
Exact Logic and Fault Simulation in

Presence of Unknowns

Erb, Dominik; Kochte, Michael A.; Sauer, Matthias; Hillebrecht,

Stefan; Schubert, Tobias; Wunderlich, Hans-Joachim; Becker,

Bernd

ACM Transactions on Design Automation of Electronic Systems (TODAES) Vol. 19(3)

June 2014

doi: http://dx.doi.org/10.1145/2611760

Abstract: Logic and fault simulation are essential techniques in electronic design automation. The accuracy

of standard simulation algorithms is compromised by unknown or X-values. This results in a pessimistic

overestimation of X-valued signals in the circuit and a pessimistic underestimation of fault coverage. This work

proposes efficient algorithms for combinational and sequential logic as well as for stuck-at and transition-delay

fault simulation that are free of any simulation pessimism in presence of unknowns. The SAT-based algorithms

exactly classifiy all signal states. During fault simulation, each fault is accurately classified as either undetected,

definitely detected, or possibly detected. The pessimism with respect to unknowns present in classic algorithms

is thoroughly investigated in the experimental results on benchmark circuits. The applicability of the proposed

algorithms is demonstrated on larger industrial circuits. The results show that, by accurate analysis, the

number of detected faults can be significantly increased without increasing the test-set size.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic

reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form

to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by ACM.1

1 ACM COPYRIGHT NOTICE

c©2014 ACM. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

http://dx.doi.org/10.1145/2611760

A

Exact Logic and Fault Simulation in Presence of Unknowns

DOMINIK ERB, University of Freiburg

MICHAEL A. KOCHTE, University of Stuttgart

MATTHIAS SAUER, University of Freiburg

STEFAN HILLEBRECHT, University of Freiburg

TOBIAS SCHUBERT, University of Freiburg

HANS-JOACHIM WUNDERLICH, University of Stuttgart

BERND BECKER, University of Freiburg

Logic and fault simulation are essential techniques in electronic design automation. The accuracy of
standard simulation algorithms is compromised by unknown or X-values. This results in a pessimistic over-
estimation of X-valued signals in the circuit, and a pessimistic underestimation of fault coverage.

This work proposes efficient algorithms for combinational and sequential logic as well as for stuck-at and
transition-delay fault simulation which are free of any simulation pessimism in presence of unknowns. The
SAT-based algorithms exactly classifiy all signal states. During fault simulation, each fault is accurately
classified as either undetected, definitely detected or possibly detected.

The pessimism w. r. t. unknowns present in classic algorithms is thoroughly investigated in the exper-
imental results on benchmark circuits. The applicability of the proposed algorithms is demonstrated on
larger industrial circuits. The results show that by accurate analysis the number of detected faults can be
significantly increased without increasing the test set size.

Categories and Subject Descriptors: B.6.2 [Logic Design]: Reliability and Testing; B.7.3 [Integrated Cir-

cuits]: Reliability and Testing

General Terms: Algorithms, Reliability

Additional Key Words and Phrases: Unknown values, simulation pessimism, exact logic simulation, exact
fault simulation, SAT

1. INTRODUCTION

Logic and fault simulation are fundamental techniques in electronic design automa-
tion with applications, e.g. in validation, test generation and product quality estima-
tion.

Unknown or X-values may emerge during the design and test generation process due
to black boxes in the design. During operation and test application, X-values may be
caused by uncontrolled sequential elements, at clock domain crossings or A/D bound-
aries for example. Depending on the circuit and test method, a very high fraction of
signals may have X-values. During test and in particular for special test modes such
as faster than at-speed test, a high density of X-values has been reported [Wohl et al.
2008], [Ramdas and Sinanoglu 2012].

This work was partially supported by the German Research Foundation (DFG) under grants BE 1176/14-2,
WU 245/9-1, and WU 245/11-1. It is an extended version of [Hillebrecht et al. 2012].
Author’s addresses: D. Erb, M. Sauer, S. Hillebrecht, T. Schubert and B. Becker, University of Freiburg,
Georges-Köhler-Allee 051, 79110 Freiburg, Germany; M. A. Kochte and H.-J. Wunderlich, ITI, University of
Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1084-4309/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:2

Standard logic and fault simulation algorithms are based on n-valued logics with
a limited number of symbols to denote the signal states in the simulation. Not all
X-states, and the correlations between them, are represented accurately. Thus, recon-
vergences of X-values, where canceling of Xs may occur, are not evaluated correctly
and the resulting signal values are not exact. The result may either underestimate
the number of X-values as in the case of logic simulation using Verilog models [Turpin
2003], or pessimistically overestimate their number as illustrated below.

The example in Figure 1 shows a circuit with three gates and three inputs. The sim-
ulation result of pattern (a, b, c) = (1,X, 1) with a 3-valued logic simulator is annotated
to the circuit lines. The signals d, e, and f are evaluated to the unknown value X by
the simulator. Simulations with b = 0 and b = 1 show that output f has the logic value
1 in both cases and thus, its state is known. Three-valued simulation overestimates
the number of signals with unknown state.

a

b

c

d

e

f

1

1

X

X

X

X

Fig. 1: Pessimistic simulation result with a 3-valued logic simulator.

For sequential logic simulation, the problem of simulation pessimism is more pro-
nounced since the number of signals with X-value may even increase over time. Pes-
simistic sequential simulation may prevent the verification of reset or initialization
sequences which target the initialization of a design from an unknown or partially
unknown state [Keim et al. 1996].

For fault simulation, well defined logic values are required for fault activation and
propagation. In consequence, fault simulation algorithms based on n-valued logics like
the parallel pattern single fault (PPSFP) or the concurrent algorithm [Ulrich and
Baker 1988], [Waicukauski et al. 1985], [Antreich and Schulz 1987], [Lee and Ha
1991]1, pessimistically underestimate the number of detected faults since logic sim-
ulation overestimates the number of X-valued signals. The number of potentially de-
tected faults is overestimated which may skew the fault coverage since a fraction of
potentially detected faults is often counted as detected in commercial tools [Rudnick
et al. 1996]. Both inaccuracies impact product quality and may increase test overhead
and cost.

For the example in Figure 1, the input stimuli cannot detect any stuck-at fault in
the circuit based on 3-valued analysis. Yet, the actual value of output f is known and
thus, the pattern is indeed a test for the stuck-at 0 fault at f .

If X-values propagate into compaction logic as found in embedded deterministic test
(EDT) or built-in self test (BIST) environments, the response signature may be cor-
rupted. X-blocking, X-masking [Naruse et al. 2003], [Tang et al. 2006] or X-tolerant
[Mitra and Kim 2004] design-for-test structures try to remedy the problem at increased
hardware overhead or reduced response compaction ratio. A pessimistic analysis of X-
values further increases this overhead and may cause overmasking of failure data with
impact on diagnosability.

1In the following they are referred to as 3-valued fault simulators.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Exact Logic and Fault Simulation in Presence of Unknowns A:3

This work presents algorithms for exact combinational and sequential logic simula-
tion as well as for exact fault coverage computation for stuck-at and transition faults.
The algorithms are free of any simulation pessimism and compute the exact result in
presence of X-sources in the circuit. For the example of Figure 1, the proposed fault
simulation algorithm also identifies the detection of the stuck-at 0 fault at signal a by
the given pattern.

The reduction of the pessimism of logic and fault simulation has been targeted in
previous work using heuristics, formal reasoning or a combination thereof.

Heuristic approaches are typically very fast, but they cannot provide the exact re-
sult. Proposed methods include circuit analysis like static learning [Kajihara et al.
2004], or partitioning and local exhaustive simulation [Kang and Szygenda 2003]. In
restricted symbolic simulation [Carter et al. 1989], the number of symbols to express
different X-values is increased, allowing to correctly evaluate a subset of reconver-
gences of X-valued signals.

The exact logic simulation in presence of X-values corresponds to an NP-complete
problem [Chang and Abraham 1987]. The exact solution can be computed by sym-
bolic simulation of a circuit using reduced ordered BDDs (ROBDDs, [Bryant 1986]),
which may cause excessive memory consumption for arithmetic or larger circuits. The
SAT-based approach of [Kochte and Wunderlich 2011] evaluates each reconvergence
of X-valued signals for X-canceling. It provides the exact result for logic simulation,
but at high runtimes for larger circuits and many X-sources. In [Chou et al. 2010],
satisfiability of quantified Boolean formulae is used to identify the registers in a de-
sign that do not need to be initialized and to compute corresponding reset sequences.
Reasoning about X-values also gained importance for verification of designs with black
boxes. While modeling X-valued signals with 3-valued logic [Jain et al. 2000] only helps
to distinguish the signals from these with defined binary values, an exact X-analysis
based on symbolic simulation [Wilson et al. 2000], [Scholl and Becker 2001] increases
the accuracy of the verification task.

In fault simulation, each fault free and faulty machine has to be analyzed per pat-
tern, causing very high computational effort or excessive memory consumption. There-
fore, the pessimism in fault simulation could only be targeted by heuristic or hybrid
approaches combining heuristics and formal methods so far. This includes heuris-
tics based on static learning [Kajihara et al. 2004] or restricted symbolic simulation
[Kundu et al. 1991]. Hybrid SAT- or BDD-based fault simulation methods limit the
application of formal reasoning in space or time: The SAT-based method of [Kochte
and Wunderlich 2011] computes the exact result only for the fault-free circuit. The
propagation of faults is evaluated pessimistically. The hybrid BDD-based method of
[Becker et al. 1999] restricts or even discards BDD-based symbolic simulation when
memory consumption exceeds a threshold. In [Kochte et al. 2011], an approximate
symbolic fault simulation is proposed which constructs local BDDs limited in size to
evaluate local reconvergences of X-states correctly. The result of these approaches is
still pessimistic.

The recent progress in SAT solvers enables the exact reasoning about fault detection
in presence of X-values even for larger circuits [Hillebrecht et al. 2012]. This work
proposes a formal method to exactly compute the stuck-at and transition-delay fault
coverage of a test set in presence of X-values. It combines heuristics and SAT reasoning
to remove any simulation pessimism found in previous approaches. The state-of-the-
art incremental SAT solver antom [Schubert et al. 2010] is used to incrementally build
and solve the SAT instances during analysis and reduce runtime.

Section 2 introduces the used terminology and a formal problem statement. The
exact logic simulation algorithm is explained in Section 3, followed by the fault sim-

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:4

ulation in Section 4. Section 5 presents experimental results on ISCAS benchmark
circuits and NXP circuits. Section 6 summarizes the paper.

2. TERMINOLOGY AND OVERVIEW

This section introduces the used terminology and outlines the algorithms for the exact
logic as well as exact stuck-at and transition-delay fault classification.

2.1. Terminology and Definitions

In 3-valued logic, the three symbols {0, 1,X} are used to represent logic value 0 (logic-
0), logic value 1 (logic-1) and an unknown state, i. e., either logic-0 or logic-1. Signals
at which unknown values originate are called X-sources. During logic simulation of a
test pattern p, a 3-valued simulator assigns logic-0, logic-1 or X to the signals. Signals
with value X for pattern p belong to the set of Pessimistic-Xs PEX(p). PEX(p) can be
partitioned into the sets of Real-Xs REX(p) and False-Xs FEX(p). FEX(p) contains the
signals of PEX(p) which are independent from the X-sources, i. e., the signals have a
binary value of logic-0 or logic-1. REX(p) contains all signals which do depend on at
least one X-source. In Figure 1, output f ∈ FEX(p), while b, d, e ∈ REX(p).

These sets differ in the fault free and in the faulty cases. Superscripts G and f are
used to distinguish between the good (fault free) and the faulty case, respectively.

In this work, definite detection (DD) and potential detection (PD) of a fault are dis-
tinguished. A fault f is definitely detected (DD) if an observable output o exists where
the fault effect is visible independent of the logic value assignment to the X-sources.
Let the functions vG(p, s) and vf (p, s) return the logic value of signal s under pattern p
in the fault free and faulty case in presence of unknown values.

The definite detection of a stuck-at-φ fault f (φ ∈ {0, 1}) at line l under pattern p is
given as

DDf (p) := ∃o ∈ O : vG(p, o), vf (p, o) ∈ {0, 1} ∧ vG(p, o) 6= vf (p, o), (1)

where O is the set of output signals of the circuit. If f is not definitely detected, f is
potentially detected (PD) if the fault is activated and an observable output o exists
where the fault effect can be deterministically measured for at least one logic value
assignment to the X-sources:

PDf (p) := ¬DDf (p) ∧ vG(p, l) = ¬φ ∧

∃o ∈ O : vG(p, o) ∈ {0, 1} ∧ o ∈ REXf(p). (2)

The definite detection of a transition-delay fault tf at line l requires the consider-
ation of two cycles. In the first cycle, line l is driven to a defined value φ to activate
the fault. For a slow-to-rise transition-delay fault, φ is logic-0, for a slow-to-fall fault,
φ equals logic-1. In the second cycle, the value of l is inverted and the resulting transi-
tion is propagated from l to an observable circuit output. This corresponds to detecting
the stuck-at-φ fault at line l in the propagation cycle. Thus, the definite detection of tf
at line l under pattern pair (p−1, p) is given as

DDtf (p−1, p) := vG(p−1, l) = φ ∧ vG(p, l) = ¬φ ∧

∃o ∈ O : vG(p, o), vtf (p, o) ∈ {1, 0} ∧ vG(p, o) 6= vtf (p, o), (3)

with O the set of circuit outputs. Similar to the potential detection requirement for
stuck-at faults, potential detection of a transition-delay fault requires that the fault is
activated and its effect can be deterministically measured in the propagation cycle at

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Exact Logic and Fault Simulation in Presence of Unknowns A:5

at least one output o for at least one logic value assignment to the X-sources:

PDtf (p−1, p) := ¬DDtf (p−1, p) ∧ vG(p−1, l) = φ ∧ vG(p, l) = ¬φ ∧

∃o ∈ O : vG(p, o) ∈ {1, 0} ∧ o ∈ REXtf(p). (4)

Note that for both, stuck-at and transition-delay faults, 3-valued fault simulation
underapproximates the number of definitely detected faults since three-valued simu-
lation overestimates the number of signals with X-values. Consequently, the number of
potentially detected stuck-at or transition-delay faults provides an overapproximation.

2.2. Overview of the Exact Logic and Fault Simulation Algorithms

The exact logic simulation algorithm efficiently computes the exact signal states in a
combinational circuit by use of heuristics and formal reasoning based on incremental
SAT solving. Exact sequential logic simulation is achieved by unrolling the sequential
circuit for the number of considered time frames.

Exact fault simulation is performed for stuck-at and transition-delay faults. The
proposed fault simulation process is divided into two parts. First, the test pattern set
is pessimistically simulated with a parallel pattern single fault propagation simulator
based on 3-valued logic to mark as many faults as DD as possible. Afterwards the test
pattern set is simulated by the exact stuck-at fault simulator, which performs an exact
logic simulation of the fault-free circuit per pattern, and then analyzes the activated
faults. The algorithm distinguishes definitely detected (DD), potentially detected (PD)
and undetected faults.

2.3. Combinational Expansion of the Sequential Circuit

Both exact sequential logic simulation and exact transition-delay fault simulation re-
quire the consideration of multiple clock cycles or time frames. Transition-delay fault
simulation requires the modeling of a minimum of two time frames. Combinational
expansion of the circuit model is used to create a combinational circuit model repre-
senting all required time frames. It is used as a substitute for the original sequential
circuit within the simulation. The combinational part of the circuit is duplicated by
the number of required time frames i.e. there are instances of the circuit for each time
frame considered. The different time frames are connected to each other according to
the sequential elements in the circuit and depending on the targeted simulation.

In sequential logic simulation, the value captured by a sequential element is the
initial value of the sequential element in the following time frame. This also holds for
launch on capture (LOC) resp. broadside transition-delay fault simulation [Savir and
Patil 1994]. For these two cases, the input to a sequential element is directly connected
to the corresponding input in the next time frame.

In contrast, in the launch on shift (LOS) resp. skewed load transition-delay fault
testing, the value stored in a sequential element in a scan chain is shifted in the fol-
lowing time frame according to the order in the scan chain [Savir and Patil 1993].

Figure 2 shows a sequential circuit and the two possible combinational expansions.
The first type of expansion is used for functional sequential simulation as well as fault
simulation of LOC tests. The second type is used for fault simulation of LOS tests.

If a sequential element is controllable in a time frame, it serves as a primary input
to the respective signal in the time frame. If the value it captures is observable, then
it serves as primary output of the corresponding time frame.

3. EXACT COMBINATIONAL AND SEQUENTIAL LOGIC SIMULATION

The exact logic simulation is performed using either the original combinational or the
combinational expansion of the circuit under simulation. It consists of two consecutive

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6

FF

FF

FF t1 t2

FF

FF

FF

FF

FF

FF

FF

FF

FF

Launch on Shift (LOS)

Functional / Launch on Capture (LOC)

t1t1 t2

FF

FF

FF

FF

FF

FF

FF

FF

FF

Fig. 2: Combinational expansion for (a) exact sequential simulation and LOC-based
transition-delay fault simulation and (b) LOS-based transition-delay fault simulation.

steps. In the first step, a restricted symbolic simulator and a 2-valued logic simulator
are used as heuristics to classify a high number of REXs, FEXs and FEX candidates
at low computational cost. In the second step, the set of FEX candidates is formally
analyzed. For the formal proof whether a FEX candidate is a REX or not, the state-
of-the-art incremental SAT solver antom [Schubert et al. 2010] is utilized. Figure 3
depicts the flow of the exact logic simulation.

FEX REX

Random Assignments to

X-sources

FEX

candidates

SAT-based classification of

remaining REX/FEX candidates

H
e
u
ri
s
ti
c
 a

n
a

ly
s
is

F
o

rm
a

l
a
n
a

ly
s
is

G
a

te
 p

ro
c
e

s
s
in

g
 i
n

to
p
o

lo
g

ic
a

l
o

rd
e

r

Pattern-parallel

2-valued logic simulation

Restricted symbolic

simulation of p

Fig. 3: Exact fault free simulation for a pattern p.

3.1. Heuristic Analysis

In the heuristic analysis the pattern p is simulated using restricted symbolic simula-
tion (RSS, [Carter et al. 1989]) and 2-valued pattern-parallel simulation of randomized
assignments to the X-sources to classify as many signals as REX, FEX and FEX can-
didates as possible. The gates of the circuit are processed in topological order and for
each gate, RSS and 2-valued simulation are performed. The identified FEX candidates
are later classified using SAT reasoning.

In RSS, for each X-value at the X-sources a unique symbol Xi is introduced in ad-
dition to the two symbols for logic-0 and logic-1. Hence, X-values from different X-
sources are distinguishable. Furthermore, each X-symbol can be negated. This allows
the correct evaluation of simple local reconvergences of X-valued signals and increases

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Exact Logic and Fault Simulation in Presence of Unknowns A:7

accuracy compared to 3-valued simulators. For the example in Figure 1, RSS correctly
computes the output value at f as logic-1, since the symbol Xb introduced at X-source b
is correctly tracked at d as ¬Xb and at signal e as Xb. Hence, the reconvergence is ex-
actly evaluated to logic-1. Thus, RSS identifies a subset of FEXG(p). In the proposed
algorithm, the resulting value of RSS of signal s and pattern p is stored in vG(p, s).

A subset of REXG(p) is efficiently found by a 2-valued pattern-parallel logic sim-
ulation. 64 random patterns are generated by assigning randomized values to the
X-sources. The signal values are computed in one simulation run. One 64-bit inte-
ger v = [v0, . . . , v63] is used to represent the values of each signal. For input i, vi is
derived from the simulated pattern p and set to vi = [0, . . . , 0] or vi = [1, . . . , 1] if i is
logic-0 or logic-1, respectively. At X-source q, a randomized 64-bit integer is generated
and assigned to vq = [v0q , . . . , v

63

q], vkq ∈ {0, 1}, 0 ≤ k ≤ 63. vq is used for the evaluation of
the direct fanout of q.

After finishing both simulations, each signal is classified as logic-0, logic-1 or REX,
FEX or FEX candidate. If RSS derived a logic value, the signal does not need to be
considered in the subsequent steps. If an unknown value is calculated for s, the values
of vs = [v0s , . . . , v

63

s] of the pattern-parallel simulation is taken into account. If at least
one pair of values vks , v

l
s(0 ≤ k, l ≤ 63) has complementary values, the signal s belongs

to REXG(p). If all vks bit are equal, s is marked as FEX candidate. The classification of
these signals is done with an incremental SAT-solver as explained in the next section.

3.2. Classification of Remaining FEX Candidates

The FEX candidates computed in the previous step for pattern p are exactly classified
by use of an incremental SAT solver. Input to the SAT solver is a Boolean formula in
conjunctive normal form (CNF) which maps the classification of a signal to a Boolean
satisfiability problem.

For each FEX candidate s it is already known that all 64 random assignments to the
X-sources force s to value vks (0 ≤ k ≤ 63) of either logic-0 or logic-1. Signal s is a FEX,
if and only if it can be proven that s cannot have the complementary value ¬vks for any
assignment to the X-sources. Thus, the Boolean formula is constructed such that it is
satisfiable, if and only if s can be driven to ¬vks . If the formula is satisfiable, s depends
on the X-sources and is classified as REX. Otherwise s is independent of the X-sources
and classified as FEX.

In the following we provide additional details on the generation of the SAT instances.
The FEX candidates are evaluated starting from the X-sources in topological order. To
increase efficiency, the SAT instance is extended incrementally for each FEX candi-
date exploiting the result from the simulation step as well as learnt knowledge from
analysis of previous FEX candidates.

To check whether s can be driven to ¬vks , the characteristic equations of the gates
in the adjustment cone, resp. transitive fanin, of s are translated into CNF and added
to the SAT instance. This is done using the Tseitin transformation [Tseitin 1968]. The
size of the resulting SAT instance is reduced by only considering the gates which have
been classified as REX or FEX candidate for pattern p. The CNF for the adjustment
cone of a signal s is created recursively as outlined in Algorithm 1.

This SAT instance is extended by a temporary unit clause with only one literal
(called assumption) for FEX candidate s which constrains the value of s in the search
process of the SAT solver. If the value of s in the pattern parallel simulation was
vs = [0, . . . , 0], the assumption {s} is added to constrain the SAT search to assign-
ments to the X-sources which imply s to logic-1. If the instance is satisfiable, s belongs
to the set REX. Otherwise s is a FEX with value logic-0 and vG(p, s) is updated. In the
latter case, the unit clause {¬s} is added permanently to the SAT instance to reduce

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8

runtime for subsequent calculations of the SAT solver. Correspondingly, if the value of
s in the pattern parallel simulation was vs = [1, . . . , 1], the assumption {¬s} is added.

ALGORITHM 1: CNF creation of the adjustment/fanin cone.

//addSignalToCNF(s, CNF)
G← getDrivingGateOf(s);
if G already Tseitin transformed then

return;
end

if vG(p, s) = 0 then
//Exploit knowledge from RSS
CNF ∪ {¬s};
return;

end

if vG(p, s) = 1 then
//Exploit knowledge from RSS
CNF ∪ {s};
return;

end
CNF ∪ getTseitinTransformation(G);
forall the Inputs si of gate G do

addSignalToCNF(si, CNF);
end

For the classification of the next FEX candidate s′ in topological order, the CNF
instance is extended incrementally to include the adjustment cone of s′, i. e., only the
clauses for gates which are not yet Tseitin transformed are added.

During exact simulation, the algorithm maintains a lookup table derived from the
result of the RSS step. The table contains the information if a symbol for an X-state
assigned to signals during RSS is a logic-0, a logic-1 or a REX. Before analyzing a
FEX candidate s using the SAT technique, a fast lookup is performed to check whether
the corresponding symbol Xs has already been computed. If the classification for Xs

is already known, s is set to the corresponding state. Otherwise, s is classified as de-
scribed above. This effectively restricts the use of the SAT solver to signals at which
REX values converge.

4. EXACT STUCK-AT AND TRANSITION-DELAY FAULT SIMULATION

The exact stuck-at fault simulation classifies a set of target faults as definitely detected
(DD), potentially detected (PD) or undetected for a test set in presence of unknowns.
It uses the heuristics and formal SAT reasoning explained in the previous section.
An overview of the fault simulation of a pattern p is given in Figure 4. 3-valued fault
simulation is used to mark as many target faults as possible as DD. For the remaining
faults, an exact analysis is conducted.

The exact analysis starts with the exact logic simulation of the fault free circuit for
pattern p to compute the set of activated faults. These faults are then analyzed serially.
For the fault simulation of an activated fault f , f is injected into the circuit model. The
algorithm then proceeds in two phases similar to the fault free approach: A heuristic
simulation and an exact calculation step. During the simulation step the behavior of
the faulty circuit is simulated in event-driven manner by RSS and 2-valued pattern-
parallel logic simulation which evaluates random assignments to the X-sources. If the
results of the simulations allow the fault classification as DD or undetected, further

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Exact Logic and Fault Simulation in Presence of Unknowns A:9

Restricted symbolic

simulation of p

Pattern-parallel

2-valued logic simulation

DD PD

Random Assignments to

X-sources

Exact SAT-based fault classification

H
e
u
ri
s
ti
c

a
n
a

ly
s
is

3-valued fault simulation of p

Exact logic simulation of p to compute fault activation

OPD

Potential det.

OPossDD

Poss. def. det.

OPossPD

Poss. potent. det. O
u

tp
u

t

c
la

s
s
if
ic

a
ti
o
n

G
a
te

 p
ro

c
e
s
s
in

g
 i
n

to
p
o

lo
g

ic
a

l
o

rd
e

r

Fig. 4: Exact fault simulation for a pattern p and classification as definitely detected
(DD) or potentially detected (PD).

analysis is not required. Otherwise, the SAT solver is invoked for analysis of the out-
puts of the faulty circuit. Internal signals in the faulty circuit do not need to be consid-
ered since the values at observable outputs are sufficient to reason about fault detec-
tion.

4.1. Fault Analysis by RSS and Pattern-Parallel Simulation

For an activated fault f , the circuit outputs o1, . . . , ok in the propagation cone, resp.
transitive fanout, of f are analyzed using the results of the faulty circuit simulations.
According to Section 2.1, we only consider outputs oi which have a defined value in the
fault free circuit vG(p, oi) ∈ {0, 1}.

If there is one output oi with a defined value in the faulty case vf (p, oi) ∈ {0, 1}
according to RSS, and vf (p, oi) 6= vG(p, oi), then f is marked as DD and the algorithm
proceeds with the next fault. If all outputs in the propagation cone have defined values
equal to the fault free case, i. e., vf (p, oi) ∈ {0, 1} and vf (p, oi) = vG(p, oi) for 1 ≤ i ≤ k,
then f is undetected by the pattern and the algorithm continues with the next fault.

Otherwise, the outputs are divided into three sets: Potential detect outputs OPD,
possibly definitive detect outputs OpossDD, and possibly potential detect outputs OpossPD.
The set OPD will contain all outputs at which fault f can be potentially detected. An
output oi is added to the set OPD if the faulty value voi is not equal to [0, . . . , 0] or

[1, . . . , 1]. Note that these outputs are elements of the set REXf (p).
For an output for which RSS derived an X symbol and voi equals either [0, . . . , 0]

or [1, . . . , 1], it is not known whether it belongs to REXf (p) or FEXf (p). A later exact
analysis will determine its state. If all vjoi (0 ≤ j ≤ 63) are equal to ¬vG(p, oi), oi is
added to OpossDD since it may be an output at which the fault can be definitely detected.
If the exact analysis later reveals that oi is a FEX, then f is a DD, otherwise f is a PD.

On the other hand, if all vjoi (0 ≤ j ≤ 63) are equal to vG(p, oi), oi is added to OpossPD

since it may be an output at which the fault can be potentially detected. If the exact
analysis reveals that oi is a REX, then f is a PD, otherwise f cannot be detected at oi
at all.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10

4.2. Fault Classification by SAT Reasoning

If the set OpossDD is not empty, the output values in the faulty circuit are iteratively
derived using the incremental SAT solver. This is similar to the fault free case. A SAT
instance is constructed which is satisfiable iff the considered output is a REX (see

Section 3.2). If output oi belongs to REXf (p), oi is removed from OpossDD and added to
OPD. In the other case, the fault is marked as DD, because

vG(p, oi), v
f (p, oi) ∈ {0, 1} ∧ vG(p, oi) = ¬vf (p, oi) (5)

is true. Thus, the fault is detected for all logic value assignments to the X-sources.
Then the next stuck-at fault is analyzed.

If OpossDD is empty and OPD is not empty, the stuck-at fault is marked as PD and the
algorithm proceeds with the next stuck-at fault.

If the current fault is neither marked DD nor PD and OpossPD is not empty, the SAT

solver is used to determine if one of the outputs in OpossPD belongs to REXf (p). Note
that this step is performed only if the fault is not yet marked as PD. If one output of

OpossPD is member of REXf (p), the fault is marked as PD. In the case that all outputs

in OpossPD belong to FEXf (p), the fault remains unmarked and undetected.

4.3. Extension to Transition-Delay Fault Simulation

The exact transition-delay fault simulation requires the combinational expansion of
the sequential circuit model as outlined in section 2.3, and an extension of the fault
simulation algorithm introduced above.

According to the definition in Section 2.1, a transition-delay fault is detected if

— the activation value φ stipulated by the fault model is justified at the faulty signal
line in the activation cycle and

— the stuck-at fault which describes the behavior of the considered transition-delay
fault is detectable in the succeeding propagation cycle.

The exact fault simulation algorithm is extended such that before simulating the
stuck-at fault in the propagation time frame, it is checked whether the faulty signal
has the value φ in the fault free case in the activation time frame. If the faulty signal
has the value ¬φ in the activation cycle, the fault is marked as undetected under the
current pattern pair.

If the faulty signal has the activation value φ, the stuck-at fault in the succeed-
ing time frame is analyzed as described above. If the stuck-at fault is detected, the
transition-delay fault is also marked as detected. If the stuck-at fault is potentially
detected in the propgation time frame, the transition-delay fault is marked as PD. It
is marked undetected if the stuck-at fault is not detected.

5. EXPERIMENTAL RESULTS

The presented algorithm has been applied to ISCAS benchmarks and large industrial
circuits from NXP. The experiments were run on an Intel Xeon CPU with 3.3 GHz. The
following two sections discuss the pessimism of classical combinational and sequential
logic simulation algorithms. Section 5.3 discusses the increase in fault coverage in
exact fault simulation, the trade-off between runtime and accuracy by use of timeouts,
and the impact of clustered X-sources.

5.1. Reduction of Unknown Output Values

The exact logic simulation algorithm of Section 3 efficiently computes the exact out-
put values of the circuit for a test set. This is in particular important for BIST and

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Exact Logic and Fault Simulation in Presence of Unknowns A:11

EDT environments to avoid unnecessary DFT overhead for X-masking or X-blocking
structures, and overmasking of FEX-valued outputs.

For the considered circuits modeling one time frame, five simulation runs are per-
formed and averaged. In each run, a fixed percentage of the controllable circuit inputs
is randomly selected as X-sources (X-ratio). Then, a test set of 1 000 random patterns
is analyzed. The difference in the number of PEX outputs of a 3-valued simulation,
i.e. the number of X-outputs due to a standard 3-valued simulation run and the REX
outputs of the exact analysis is compared.

Figure 5 a) shows the reduction of the number of outputs with X-value for ISCAS’85
circuit c7552 for different X-ratios when the exact algorithm is used (in red). The num-
ber of X-valued outputs is reduced by more than 25% for the X-source scenarios with
1% and 7% X-sources.The reduction decreases to 0% if nearly all inputs are X-sources.
The reduction of X-valued outputs is not monotonously falling as different X-ratios and
input patterns may lead to different numbers of reconvergences within the circuit and
therefore also to different numbers of outputs showing an unknown value. Hence, it
may happen that an increased X-ratio leads to additional reconvergences of X-valued
signals. This may cause X-canceling at the reconvergences and a reduction of outputs
with X-value compared to 3-valued simulation. The figure also shows the reduction
of X-valued outputs for restricted symbolic simulation (RSS, in blue) and the approx-
imate combinational BDD-based method of [Kochte et al. 2011] (in black): Restricted
symbolic simulation and the approximate method of [Kochte et al. 2011] are able to
reduce the pessimism of 3-valued combinational logic simulation and compute better
lower bounds for X-propagation in the circuit, but in general they fail to provide the
exact result.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

X
-o

u
tp

u
t

re
d

u
ct

io
n

 (
%

)

X-sources (%)

Circuit c7552

Proposed exact

BDD-based

RSS

a) Reduction of unknown output values of
ISCAS circuit c7552 (Red: Exact method, black:

BDD-based [Kochte et al. 2011], blue: RSS).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

S
im

u
la

ti
o

n
 p

es
si

m
is

m

Circuit s38584

3-val. pess.

RSS pess.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

S
im

u
la

ti
o

n
 p

es
si

m
is

m

Number of simulation cycles

Circuit p141k

3-val. pess.

RSS pess.

b) Pessimism in sequential simulation for 100 cycles.

Fig. 5: Pessimism in classical combinational and sequential logic simulation.

Similar experiments have been conducted for other circuits as well. In Table I, we
present the reduction of X-valued outputs of the proposed exact method for the case
of 5% X-sources. Column ‘Circuit’ contains the circuit name. Column ‘PEX’ and ‘REX’

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12

show the absolute number of unknown values at the outputs for the test set computed
by 3-valued simulation respectively the exact algorithm. In a BIST architecture, only
these REX outputs have to be masked for the computation of a signature. The last col-
umn in the table contains the reduction of X-values at the circuit outputs. In average,
the number of X-values is reduced by 20.2%.

Table I: Reduction of X-values at the outputs for 1 000 test patterns and 5% X-sources.

Circuit Gates
Outputs

PEX REX Reduction (%)

c6288 2 416 23 387 15 215 34.9
c7552 3 512 11 826 9 387 20.6

s38417 22 179 143 195 122 760 14.3
s38584 19 253 95 323 91 877 3.6

p77k 68 146 248 242 195 593 21.2
p78k 74,243 685 605 454 267 33.7
p81k 88 741 491 965 384 691 21.8
p89k 83 538 309 047 255 373 17.4
p100k 90 712 325 348 277 661 14.7
p141k 163 568 1 154 394 919 633 20.3
p267k 262 451 1 284 472 1 124 916 12.4
p286k 337 048 1 172 617 758 732 35.3
p295k 274 872 2 506 184 2 102 686 16.1
p330k 330 014 1 583 657 1 322 674 16.5
p378k 371 215 3 637 222 2 352 902 35.3
p388k 456 964 2 326 166 1 371 057 41.1

Average 999 916 734 964 26.5

5.2. Exact Sequential Logic Simulation

For sequential ISCAS’89 and NXP circuits additional experiments considering multi-
ple time frames have been conducted to assess the pessimism of 3-valued sequential
simulation for a given number of time frames. Five simulation runs considering a set
of five input pattern sequences and 100 time frames were performed. In each run, 1%
or 2% of the flip-flops in the first time frame have been randomly selected as X-sources.

Figure 5 b) shows the pessimism of sequential simulation of 100 cycles for circuits
s38584 and p141k and an X-ratio of 2%. The pessimism per cycle w.r.t. 3-valued simu-
lation is computed as the ratio of PEX-values computed by 3-valued simulation which

are identified as FEX by accurate analysis: p = |PEX3V |−|REX|
|PEX3V | . If p = 1, then all PEXs

computed by 3-valued simulation are actually classified as FEX by the accurate simu-
lation and have a binary value. As shown in the figure, simulation pessimism increases
during the first few cycles and saturates at a very high level of 0.8. In average over the
cycles and circuits, the simulation pessimism is 0.72 for an X-ratio of 1%, and 0.71 for
an X-ratio of 2%.

The figure also shows the pessimism of restricted symbolic simulation (’RSS pess.’),
computed accordingly. Depending on circuit structure and input patterns, the pes-
simism of restricted symbolic simulation may still be very high.

5.3. Exact Fault Simulation

This section presents the increase of fault coverage of a test pattern set due to the
exact analysis with the proposed algorithm. Similar to the previous section, five simu-
lation runs are performed per circuit for stuck-at as well as transition-delay faults and

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Exact Logic and Fault Simulation in Presence of Unknowns A:13

averaged. In each run, a fixed percentage of the controllable circuit inputs is randomly
selected as X-sources. Then, the fault coverage of 1 000 random patterns is computed
using 3-valued fault simulation and the proposed exact algorithm.

For circuit c7552, Figure 6 depicts the increase in fault coverage of the exact algo-
rithm w. r. t. 3-valued fault simulation for different X-ratios, and the runtime in sec-
onds. The data points indicate the increase of fault coverage if 1 000 test patterns are
analyzed exactly. The exact algorithm increases fault coverage by up to 14.2%. The
highest increase of fault coverage is achieved when approximately 10% of the inputs
are X-sources.

The figure also shows the increase of fault coverage for three approximate fault sim-
ulation algorithms: The hybrid SAT-based method of [Kochte and Wunderlich 2011],
the BDD-based algorithm of [Kochte et al. 2011], and fault simulation based on re-
stricted symbolic simulation (RSS). Compared with these approximate methods, the
exact algorithm reveals that a significant number of additional faults are actually de-
tectable with the simulated test set.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

 0

 10

 20

 30

 40

 50

A
d
d
it

io
n
al

ly
 d

et
ec

te
d
 s

tu
ck

-a
t

fa
u
lt

s
(%

)

R
u
n
ti

m
e

(s
)

X-sources (%)

Proposed exact

Runtime proposed exact

Hybrid SAT

BDD-based

RSS

Fig. 6: Increase in stuck-at fault coverage by the proposed exact algorithm, the hy-
brid SAT-based algorithm [Kochte and Wunderlich 2011], the BDD-based algorithm
[Kochte et al. 2011], and restricted symbolic simulation (RSS) with 1 000 random test
patterns for circuit c7552.

The runtime of the proposed algorithm reaches the maximum of 45s at an X-ratio of
about 35%. Compared to the method of [Kochte and Wunderlich 2011] with a runtime
of 2 358s, the proposed algorithm is 52.4× faster. For small X-ratios, the runtime is
low since RSS uncovers many FEXs at simple X-reconvergences. If the SAT solver is
required, the size of the SAT instance is small. For high X-ratios, the pattern parallel
simulation of random assignments to X-sources determines most of the REX signals.

Table II reports the results for stuck-at faults considering a larger set of ISCAS
and industrial circuits. Due to limited space, the results are limited to the case of 5%
X-sources. For each circuit, the table shows the absolute number of stuck-at faults.
Column ‘3-val. Fsim. DD’ shows the absolute number of detected faults and the fault
coverage in % of 3-valued fault simulation.

The number of additionally detected faults and fault coverage increase by the exact
algorithm according to equation (1) is given in column ‘∆ Exact sim. DD.’ Column
‘Exact sim. PD’ lists the number and ratio of faults marked as potential detect (PD)

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14

Table II: Detected stuck-at faults by a test pattern set with 1 000 patterns and 5%
X-sources.

Circuit
Num. of 3-val. Fsim. DD ∆ Exact sim. DD Exact sim. PD Run time

faults Num. F.C.(%) Num. F.C.(%) Num. F.C.(%) (s)

c6288 8 704 4,453 51.16 3 809 43.77 110 1.27 3
c7552 9 756 6 222 63.77 597 6.12 1 283 13.15 1

s38417 56 325 44 535 79.07 282 0.50 2 781 4.94 46
s38584 53 845 43 459 80.71 161 0.30 1 930 3.58 15

p77k 186 645 87 337 46.72 1 151 0.62 9 204 4.93 26 695
p78k 225 476 189 586 84.08 18 602 8.25 7 295 3.24 1 761
p81k 272 322 141 953 52.13 4 205 1.54 22 579 8.29 29 055
p89k 228 888 124 090 54.21 3 571 1.56 19 137 8.36 1 881
p100k 247 376 173 073 69.96 4 297 1.74 24 483 9.90 4 292
p141k 434 363 334 535 77.02 13 501 3.11 16 544 3.81 9 889
p267k 640 221 449 787 70.26 8 404 1.31 50 527 7.89 13 719
p295k 728 246 410 393 56.35 61 897 8.50 35 339 4.85 36 607
p330k 840 690 540 257 64.26 32 143 3.82 70 710 8.41 181 308
p378k 1 127 364 933 325 82.79 101 519 9.00 39 266 3.48 170 132
p388k 1 287 689 1 016 295 78.92 61 841 4.80 66 144 5.14 201 917

Total 6 347 910 4 449 172 70.88 315 981 4.98 367 332 5.79 686 326

according to equation (2). The last column lists the runtime for the exact analysis in
seconds.

The lower bound on fault coverage computed by 3-valued fault simulation ranges
from 46.72 to 84.08%, with an average of 70.88%. The exact fault simulation proves
that in average an additional 4.98% of the faults are detected by the test sets. The
increase in additionally detected faults is very high for the multiplier c6288 due to high
signal observability and propagation of many X-values in the pessimistic simulation.
The results also show that on average 5.79% of the stuck-at faults are classified as
potential detect. The runtime of the algorithm for the considered ratio of X-sources
ranges from 0.4 milliseconds up to 210 seconds for a single pattern.

Table III additionally reports the results for transition-delay faults considering IS-
CAS’89 and NXP circuits. Like for Table II, the columns show the absolute number of
detected faults and fault coverage for 3-valued simulation, the number and coverage
of the additionally detected faults by the proposed accurate simulation as well as the
number and coverage of potentially detected faults.

For transition-delay faults, the lower bound on the fault coverage computed by 3-
valued fault simulation ranges between 27.25 and 78.21%. In average, 3.76% of the
faults are marked as potentially detected. With the proposed exact fault simulation,
6.48% of the faults are additionally definitely detected in average. The runtime for the
exact analysis is notably smaller although two time frames have to be considered. This
is mainly because for many faults the complex output classification (c.f. formula (3) in
Section 2.1 and Figure 4) is skipped if the fault is not activated in the first time frame.

For all conducted tests, the allocated memory of the proposed approach was below
3.5 GiBytes. The overall runtime of the exact stuck-at fault simulation is in the order
of classical 3-valued ATPG, but the proposed algorithm is able to classify faults as de-
tected for which classical 3-valued ATPG fails to generate a test pattern. For circuit
p100k, the runtime is 23% less than the runtime of commercial ATPG, while for the
largest circuit p388k, the runtime is about 7× larger than the ATPG runtime. Com-
pared to a 3-valued fault simulation, the overall runtime is 130× larger on average.
Considering transition-delay faults, the differences in runtime shrink notably. On av-

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Exact Logic and Fault Simulation in Presence of Unknowns A:15

Table III: Detected transition-delay faults by a test pattern set with 1 000 patterns and
5% X-sources.

Circuit
Num. of 3-val. Fsim. DD ∆ Exact sim. DD Exact sim. PD Run time

faults Num. F.C.(%) Num. F.C.(%) Num. F.C.(%) (s)

s38417 68 744 44 168 64.25 1414 2.06 2 002 2.91 11
s38584 66 504 46 382 69.74 187 0.28 1 254 1.89 10

p77k 237 550 64 734 27.25 1 458 0.61 1 589 0.67 366
p78k 308 208 241 034 78.21 39 025 12.66 8 026 2.60 116
p81k 374 456 120 305 32.13 18 075 4.83 19 145 5.11 242
p89k 299 028 82 583 27.62 4 520 1.51 6 660 2.23 587
p100k 324 586 125 323 38.61 5 175 1.59 14 677 4.52 563
p141k 550 868 267 492 48.56 31 054 5.64 18 473 3.35 1 451
p267k 788 014 298 429 37.87 14 592 1.85 39 600 5.03 4 877
p295k 943 626 244 877 25.95 31 557 3.34 22 222 2.35 7 090
p330k 1 054 568 440 993 41.82 50 823 4.82 55 503 5.26 8 523
p378k 1 541 024 1 188 930 77.15 197 206 12.80 44 544 2.89 4 241
p388k 1 615 722 914 186 56.58 134 228 8.31 74 013 4.58 17 980

Total 8 172 898 4 079 437 49.91 529 315 6.48 307 708 3.76 46 063

erage, the runtime of the accurate approach is 7× higher compared to 3-valued fault
simulation.

5.3.1. Runtime Reduction by Applying a Timeout. As stated before, the runtime can by
traded off with the accuracy by introducing a timeout for each invocation of the SAT-
solver during the simulation. Considering stuck-at fault simulation for the larger cir-
cuit p388k (p378k) and a timeout of 5 seconds per SAT-solver invocation, the runtime
reduces to 173 484 s (120 750s). This is 14% (29.0%) less compared to the accurate so-
lution. The number of additionally detected faults does not change, but the number of
potentially detected faults decreases by 6.42% (13.2%). A more aggressive timeout of
1 second for circuit p388k (p378k) reduces the runtime further to 169 866 s (105 276
s). This reduces the number of additionally detected faults by 2 (213, 0.21%), and the
potentially detected faults by 7.94% (20.0%) compared to the accurate result.

5.3.2. Clustered X-Sources. In order to evaluate the impact of clustered X-sources, ad-
ditional stuck-at fault simulation experiments are conducted for NXP circuits in which
the X-sources are clustered. In the first experiment, the scan cells of one, two or three
randomly selected scan-chains are chosen as X-sources. The results are averaged over
5 runs per circuit and X-source configuration. Table IV presents for the different num-
bers of scan-chains (SC) selected as X-sources the percentage of flip-flops (FF) which
generate X-values in column 4, and the results of fault simulation in columns 5 to 7.
For circuit p100k and one scan-chain selected as X-source, i.e. 7.66% of the flip-flops
generate X-values, fault coverage increases by 2.41% compared to classical 3-valued
simulation. Limiting the number of X-sources to 5% (selecting a consecutive part of
the scan-chain), the fault coverage increases by 2.11%, which is 21.3% more than in
the case of 5% randomly selected X-sources (cf. Table II).

In the second experiment, the X-sources are clustered by the input signal name:
From the inputs sorted by name, a consecutive subset of 5% of the inputs is selected as
X-sources, and fault simulation is performed with 1000 random patterns. The results
are averaged over 5 runs per circuit and X-source configuration. For circuit p100k,
the fault coverage increase is 2.41% compared to 3-valued simulation, which is 38.5%
more than in the case of randomly selected X-sources. A similar result is observed for

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16

Table IV: Detected stuck-at faults by a test pattern set with 1 000 patterns for different
scan-chain configurations as X-sources.

Circuit
Num. of X-Sources 3-val. Fsim. ∆ Exact sim. Exact sim.
faults Num. SC FF in % DD (%) DD (%) PD (%)

p77k 186 645
1 8.19 43.05 1.02 4.01
2 15.16 37.13 1.43 6.65
3 23.65 30.17 1.41 7.32

p78k 225 476
1 2.03 93.06 0.44 0.62
2 3.75 89.17 0.67 1.01
3 5.68 83.24 1.03 1.56

p100k 247 375
1 7.66 63.71 2.41 9.64
2 16.28 45.42 4.97 16.80
3 19.21 35.34 5.90 16.87

circuit p141k, where fault coverage increases by 5.44%, which is 74.9% more than for
randomly selected X-sources.

The experiments indicate that for clustered X-sources, exact logic and fault simula-
tion as proposed here yield even better results than for randomly selected X-sources
since clustering further increases the pessimism in classical simulation algorithms.

6. CONCLUSIONS

The work presented the first stuck-at and transition-delay fault simulator, which is
able to calculate the exact fault coverage of a test pattern set in the presence of un-
known values. The simulator employs logic and restricted symbolic simulation to clas-
sify as many signal states as possible without invoking formal SAT reasoning. Incre-
mental SAT solving is utilized only to exactly analyze the remaining signal states. The
usage and runtime of the SAT-solver and the size of the CNF formulae are strongly
reduced by considering the simulation results and employing incremental SAT tech-
niques. The runtime can also be traded off against accuracy by use of timeouts. The
algorithm is able to handle large industrial circuits. The results show that in presence
of unknown values, fault coverage is significantly increased by an accurate analysis,
without increasing the number of test patterns.

REFERENCES

K.J. Antreich and M.H. Schulz. 1987. Accelerated Fault Simulation and Fault Grading in Combinational
Circuits. IEEE Trans. CAD of Integrated Circuits and Systems 6, 5 (september 1987), 704 – 712.
DOI:http://dx.doi.org/10.1109/TCAD.1987.1270316

B. Becker, M. Keim, and R. Krieger. 1999. Hybrid Fault Simulation for Synchronous Sequential Cir-
cuits. Journal of Electronic Testing: Theory and Applications (JETTA) 15, 3 (1999), 219–238.
DOI:http://dx.doi.org/10.1023/A:1008376522451

R.E. Bryant. 1986. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans. on Computers
35, 8 (1986), 677–691. DOI:http://dx.doi.org/10.1109/TC.1986.1676819

J.L. Carter, B.K. Rosen, G.L. Smith, and V. Pitchumani. 1989. Restricted symbolic evaluation is fast and use-
ful. In Proc. IEEE International Conference on Computer-Aided Design (ICCAD’89). IEEE, Piscataway,
NJ, USA, 38 –41. DOI:http://dx.doi.org/10.1109/ICCAD.1989.76900

H.P. Chang and J.A. Abraham. 1987. The Complexity of Accurate Logic Simulation. In Proc. IEEE Interna-
tional Conference on Computer Aided Design (ICCAD’87). IEEE, Piscataway, NJ, USA, 404–407.

H. Chou, K. Chang, and S. Kuo. 2010. Accurately Handle Don’t-Care Conditions in High-Level Designs and
Application for Reducing Initialized Registers. IEEE Trans. CAD of Integrated Circuits and Systems 29,
4 (2010), 646–651. DOI:http://dx.doi.org/10.1109/TCAD.2010.2042905

S. Hillebrecht, M.A. Kochte, H.-J. Wunderlich, and B. Becker. 2012. Exact Stuck-at Fault Classification in
Presence of Unknowns. In Proc. 17th IEEE European Test Symposium (ETS’12). IEEE, Piscataway, NJ,
USA, 98–103. DOI:http://dx.doi.org/10.1109/ETS.2012.6233017

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Exact Logic and Fault Simulation in Presence of Unknowns A:17

A. Jain, V. Boppana, R. Mukherjee, J. Jain, M. Fujita, and M. Hsiao. 2000. Testing, Verification, and Diag-
nosis in the Presence of Unknowns. In Proc. IEEE VLSI Test Symposium (VTS’00). IEEE, Piscataway,
NJ, USA, 263–268. DOI:http://dx.doi.org/10.1109/VTEST.2000.843854

S. Kajihara, K. Saluja, and S.M. Reddy. 2004. Enhanced 3-valued logic/fault simulation for full scan circuits
using implicit logic values. In Proc. IEEE European Test Symposium (ETS’04). IEEE, Piscataway, NJ,
USA, 108–113. DOI:http://dx.doi.org/10.1109/ETSYM.2004.1347620

S. Kang and S.A. Szygenda. 2003. Accurate Logic Simulation by Overcoming the Unknown Value Propaga-
tion Problem. Simulation 79, 2 (2003), 59–68. DOI:http://dx.doi.org/10.1177/0037549703254811

M. Keim, B. Becker, and B. Stenner. 1996. On the (non-)resetability of synchronous sequential cir-
cuits. In Proc. IEEE VLSI Test Symposium (VTS’96). IEEE, Piscataway, NJ, USA, 240–245.
DOI:http://dx.doi.org/10.1109/VTEST.1996.510863

M.A. Kochte, S. Kundu, K. Miyase, X. Wen, and H.-J. Wunderlich. 2011. Efficient BDD-based Fault Sim-
ulation in Presence of Unknown Values. In Proc. IEEE 20th Asian Test Symposium (ATS’11). IEEE
Computer Society, Los Alamitos, CA, USA, 383–388. DOI:http://dx.doi.org/10.1109/ATS.2011.52

M.A. Kochte and H.-J. Wunderlich. 2011. SAT-Based Fault Coverage Evaluation in the Presence of Un-
known Values. In Proc. Design, Automation and Test in Europe (DATE’11). IEEE Computer Society, Los
Alamitos, CA, USA, 1–6. DOI:http://dx.doi.org/10.1109/DATE.2011.5763209

S. Kundu, I. Nair, L. Huisman, and V. Iyengar. 1991. Symbolic implication in test generation. In Proc.
Conference on European Design Automation (DATE’91). IEEE Computer Society Press, Los Alamitos,
CA, USA, 492–496. DOI:http://dx.doi.org/10.1109/EDAC.1991.206456

H.K. Lee and D.S. Ha. 1991. An Efficient, Forward Fault Simulation Algorithm Based on the Parallel Pat-
tern Single Fault Propagation. In Proc. International Test Conference (ITC’91). IEEE Computer Society,
Washington, DC, USA, 946–955. DOI:http://dx.doi.org/10.1109/TEST.1991.519760

S. Mitra and K.S. Kim. 2004. X-Compact: an Efficient Response Compaction Tech-
nique. IEEE Trans. CAD of Integrated Circuits and Systems 23, 3 (2004), 421–432.
DOI:http://dx.doi.org/10.1109/TCAD.2004.823341

M. Naruse, I. Pomeranz, S.M. Reddy, and S. Kundu. 2003. On-Chip Compression of Output
Responses with Unknown Values Using LFSR Reseeding. In Proc. of the IEEE Interna-
tional Test Conference (ITC’03). IEEE Computer Society, Los Alamitos, CA, USA, 1060–1068.
DOI:http://dx.doi.org/10.1109/TEST.2003.1271094

A. Ramdas and O. Sinanoglu. 2012. Toggle-masking scheme for X-filtering. In Proc. IEEE Eu-
ropean Test Symposium (ETS’12). IEEE Computer Society, Los Alamitos, CA, USA, 1–6.
DOI:http://dx.doi.org/10.1109/ETS.2012.6233024

E.M. Rudnick, J.H. Patel, and I. Pomeranz. 1996. On potential fault detection in sequential circuits. In Proc.
IEEE International Test Conference (ITC’96). IEEE Computer Society, Los Alamitos, CA, USA, 142–149.
DOI:http://dx.doi.org/10.1109/TEST.1996.556956

J. Savir and S. Patil. 1993. Scan-based transition test. IEEE Trans. CAD of Integrated Circuits and Systems
12, 8 (1993), 1232–1241. DOI:http://dx.doi.org/10.1109/43.238615

J. Savir and S. Patil. 1994. On broad-side delay test. In Proc. IEEE VLSI Test Symposium (VTS’94). 284–290.
DOI:http://dx.doi.org/10.1109/92.311647

C. Scholl and B. Becker. 2001. Checking equivalence for partial implementations. In
Proc. Design Automation Conference (DAC’01). ACM, New York, NY, USA, 238–243.
DOI:http://dx.doi.org/10.1109/DAC.2001.156142

T. Schubert, M. Lewis, and B. Becker. 2010. Antom—Solver Description. SAT Race (2010).

Y. Tang, H.-J. Wunderlich, P. Engelke, I. Polian, B. Becker, J. Schlöffel, F. Hapke, and M. Wittke. 2006.
X-masking during logic BIST and its impact on defect coverage. IEEE Trans. on VLSI Systems 14, 2
(2006), 193–202. DOI:http://dx.doi.org/10.1109/TVLSI.2005.863742

G.S. Tseitin. 1968. On the complexity of derivation in propositional calculus. Stud-
ies in constructive mathematics and mathematical logic 2, 115-125 (1968), 10–13.
DOI:http://dx.doi.org/10.1007/978-3-642-81955-1 28

M. Turpin. 2003. The Dangers of Living with an X (bugs hidden in your Verilog). In Boston Synopsys Users
Group Meeting. 1–34.

E.G. Ulrich and T. Baker. 1988. The concurrent simulation of nearly identical digital networks. In Papers on
Twenty-five years of electronic design automation (25 years of DAC). ACM, New York, NY, USA, 318–323.
DOI:http://dx.doi.org/10.1145/62882.62918

J.A. Waicukauski, E.B. Eichelberger, D.O. Forlenza, E. Lindbloom, and T. McCarthy. 1985. Fault simulation
for structured VLSI. VLSI Systems Design 6, 12 (1985), 20–32.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:18

C. Wilson, D. Dill, and R. Bryant. 2000. Symbolic Simulation with Approximate Values. In Formal Methods
in Computer-Aided Design, Warren Hunt and Steven Johnson (Eds.). LNCS, Vol. 1954. Springer, Berlin
/ Heidelberg, Germany, 507–522. DOI:http://dx.doi.org/10.1007/3-540-40922-X 29

P. Wohl, J.A. Waicukauski, and F. Neuveux. 2008. Increasing Scan Compression by Using X-chains. In Proc.
IEEE International Test Conference (ITC’08). IEEE Computer Society, Los Alamitos, CA, USA, 1–10.
DOI:http://dx.doi.org/10.1109/TEST.2008.4700646

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

