults are not sufficient to reason about arbitrary defects

in recent process technologies. Hence, the Conditional

Line Flip (CLF) calculus [18] is used as a generalized

fault model to describe arbitrary defect mechanisms in

the switch logic and the links.

3) NoC-Packet Model: Finally, only valid packets are

accepted as test patterns in order to utilize the packet-

based communication platform of the NoC for SBST.

The rest of the paper will discuss the principle of the

SAT-based SBST pattern generation. Section II explains how

a sequential NoC switch is modeled in CNF. Section III

focuses on representing CLFs in the SAT model. Section

IV describes how the syntax of NoC packets is modeled. In

section V, the flow of pattern generation by means of the

SAT instance is explained. Finally, section VI demonstrates

the efficiency of the SBST method through experimental

results which is wrapped up by the conclusion in section

VII.

II. CIRCUIT MODELING AND SEQUENTIAL MAPPING

The combinational core of the switch is extracted by

removing the flipflops of the circuit and replacing the

input/output signals of the flipflops by pseudo primary

output/input ports, respectively. The structure of the NoC

switch is modeled by representing its combinational core in

conjunctive normal form (CNF) with the Tseitin transforma-

tion [17]. We call the combinational switch model ΦC .

The sequential behavior of the switch is modeled by

time-frame expansion which converts the time domain into

the space domain (Fig. 2). As the switch is a sequential

PI1

PPI1

PO1

PPO1

PI2

PPI2

PO2

PPO2

PIT

PPIT

POT

PPOT

...

1

C
 2

C
 T

C


Fig. 2. Time-Frame Expansion for ΦS : T copies of ΦC

circuit, some faults may firstly propagate to the internal

states and after a few cycles become observable at the switch

functional outputs. Hence, to achieve high fault coverage,

the test patterns must define the functional inputs and the

corresponding test responses for multiple consecutive cycles.

The sequential switch ΦS is modeled as formulated in

Eq. (1) by instantiating multiple copies of the combinational

switch instance, ΦC , one after the other such that the literals

of the pseudo primary inputs of each copy are connected to

the literals of the pseudo primary outputs of the previous

copy in the SAT instance.

ΦS =

T∧

t=1

Φt
C ∧

T∧

t=2

{PPIt ← PPOt−1} (1)

In the above equation, Φt
C indicates to the copy tth of the

combinational switch instances in ΦS .

III. MODELING OF CONDITIONAL LINE-FLIPS

To develop a generalized SBST method targeting arbitrary

defects in the switch and the interconnects, the Conditional

Line Flip (CLF) model is used [18]. It formally describes

defects as pairs consisting of a location or victim line v and

an activation condition. Whenever the condition evaluates

to true, the value of the victim line is inverted. A CLF is

noted by the name of the victim line v and an xor-symbol

followed by a condition clause as: vf := v⊕ [condition]. In

this notation, vf represents the value of the victim line. The

condition is of arbitrary nature (Boolean, temporal, or even

random) and is defined as an arbitrary function over time.

With respect to the targeted faults, appropriate val-

ues/functions can be used as a condition activating a fault

only in some cycles. For example, a static bridge between

two signal lines a and b is defined by the following gener-

alized CLF formulation:

af := a⊕ [fa(b) · (a⊕ b)] ,
bf := b⊕ [fb(a) · (a⊕ b)]

in which fa and fb are two Boolean functions which deter-

mine the actual behavior of the bridge. There are exactly four

basic expressions for each function: fa(b) ∈ {0, 1, b̄, b} and

fb(a) ∈ {0, 1, ā, a}, resulting in 16 possible configurations

for fa and fb. As an example, for a 4-way bridge in which

a and b swap the values, fa(b) = fb(a) = 1.

In order to generate test patterns for a CLF fault in the

switch, two conditions must be satisfied:

• CLF is activated: The CLF condition is true in at least

one time frame and leads to a different value in the

good and faulty circuit.

• CLF is observed in at least one primary output.

Figure 3 depicts the SAT model used to represent a CLF

for a single time-frame, t.

OR

o
b

s
e

rv
a

b
le

XOR

XOR

..
.

..
.

..
.

(for copy t)

Fault location

Output cone

......

f

t t t
l l d 

f

t
l

t
l

,f t

C


t

C


S


tj
o

f

tj
o

CLF


Fig. 3. Modeling a CLF in a single time-frame.

Starting from the model Φt
C representing the good circuit

in a single time-frame t, a CLF f is defined by the victim

line v represented by literal lt in the good circuit. The faulty

circuit Φf,t
C is generated by copying the output cone of

the fault location, where all internal literals are renamed,

and the victim line literal is represented by l
f
t . All literals

representing signals at the cone boundary are identical to

the literals used in Φt
C . If the fault propagates to the pseudo

primary outputs, Φf,t
C includes additionally the gates in the

output cone of the equivalent pseudo primary inputs as it

is shown in Fig. 4. The cones may have some overlaps. In

POt-1

PPOt-1

PPIt

POt

PPOt

1

f

t
l 

f

t
l

POt+1

PPOt+1

1

f

t
l 

,f t

C
 (copy t)

Fig. 4. Faulty instance

order to keep the SAT instance smaller, each gate is included

only once in the model.

The condition of a CLF f is represented by the literal

dt that relates the good circuit and the faulty circuit as

follows: l
f
t ← (lt ⊕ dt). In order to observe a fault effect

at a primary output, all output literals otj of the good circuit

are compared to the output literals of the faulty circuit

o
f
tj : ∨n

j=1(otj 6= o
f
tj). In this expression, n is the number

of primary outputs to which the fault is propagated. The

expression is equivalent to the XOR gates followed by an

OR gate in Fig. 3.

To represent a single CLF f in all modeled time-frames

T , faulty circuits are added for all time-frames and form the

faulty instance Φf
S :

Φf
S =

T∧

t=1

Φf,t
C (2)

Φf
S is linked to the good circuits via the condition literals

as follows:

Φcond =
T∧

t=1

l
f
t ← (lt ⊕ dt) (3)

Since dt are free literals in the model, the SAT solver may

assign values to them such that the fault is activated in any

cycle independently. As it is sufficient to detect a CLF in a

single time-frame, the output comparison is modeled as:

Φobs =
T∨

t=1

∨n
j=1(otj 6= o

f
tj) (4)

Therefore, the corresponding clauses for modeling a single

CLF f in all time-frames T are denoted by ΦCLF that

is a conjunction of clauses of the faulty instance Φf
S , the

condition literals Φcond, and a comparison over the outputs

of the good and faulty copy as follows:

ΦCLF = Φf
S ∧ Φcond ∧ Φobs . (5)

IV. MODELING OF VALID NOC PACKETS

To ensure the test patterns are valid NoC packets, the

appropriate clauses which define the packet characteristic

must be included in the SAT model. Each NoC packet

consists of several flits (flow control units). The flits of a

packet arrive one after the other via the incoming ports of

a switch as shown in Fig. 5. The first flit is called head flit

and is followed by an arbitrary number of data flits. The last

flit is called tail flit.

...

k
2

k
1

k
2

k
1

k
2

k
1

Flit: 1 2 n...

Packet

Containing n flits

head
data tail...

Flit id
Switch

One flit per clock.

Flit is applied to data

inputs of a switch port

Fig. 5. NoC packet format

A switch has several ports (e.g. five ports in mesh archi-

tecture). In order to generate test patterns at port i of the

switch that represent valid packets, the input sequence must

contain head and tail flits in a manner that every head flit is

followed by a tail flit:

(PIi
t = head)→ (PIi

t+fpp−1 = tail), 1 ≤ t ≤ T (6)

where fpp is the number of flits per packet, and PIi
t refers

to the switch data inputs at cycle t of the test pattern. Since

head and tail flits are mandatory for a packet, fpp is at

least 2. However, for fpp > 2 the intermediate flits must be

defined as data flits:

(PIi
t = head)→ (PIi

j = data) (7)

for t < j < (t + fpp − 1). According to the packet

specification of the NoC, the flits can be identified by means

of a few control bits (Flit id in Fig. 5), e.g. 01, 10, and 00 can

be used as flit id for head, tail, and data flits. Equation (6) and

(7) are mapped to clauses by Boolean logic minimization and

added to the SAT model for all switch ports: Φvalid packet.

They ensure that the SAT model is only satisfiable if the test

patterns are in the form of NoC packets.

Valid NoC packets satisfy the control flow of the switch

(similar to instructions in the SBST of processors). Adding

valid packet clauses adjusts the SAT to find the solutions for

the faults in the controlling parts. For example, a test pattern

may contain several NoC packets which arrive at different

switch ports at the same time, requesting the same outgoing

port. This activates the scheduler of the switch to decide

which packet has the priority. Moreover, as equation (6) does

not impose any constraint for the time that the head flit

arrives, the packet may arrive at any cycle between 1 and T .

In this case, if the outgoing port has been already assigned to

another packet, the new incoming packet must not overwrite

this setting.

V. PATTERN GENERATION

As explained earlier, the SAT instance for generating

SBST patterns for NoCs is constructed as a combination of

the clauses of the unrolled switch ΦS , the clauses describing

a CLF fault, and the clauses to ensure only valid packets are

accepted as a solution:

ΦSBST = ΦS ∧ ΦCLF ∧ Φ valid
packet

. (8)

To generate SBST patterns for all CLFs in the switch,

as shown in Fig. 6 the SBST pattern generation process

selects the first undetected CLF location from the fault list

and builds ΦSBST for the fault location as explained before.

The process starts with a minimum T of 3, two cycles

for head and tail flit to arrive/depart and one cycle for the

internal router process. If ΦSBST is satisfiable, the values

of the input literals are stored as the test pattern. Then, the

test pattern is applied to the SAT instance as a constraint.

The process searches for additional faults detected by this

pattern and prunes them from the CLF fault list. The process

continues until test patterns are found for all faults detectable

under the current sequential depth. To increase the coverage,

the faults that are not testable under the sequential depth T

are reprocessed by iteratively increasing the sequential depth

to T +1 and repeating the SBST pattern generation process.

This continues up to the maximum sequential depth of the

circuit plus one, which is reported by a commercial ATPG

tool.

Apply pattern to SAT as constraints

Check if SAT is satisfiable for yet undetected faults

Prune extra detected faults from fault list

No

Yes

Store input values as test pattern

Nontestable fault

Build ΦSBST for the next undetected CLF

SAT

satisfiable?

Fig. 6. SBST pattern generation flow

VI. EXPERIMENTAL EVALUATION

The SBST pattern generation method is independent of

the internal architecture of the switch and the topology. The

number of input ports of the switch which are available for

testing must be known. Besides, in order to introduce valid

packet literals, the flit width and the flit format is required.

We evaluate the efficiency of the presented SBST method

on a typical switch designed for an NoC mesh topology.

The switch consists of five input and output ports, crossbar

multiplexers, a router, and additional control logic for the

handshake signals. It implements wormhole XY routing and

processes the input channels in a round-robin fashion. The

switch is implemented in VHDL and synthesized using

Synopsys Design Compiler. The target library lsi10k is

constrained to basic gate primitives. Since the memory

elements are usually equipped with advanced memory BIST,

there is no need to consider the channel buffers in the

SBST pattern generation process. Table I summarizes the

synthesis statistics of the switch for a flit width of 8 bits.

The first four columns report the circuit name, the number of

primary inputs (PIs), primary outputs (POs), and the number

of flipflops (FFs), which is equal to the number of pseudo

primary inputs/outputs. The remainder of the table reports

the number of gates and the size in cell area units where

the cell area of a two input NAND gate in the library is one

area unit.

TABLE I. NoC Switch Characteristics

Name # PIs # POs # FFs # gates Cell area

Switch 58 50 497 3618 8130

A. Stuck-at Faults

For comparison, the fault coverage for stuck-at faults

obtained by a scan based test strategy of a commercial ATPG

tool was computed. There, 506 faults out of 14355 collapsed

faults in the switch are recognized Unused by the tool,

leading to the fault coverage of 96.47% and fault efficiency

of 100%.

Table II shows that the fault coverage of the presented

SBST is even higher (96.53%). However, these numbers

cannot be directly compared as the number of faults in

the scannable model and the unmodified switch do not

match exactly. Hence, a commercial sequential ATPG tool

without any constraints was applied as well. It reports a fault

coverage of 83.29% and a fault efficiency of 86.33%, while

2.39% of the faults are untestable. All faults classified as

untestable by the ATPG are functionally redundant.

Table II presents the complete process which starts with

an initial sequential depth of 3. The second row in the

table shows the number of faults which are testable for

each sequential depth. The maximum sequential depth of the

switch is 8, hence it is sufficient to examine 9 time-frames

(T = 9) during the pattern generation process. The last

column of the table sums up the detailed result and presents

the SBST pattern generation statistics for stuck-at faults in

the switch. The SBST process is able to generate test patterns

for more than 95% of the faults for the initial sequential

depth. However, for T = 4 and T = 5, test patterns are

found for 122 additional faults. For larger values of T no

additional patterns are found. Among 10994 collapsed faults

in the switch, 10613 faults are testable and for the rest, the

SAT model proves that there exists no valid NoC packet

such that the fault is propagated to the functional switch

outputs. As the switch has been unrolled up to its maximum

sequential depth, the faults which remain undetectable have

no functional influence during the normal operation of the

switch.

TABLE II. Pattern Generation for Stuck-at Faults (10994 Collapsed Faults)

T = 3 T = 4 T = 5 total

Detected faults 10491 121 1 10613
Undetectable faults 503 380 379 379
Fault coverage 95.42% 96.52% 96.53% 96.53%

Test patterns 504 32 1 537
Test volume (bits) 163296 13824 540 177660
Test time (cycles) 2016 160 6 2182

The last three rows of the table report some statistics

of the generated test patterns. Firstly, the number of test

patterns generated in each step of the SBST process is listed.

Each test pattern includes the input and output values of the

switch ports in T consecutive cycles. For the test volume,

we compute the size of the test set in bits. Because the test

patterns of SBST contain the value of the primary inputs in

T cycles as the input pattern and the value of the primary

outputs as the test responses, the test volume of the SBST

test data is computed as follows:

Test volumeSBST = T × (|PIs|+ |POs|)× n (9)

in which |PIs| stands for the number of primary inputs, |POs|
the number of primary outputs, and n refers to the number

of test patterns. The next row reports the test time. Because

every SBST test pattern is generated with regard to T cycles

of the switch operation, the number of clock cycles required

to apply the input patterns and get the responses is T .

Moreover, one additional cycle is needed to reset the flipflop

states before applying the next test pattern. Accordingly, the

test time for applying n test patterns is calculated as follows:

Test timeSBST = n× (T + 1) (10)

To shed some light on the test volume of the SBST

method compared to the conventional test approaches similar

to [2], we applied commercial ATPG with test compression

targeting stuck-at faults in the switch and extracted the result

of the test pattern generation. The number of test patterns

is 135. Any scan test pattern consists of the value of both

primary inputs and the scan registers as input pattern, and

the value of primary outputs and the scan registers as test

response. Thus, the test volume of the scan test data is

computed as:

Test volumescan = (2×|scan cells|+|PIs|+|POs|)×n (11)

in which |scan cells| stands for the number of scan cells (i.e.

flipflops). The test data volume of the scan test is 148770

bits and the test time varies depending on the number of

scan chains in the switch. To achieve a test time comparable

to the presented SBST test time, at least 30 scan chains are

needed.

B. Bridging and Crosstalk Faults

Table III presents the result of SBST targeting bridging

faults in the switch and the links (4-way bridges), and

crosstalk in the communication links. The pairs of suspected

signals for the bridging fault are selected according to [19].

It shows that the SBST pattern generation process with the

initial sequential depth 3 is able to achieve 98.88% fault

coverage with 159 test patterns, resulting in a short test time.

To further increase the fault coverage, the process can be

repeated for larger T .

A crosstalk fault happens where a transition on an aggres-

sor line a causes glitches on a victim line b [18]. In the CLF

model, a crosstalk is represented according to the following

formula, in which a−1 denotes the last value of line a:

bf := b⊕ [(a−1 ⊕ a) · (a⊕ b)] (12)

To investigate the crosstalk effect on the communication

links, pairs of neighboring signal lines on each input port

of the switch are considered as aggressor and victim lines

for the crosstalk model. The last value of the aggressor line

comes from the equivalent literal in the previous copy of

the unrolled switch. For the 8-bit switch, 14 crosstalk faults

are injected in each input port. The last column of Table III

illustrates the SBST pattern generation result which achieves

100% fault coverage at sequential depth 3. Thus, testing all

crosstalk faults in the communication links of the switch

requires 22 test patterns applied in 88 cycles.

TABLE III. SBST Pattern Generation Statistics

Bridging faults
T = 3

Crosstalk
T = 3

Faults 10834 70
Detected faults 10713 70
Undetectable faults 121 (1.11%) 0
Fault coverage (%) 98.88 100

Test patterns 159 22
Test volume (bits) 51516 7128
Test time (cycles) 636 88

The experiments reveal that SBST pattern generation

modeled as a SAT problem is capable to generate test pat-

terns targeting all kind of structural faults in the switches and

the links. By only accessing the primary input and outputs

of the switch, the test time decreases without imposing any

hardware overhead. Besides, as the test patterns are in the

form of NoC packet, the test process can be performed in-

field without putting the system in a non-functional test

mode. This, in turn, eliminates the requirement to restore

the system states after testing. Storage of the test patterns

in the presented SBST method is not a problem, because

only a small portion of memory space in the processing

elements has to be dedicated to that. Since the SBST patterns

target structural faults, the test responses can used to perform

structural diagnosis [3].

VII. CONCLUSION

A Software-Based Self-Test of switches in Networks-on-

Chip was presented. It targets structural faults within NoC

switches and NoC links. In order to conduct the test of

a switch, the processing elements surrounding the switch

under test are reused for test generation and evaluation as

well as test access.

SBST pattern generation is mapped to a Boolean satisfia-

bility problem, and only valid NoC packets are accepted as

satisfying assignments of the model by additional formula.

The conducted experiments for stuck-at, bridging and

crosstalk faults confirm the efficiency of software-based self-

testing in the NoC domain with high fault coverage and

very low test time. The technique does not impose any

hardware overhead to the switch and is applicable for both

manufacturing test and online test.

VIII. ACKNOWLEDGMENT

Part of this work was supported by the German Research

Foundation (DFG) under grant WU 245/12-1 (ROCK).

REFERENCES

[1] C. Grecu, P. Pande, B. Wang, A. Ivanov, and R. Saleh, “Methodologies
and algorithms for testing switch-based NoC interconnects,” in IEEE

International Symposium on Defect and Fault Tolerance in VLSI

Systems (DFT), 2005, pp. 238–246.
[2] A. M. Amory, E. Brião, É. Cota, M. Lubaszewski, and F. G. Moraes,

“A scalable test strategy for network-on-chip routers,” in IEEE Inter-

national Test Conference (ITC), 2005, pp. 1–9.
[3] A. Dalirsani, S. Holst, M. Elm, and H.-J. Wunderlich, “Structural Test

and Diagnosis for Graceful Degradation of NoC Switches,” Journal

of Electronic Testing, vol. 28, no. 6, pp. 831–841, 2012.
[4] P. Maxwell, I. Hartanto, and L. Bentz, “Comparing functional and

structural tests,” in IEEE International Test Conference (ITC), 2000,
pp. 400–407.

[5] A. Kohler, G. Schley, and M. Radetzki, “Fault Tolerant Network
on Chip Switching With Graceful Performance Degradation,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 29, no. 6, pp. 883–896, 2010.
[6] A. Ghofrani, R. Parikh, S. Shamshiri, A. DeOrio, K.-T. Cheng,

and V. Bertacco, “Comprehensive online defect diagnosis in on-chip
networks,” in IEEE VLSI Test Symposium (VTS), 2012, pp. 44–49.

[7] A. P. Frantz, F. L. Kastensmidt, L. Carro, and E. Cota, “Dependable
network-on-chip router able to simultaneously tolerate soft errors and
crosstalk,” in IEEE International Test Conference (ITC), 2006, pp.
1–9.

[8] S.-Y. Lin, W.-C. Shen, C.-C. Hsu, C.-H. Chao, and A.-Y. Wu,
“Fault-tolerant router with built-in self-test/self-diagnosis and fault-
isolation circuits for 2d-mesh based chip multiprocessor systems,” in
International Symposium on VLSI Design, Automation and Test (VLSI-

DAT), 2009, pp. 72–75.
[9] J. Raik, V. Govind, and R. Ubar, “Design-for-Testability-based Ex-

ternal Test and Diagnosis of Mesh-like Network-on-a-Chips,” IET

computers & digital techniques, vol. 3, no. 5, pp. 476–486, 2009.
[10] N. Karimi, A. Alaghi, M. Sedghi, and Z. Navabi, “Online Network-on-

Chip Switch Fault Detection and Diagnosis Using Functional Switch
Faults,” Journal of Universal Computer Science, vol. 14, no. 22, pp.
3716–3736, 2008.

[11] R. Parikh and V. Bertacco, “uDIREC: unified diagnosis and reconfigu-
ration for frugal bypass of NoC faults,” in Proceedings of IEEE/ACM

International Symposium on Microarchitecture, 2013, pp. 148–159.
[12] L. Chen and S. Dey, “Software-based Self-testing Methodology for

Processor Cores,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 20, no. 3, pp. 369–380, 2001.
[13] A. Paschalis and D. Gizopoulos, “Effective Software-Based Self-Test

Strategies for On-line Periodic Testing of Embedded Processors,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 24, no. 1, pp. 88–99, 2005.
[14] F. Corno, G. Cumani, M. Sonza Reorda, and G. Squillero, “Fully

automatic test program generation for microprocessor cores,” in
Design, Automation and Test in Europe (DATE), 2003, pp. 1006–
1011.

[15] N. Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis, “Software-
Based Self-Testing of Embedded Processors,” IEEE Transactions on

Computers, vol. 54, no. 4, pp. 461–475, 2005.
[16] J. Zhou and H.-J. Wunderlich, “Software-based self-test of processors

under power constraints,” in Design, Automation and Test in Europe

(DATE), 2006, pp. 430–435.
[17] G. S. Tseitin, “On the Complexity of Derivation in Propositional

Calculus,” Studies in constructive mathematics and mathematical

logic, vol. 2, no. 115-125, pp. 10–13, 1968.
[18] H.-J. Wunderlich, Ed., Models in Hardware Testing. Springer, 2010.
[19] E. N. Tran, V. Kasulasrinivas, and S. Chakravarty, “Silicon evaluation

of logic proximity bridge patterns,” in IEEE VLSI Test Symposium

(VTS), 2006, pp. 1–6.

