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Abstract  
With increasing transient error rates, distinguishing intermittent and transient faults is especially 

challenging. In addition to particle strikes relatively high transient error rates are observed in architectures 

for opportunistic computing and in technologies under high variations. This paper presents a method to 

classify faults into permanent, intermittent and transient faults based on some intermediate signatures during 

embedded test or built-in self-test. 

Permanent faults are easily determined by repeating test sessions. Intermittent and transient faults can be 

identified by the amount of failing test sessions in many cases. For the remaining faults, a Bayesian 

classification technique has been developed which is applicable to large digital circuits. The combination of 

these methods is able to identify intermittent faults with a probability of more than 98 %. 

1 Introduction 

In recent years, volume diagnosis has gained increasing attention as a key contributor to fast yield ramp-

up. A number of efficient techniques have been developed mainly assuming permanent faults as the root 

cause of test failures [Rajski99, Ghosh00, Liu02, Wohl02, Cheng06, Holst09, Tang07, Wang09, Elm10, 

Cook11a]. Continuous technology scaling, however, has led to a more complex scenario, and diagnosis must 

now support a refined quality assessment as described in the sequel. Firstly, increasing parameter variations 

in nano-scale CMOS have expedited new strategies for “underdesigned and opportunistic computing” 

[Ernst04, Gupta13]. To fully exploit the potential of technology scaling, these approaches avoid an overly 

pessimistic design with large guard bands. Instead, they include mechanisms to detect and compensate a 

certain amount of transient faults caused by parameter variations or external noise [Nicolaidis99, Ernst04, 

Nicolaidis07]. During structural test, however, transient faults may indicate failures, even if they could be 

compensated during system operation. Secondly, marginalities in the design may lead to intermittent faults 

depending on certain activation conditions, such as for example power droop [Tirumurti04, Polian07]. 

Intermittent faults may repeatedly occur at the same location or in its neighborhood. Even though they are 

not permanent, they may severely affect the system functionality, indicate potential early life failures, or 

reduce robustness against transient faults. 

Dealing with transient and intermittent faults is particularly challenging. On the one hand, transient faults 

are uncritical for appropriately designed “robust” circuits, and test failures due to transient faults cause 

unnecessary yield loss in this case. On the other hand, intermittent faults impact quality, but they may lead to 

similar observations during test as transient faults. Nevertheless, depending on the quality requirements, a 

limited amount of intermittent faults may still be acceptable. To control the trade-off between yield and 

quality, test and diagnosis procedures must be able to distinguish between transient, intermittent, and 

permanent faults. As a first step in this direction, the integrated test and diagnosis scheme in [Cook11b] 

partitions the test into several shorter sessions and immediately repeats failing sessions. This way, permanent 

faults can be identified quickly, as they will lead again to the same faulty behavior. If a repeated session 



shows a fault free behavior or a different faulty behavior, this indicates a non-permanent fault, but a 

classification into transient or intermittent fault is not obvious, and thus the main focus of this paper. 

So far, only little work has been published on the diagnosis of intermittent faults. In the context of online 

monitoring, the intermittent faults can be identified based on the observed failure rates in the system 

[Fechner09], but during offline test the observation time is much shorter making a pure statistical analysis 

impractical. A recent approach for system diagnosis applies Bayesian reasoning to deal with intermittent 

faults [DeKler09]. As a proof of concept the author uses it, in particular, for localizing intermittent faults in 

logic circuits. However, this approach assumes full observability of internal nodes and is not directly 

applicable to realistic circuits. 

This paper presents an adaptive scheme for test and diagnosis, which effectively combines the window-

based diagnosis in [Cook11b] with Bayesian reasoning. The rest of the paper is organized as follows: Section 

2 briefly summarizes the necessary background on fault modeling, window-based and Bayesian diagnosis. 

Subsequently, in Section 3 the new approach for adaptive Bayesian diagnosis is explained in detail. The 

experimental results presented in Section 4 show that the combination of these methods can classify 

intermittent faults with a confidence of more than 98 %. 

2 Background 

2.1 Fault Modeling 

In the following, the typical properties of transient and intermittent faults are summarized, and the fault 

model used in this work is explained. Transient faults randomly appear at victim nodes v and last at most for 

one clock cycle. They can be caused by external noise [Baumann05], but even more likely, delay problems 

occurring at clock boundaries or dynamic parameter variations such as power supply and interconnect 

noises, electromagnetic interferences and electrostatic discharges can lead to violations of timing safety 

margins which manifest themselves as transient faults [Constantinescu03, Borkar05].  

Intermittent faults can be traced back to unstable or marginal hardware and are activated by specific 

environmental conditions, like increasing or decreasing temperature or voltage. Their observable behavior is 

similar to that of transient faults. But as they may also evolve into permanent faults, they can be as critical as 

permanent faults. One example is high frequency power droop, which results from power starvation when 

multiple cells connected to the same power grid segment suddenly increase their current demand 

[Tirumurti04, Polian07]. Thus, a high frequency power droop occurs when several nodes in the 

neighborhood of a victim node v switch in the same direction as v. Other root causes for intermittent faults 

include low frequency power droop or cross talk. 

Standard fault models like stuck-at, delay or bridging faults are not sufficient to appropriately deal with 

transient or intermittent faults, because activation and/or timing conditions cannot be taken into account. For 

this reason, the conditional stuck-at fault model is applied [Holst09]. 

Definition 1 (conditional stuck-at fault): Let v denote a circuit line and cond a Boolean or timing 

condition. The conditional stuck-at zero fault cond_0_v forces v to zero, if cond is met, and the conditional 

stuck-at one fault cond_1_v forces v to 1, if cond is satisfied. 

 For instance, (v=1)_0_v is a permanent stuck-at-0 fault, and (v-1=0 ∧ v=1)_0_v describes a slow-to-rise 

fault. To model transient faults which occur at a certain time step only, a particular pattern in a sequence P = 

(p1, ..., pn) is specified in cond. The expression (pi | P)_0_v means that the line v is set to ‘0’ when the i-th 

pattern of the sequence P is applied. To characterize intermittent faults, their activation conditions are 

encoded in cond. For example, a high frequency power droop is activated, if many nodes in the 

neighborhood switch in the same direction as the victim node v. This can be described by (v-1 = 0) ∧ (v = 1) 

∧ (|{w ∈ N (v) : (w-1 = 0) ∧ (w = 1)}| ≥ τ) or (v-1 = 1) ∧ (v = 0) ∧ (|{w ∈ N (v) : (w-1 = 1) ∧ (w = 0)}| ≥ τ), 
where N (v) denotes the neighborhood of v and τ a user-defined threshold value. For an exact definition of 



neighborhoods layout data are required. As an approximation the circuit topology at gate level is analyzed in 

this work. The circuit netlist is mapped to an undirected graph G = (V, E), the nodes of which correspond to 

circuit nodes and the edges of which correspond to direct connections between circuit nodes.  

Definition 2 (neighborhood): Let G = (V, E) be an undirected graph, v ∈ V, and r > 0 a natural number. 

Then the set N 
r
(v) := {w ∈ V : there is a path from v to w of length at most r} is called the neighborhood of 

radius r of v.  

Figure 1 shows an example. The shaded area depicts the neighborhood of radius 2 of v. 

 

Figure 1: Topological neighborhood of a circuit node v. 

2.2 Window-based Diagnosis 

Volume diagnosis is an extremely challenging task, as it should interfere with the test flow as little as 

possible. Thus, the diagnostic procedures must be compatible with standard test architectures and response 

compaction schemes, as for example the widely accepted STUMPS architecture shown in Figure 2 

[Bardell82].  

 

Figure 2: STUMPS architecture. 

For built-in self-test (BIST), a test pattern generator (TPG) and a multiple-input signature register (MISR) 

are added to the circuit under test (CUT). In each clock cycle a “slice” of a test pattern is loaded into the scan 

chains. When a complete test pattern is shifted in, the test response is captured in the flip-flops. While the 

response is shifted out and compressed by the MISR, the next pattern can be shifted in. For embedded test, 

the TPG is replaced by an on-chip decompressor receiving encoded test data from the automatic test 

equipment (ATE), and the compacted test responses are sent back to the ATE. If a transient fault occurs in 

the CUT during the capture cycle, a faulty test response may be obtained and stored in the flip-flops. The 

fault effect is preserved in the flip-flops during shifting and may lead to a faulty signature. However, even if 

the transient fault lasts longer than one clock cycle, only the fault effect during the capture cycle has impact 

on the signature. Therefore, in the sequel transient faults are assumed to have a duration of a single clock 

cycle only. In contrast to that, intermittent faults can be activated by several patterns. 

Because of the limited bandwidth in embedded test and the limited storage capacities in built-in self-test, 

the amount of response data to be analyzed must be minimized for either test strategy. It is beyond the scope 

of this paper to give a complete review of the state of the art in this extensively studied field. Instead, this 

section focuses on direct diagnosis only, which supports test response compaction by signature analysis and 



derives the fault locations directly from the faulty signatures [Cheng06]. In the following it will be briefly 

summarized how direct diagnosis can be combined with enhanced test response compaction as well as with 

mechanisms to distinguish between permanent and non-permanent faults. 

While first approaches for direct diagnosis with extreme response compaction are not compatible with the 

STUMPS architecture [Elm10], the window-based diagnosis in [Cook11a] overcomes this problem by 

partitioning the test into N contiguous subsequences (windows). As illustrated in Figure 3, each window is 

characterized by a single cumulative signature. 

 

Figure 3: Test sequence with repeated windows and cumulative signatures s1, ..., sN. 

Unlike the diagnosis scheme in [Wohl02], which repeats windows with failing signatures in a special 

diagnostic mode without response compaction, the approach in [Cook11a] can determine the fault location 

directly from the cumulative signature of a window. Compared to the standard scheme with one signature 

per pattern this provides an additional reduction of the response data directly proportional to the window 

size. The diagnostic algorithm is based on the conditional stuck-at fault model.  

Definition 3 (Deviation vectors): Let P denote the set of all patterns in a window, and let v be a candidate 

fault location. For a pattern p ∈ P the deviation vectors d((p | P)_0_v) and d((p | P)_1_v) represent the 

deviations from the fault free signature in the presence of the conditional stuck-at faults (p | P)_0_v and (p | 

P)_1_v.  

The deviation vectors are precomputed for each pattern p1, ..., pn in the window and each candidate fault 

location. From this information about single activations of faults, the linear equations 

 c1 d((p1 | P)_0_v) ⊕ ... ⊕ cn d((pn | P)_0_v) = Sobs(P) ⊕ Sref(P) (1) 

and 

 c1 d((p1 | P)_1_v) ⊕ ... ⊕ cn d((pn | P)_1_v) = Sobs(P) ⊕ Sref(P) (2) 

are built, where c1 to cn are variables over GF(2), and Sobs(P) and Sref(P) denote the observed and the 

reference signature, respectively. As the MISR signatures are m-bit vectors, each of the equations (1) and (2) 

corresponds to a system of linear equations over GF(2) with n variables and m equations. Such a system of 

equations has a solution, if the fault location v can explain the faulty behavior. Hereby it is assumed that for a 

given fault location v, it is sufficient to consider only conditional stuck-at faults of the same polarity (no line 

flips). 

To guarantee a unique solution, the number of variables n, and thus the number of patterns in a window 

must not exceed m. However, the analysis of spurious failure effects requires additional considerations to 

avoid ambiguous diagnostic results. Due to aliasing the solution of the equations may point to fault location 

v, although it does not uniquely match the observed behavior. For example, consider a stuck-at fault at 

location v, which is detected by every pattern in the window. If n = m and the deviation vectors d((p1 | 

P)_0_v), …, d((pn | P)_0_v) are linearly independent, then d((p1 | P)_0_v), …, d((pn | P)_0_v) span the 

complete m-dimensional space GF(2)
m
 and the corresponding system of equations is solvable for any 



observed faulty behavior Sobs(P). If n < m, then n linearly independent deviation vectors d((p1 | P)_0_v), …, 

d((pn | P)_0_v) can explain 2
n
 - 1 of 2

m
 – 1 possible faulty behaviors. Assuming that the faults are 

statistically independent and equally probable, this provides an aliasing probability of 

 

2
n −1
2
m −1

≈ 2n−m
 . (3) 

To reduce the aliasing probability, the number of bits in the MISR can be made larger than the number of 

patterns in the test window. 

The response data can be further reduced by skillfully exploiting the MISR properties [Indlekofer10, 

Cook11b]. In fact, it is sufficient to observe only a few bits of the signature and guarantee the propagation of 

fault effects with the help of a shadow MISR. To distinguish between permanent and non-permanent faults, a 

window is repeated immediately in case of a mismatch between the observed and expected response data. If 

the repeated test again provides the same faulty signature, then a permanent fault has been detected, and the 

faulty signature is stored in the fail memory. Otherwise a non-permanent fault must have been the root cause 

of failure.  

2.3 Bayesian Diagnosis 

Bayesian networks provide an engineering framework for the analysis of statistical data [Pearl88, 

Agosta04, Ben-Gal07, Barber12]. They are widely used in classification problems, such as medical diagnosis 

or troubleshooting applications. The problem is modeled by a collection of random variables and the 

dependencies between them, and the Bayesian network provides a graph representation of this model. More 

precisely, a Bayesian network is a directed acyclic graph, the vertices of which correspond to the random 

variables. The edges represent the dependencies between random variables, which are typically cause-effect 

relationships. They are labeled with conditional probabilities as illustrated in Figure 4 for a diagnosis 

problem. 

 

Figure 4: Bayesian network for fault diagnosis. 

The vertices f1 to f4 correspond to faults in a system. They are characterized by their “a priori” probabilities 

of occurrence p(f1) to p(f4). The vertices s1, s2, and s3 represent the “symptoms” observed during a test. The 

edges are labeled with conditional probabilities, where p(s | f) denotes the probability that symptom s is 

observed under the condition that fault f has occurred. In contrast to that, p(f | s) is the probability that the 

fault f is a correct diagnosis for the symptom s. The goal of Bayesian inference is to deduce these “a 

posteriori” probabilities of faults and use them to guide the diagnosis. The deduction rules are based on the 

mathematical laws for conditional probabilities, in particular on Bayes Theorem stating 

 
p(s | f )⋅ p( f ) = p( f | s)⋅ p(s)⇔ p(s | f ) =

p( f | s)⋅ p(s)
p( f )

.
 (4) 

In general, exact inference in a Bayesian network is an NP-hard problem, but there are some efficient 

algorithms for restricted classes of networks such as, for example, message passing. 



The network in Figure 4 is typical for a diagnosis problem where multiple faults can occur simultaneously. 

If only single faults are considered, then a simpler network can be used with only one multi-valued random 

variable representing the possible faults (cf. Fig. 4) [Przytula00]. 

 

Figure 5: Bayesian network for the diagnosis of single faults. 

In the context of electronic testing, Bayesian networks have already been successfully used for the 

diagnosis of analog and power circuits, e.g. [Aminian01, Liu06, Ye08, Krishnan10]. Also at the system and 

board level some pioneering approaches are available for coarse-grained diagnosis [Barford04, O’Farrill05, 

Zhang10]. So far, Bayesian reasoning has not yet been exploited for digital diagnosis at the gate level, 

although some research on improving volume diagnosis by other machine learning techniques has been done 

[Tang07, Wang09]. However, all these approaches address permanent faults and do not consider intermittent 

faults. 

In [DeKler09] a general approach for system diagnosis in the presence of intermittent faults is described. 

In this work, intermittent faults are represented by pairs of a priori probabilities: the probability of 

occurrence and the probability of faulty behavior in the presence of the fault. The diagnosis procedure 

observes the system for several time steps. At each time step the Bayesian network is updated according to 

the observed behavior. The diagnosis strategy selects internal observation points, such that the a posteriori 

probabilities for wrong diagnoses decrease quickly. As a proof of concept the presented technique is applied 

to some of the smaller ISCAS85 benchmark circuits [Brglez85], but it is not directly applicable to larger 

industrial circuits. 

3 Adaptive Bayesian Diagnosis 

3.1 Diagnostic Flow 

To deal with intermittent faults, the developed diagnostic procedure combines Bayesian reasoning with the 

window-based diagnosis of Section 2.2. As described above, the test is partitioned into N windows with n 

patterns each. In case of a mismatch between the observed and the expected response data, a window is 

immediately repeated one or several times until the correct signature is obtained or a user-defined limit Rmax 

of repetitions is reached. As shown in [Amgalan08] the quality of the test increases with increasing Rmax. 

However, for the sake of simplicity, in the following Rmax = 2 is assumed without loss of generality. 

The “adaptive behavior” is stored together with the failing signatures in the fail memory. Table 1 

summarizes the different outcomes and their interpretations. The expected reference signature is denoted by 

sREF, and the observed signatures in the first and second run of the window are denoted by s and s’. 

 



TABLE I. ADAPTIVE BEHAVIOR FOR RMAX = 2 

Behavior Code Interpretation 

s ≠ sREF 

s’ = sREF 

10  Transient or intermittent fault 

s ≠ sREF  

s’ ≠ sREF, s = s’ 

00  Permanent or intermittent fault 

s ≠ sREF  

s’ ≠ sREF, s ≠ s’ 

01 a)  Intermittent problem activated by different 

patterns or affecting several nodes 

b)  Another transient fault 

 

In this case the entries in the fail memory (symptoms) consist of three components: the observed faulty 

signature s, the window id and the code for the adaptive behavior. If s ≠ s’, an additional entry with s’ is 

added. This is illustrated in Figure 6 for embedded test. 

 

Figure 6: Hardware architecture for adaptive diagnosis. 

After the test, the fail memory is read out and analyzed. In a first step, several rules for immediate 

classification are checked to reduce the computational effort: 

(1) If the same faulty signature has been observed in all repetitions for one or more windows (code 00), 

then a permanent or intermittent fault is assumed.  

(2) Similarly, if different faulty signatures have been observed in all repetitions for one or more windows 

(code 01), then an intermittent fault is assumed, too. Although the same behavior can also be caused by 

several transient faults, the pessimistic classification is preferred for the following reason: As the faulty 

behavior does not vanish after repeating the windows, the faults targeted in these windows cannot be 

excluded. Increasing the number of repetitions Rmax alleviates this problem. Then it is more likely to finally 

observe a fault free behavior in the case of transient faults (code 10). 

(3) The overall number of faulty sessions is used as an indicator for intermittent faults as follows. Let µ 

denote the expected transient error rate, then the probability that a single test session with n patterns fails due 

to transient errors is 1− 1− μ( )
n

. Depending on the number of repetitions, the overall number ˜ N  of sessions is 

between N  and 2N. The probability that T out of ˜ N  sessions fail due to transient faults is given by 

     

˜ N 

T

⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 1− 1− μ( )

n( )
T

1− μ( )
n( )

˜ N −T

. (5) 

Based on this, a bound Tmax is selected, such that the probability of Tmax faulty sessions caused by transient 

faults is below a user-defined threshold. If the number of fault sessions exceeds Tmax, then an intermittent 

fault is assumed. 

In all three cases described above, the chip is discarded as faulty, and the window-based diagnosis of 

section 2.2 is used for localizing the fault. For the remaining cases Bayesian reasoning is applied to 



distinguish between transient and intermittent faults. The network is built automatically as described in 

section 3.2. 

3.2 Building the Bayesian Network 

In this work it is assumed that failures are caused by single intermittent or permanent faults, therefore the 

analysis relies on a single multi-valued random variable F representing the faults as illustrated in Figure 5. 

However, transient faults are considered as “background noise”, i.e. a transient fault may randomly appear at 

any time and also modify or mask the effect of an intermittent fault. To determine the range of F, the 

window-based diagnosis of section 2.2 is run as a pre-processor. A ranked list of k candidate fault locations 

is extracted, and for each fault location j an intermittent fault fj is added to the range of F. To represent the 

possible occurrence of a transient fault in a circuit without intermittent or permanent faults, an extra fault 

ftrans is added. So the overall range of F is given by {f1, ..., fk, ftrans}. The a priori probabilities for the faults in 

F can be based on expert knowledge. 

The symptoms S correspond to the signatures observed for the N test sessions. For each test session Ti, i = 

1, ..., N, the observed signature si is added to S, and in case of a repeated window also the signature si’ is 

added. The resulting network is illustrated in Figure 7 (a shaded signature si’ is only present, if si is faulty). 

 

Figure 7: Bayesian network for adaptive diagnosis. 

The computation of the conditional probabilities p(s | f) is based on both a probabilistic and deterministic 

characterization of faults. Transient faults are described by their probability of occurrence µ = µa · µp, where 

µa is the probability that the fault is activated, and µp is the probability that the fault is propagated to the 

outputs. Intermittent faults are characterized by an activation probability λ, the patterns which can propagate 

them to the outputs, and their fault activation profile during the test.  

Definition 4 (detecting patterns): Let P denote the set of all patterns in a window, and let v denote a 

candidate fault location. Furthermore let b ∈ {0, 1} be the polarity of conditional stuck-at faults, then the set 

Pd(v) := { p ∈ P | d((p | P)_b_v) ≠ 0 } is called the set of detecting patterns for v and nd(v) := | Pd(v) | is the 

number of detecting patterns for v.  

Definition 5 (activation profile of a signature): Let P denote the set of all patterns in a window, let s be 

the observed signature, and v a candidate fault location. Furthermore let b ∈ {0, 1} be the polarity of 

conditional stuck-at faults, then Pa(v, s) := { p ∈ Pd(v) | (p | P)_b_v must have been active to explain s } and 

Pi(v, s) := { p ∈ Pd(v) | (p | P)_b_v must have been inactive to explain s } describe the activation profile for v 

to explain s. The respective cardinalities are denoted by na(v, s) := | Pa(v, s) | and ni(v, s) := | Pi(v, s) |. 

To illustrate these definitions the small circuit depicted in Figure 8 is used as an example. Assume that a 

complete test is performed in two sessions with four patterns each and after preprocessing there is only one 

candidate fault location at node v. Table II shows the circuit behavior for the first window in the fault free 

case and the in the presence of the faults d stuck-at zero (0_v) and d stuck-at one (1_v). 



 

Figure 8: Example for activation profile. 

TABLE II: CIRCUIT BEHAVIOR FOR SESSION 1 

Input Fault Free 

Outputs 

0_v 1_v Test 

Pattern 

a b c x y x y x y 

p1 000 00 00 10 

p2 001 10 10 11 

p3 010 00 00 10 

p4 011 10 10 11 

 

For the sake of simplicity assume that no further response compaction is applied and a symptom of a test 

session is described by the sequence of output vectors (x(p1) y(p1) x(p2) y(p2) x(p3) y(p3) x(p4) y(p4)), i.e. the 

fault free case is described by the symptom (00 10 00 10). The fault 0_v provides exactly the same symptom 

and cannot be detected in this window. The fault 1_v leads to the symptom (10 11 10 11), i.e. 1_v can be 

detected by each pattern and Pd(v)  = {p1, p2, p3, p4} and nd(v) = 4. However, as we are dealing with 

intermittent faults with activation probability λ < 1, 1_v may not be active for all the patterns. Assume that 

the symptom s = (00 10 10 10) is observed after the session. To explain this symptom, 1_v must have been 

active for p3 and inactive for the remaining patterns, i.e. Pa(v, s) = {p3} and Pi(v, s) = {p1, p2, p4}. The 

respective cardinalities are na(v, s) = 1 and ni(v, s) = 3. In contrast, the symptom s = (01 10 00 10) cannot be 

explained at all. One or several transient faults must have caused the deviation of the fault free signature or 

modified the fault effects of an intermittent fault. 

Conditional Probabilities for Faulty Signatures 

For a test session with patterns P, a faulty signature s ≠ sREF and an intermittent fault f at location v, the 

preprocessing step provides information about the detecting patterns and the fault activation profile. If f can 

explain the faulty signature, the fault effect has not been modified by transient noise, and the conditional 

probability p(s ≠ sREF | f) is given by  

 
p(s ≠ sREF | f ) = λ

na (v,s)(1− λ)n i (v,s)(1− μ)n
, (6) 

which is the product of the probabilities that f is activated by the na(v, s) patterns in Pa(v, s), f is not activated 

by the remaining ni(v, s) detecting patterns, and no transient fault has occurred during the complete session 

with n patterns. For the small example discussed above, the conditional probability that s = (00 10 10 10) is 

observed when 1_v is present is p(s | v) = λ (1 – λ)
3
 (1 – μ)

4
. 

If the intermittent fault f at location v cannot explain the signature s, as s =  (01 10 00 10) in the example, 

then the fault effect must have been modified by transient noise, or the fault has not been activated at all and 

the faulty signature results from a transient fault only. The conditional probability p(s ≠ sREF | f) is then given 

by 

 
p(s ≠ sREF | f ) = 1− (1− λ)

nd (v )( ) 1− (1− μ)n( ) + (1− λ)nd (v ) 1− (1− μ)n( ) =1− (1− μ)n , (7) 



where (1− λ)nd (v )
 
is the probability that the fault has not been activated at all, and 1− (1− λ)nd (v )  is the 

probability that the fault has been activated by one or more patterns. Similarly, 1 - (1 - µ)
n
 is the probability 

that at least one transient fault has occurred in the session. 

For ftrans the term p(s ≠ sREF | ftrans) describes the probability that a transient fault, which has been activated 

in the circuit, is propagated to the outputs by at least one of the n patterns. This can be computed as  

1 - (1 - µp)
n
. 

Conditional Probabilities for Fault Free Signatures 

In the presence of an intermittent fault f, a correct signature s = sREF can only be obtained, if the fault 

effect has been masked by transient noise, or the fault has not been activated at all and there is no transient 

noise. The probability p(s = sREF | f) is therefore computed as 

 
p(s = sREF | f ) = 1− (1− λ)

nd (v )( ) 1− (1− μ)n( ) + (1− λ)nd (v )(1− μ)n =1− (1− μ)n . (8) 

If a transient fault only has occurred in the circuit, the correct signature can only be obtained, if it does not 

propagate to the outputs. The conditional probability p(s = sREF | ftrans) is therefore computed as (1 - µp)
n
. 

Extension to Multiple Faults 

The approach can be extended to multiple faults, but then a network as depicted in Figure 4 with 

individual nodes for each fault location must be built. Inference becomes more complex, because joint 

probabilities for the faults must be considered. In addition the basic probabilities p(s | f) also joint conditional 

probabilities p(s | f1, ..., fk) must be determined and added to the network. For preprocessing the diagnosis 

technique for multiple faults in [Cook14] can be used. 

3.3 Calibrating the Network 

When the Bayesian diagnosis is applied in practice the model parameters are not known and the network 

must be properly calibrated. As mentioned above, the a priori probabilities can be based on expert 

knowledge. If this is not available the faults are assumed being uniformly distributed. As shown below the 

diagnostic procedure is robust against this approximation. 

Similarly, the transient error rate µ = µa · µp can be set according to previous observations, and the 

propagation probability µp of a transient fault at a random location can be approximated by fault simulation. 

Estimating the activation rate λ for intermittent faults is more challenging. As the defect mechanism 

causing the intermittent fault is not known beforehand, λ cannot be based on previous observations. Instead, 

the classification is performed for several different λ values, and for each fault the solution with the highest 

probability p(f | s) is selected. This allows the method to work for different intermittent fault mechanisms, 

even without detailed statistics for every possible defect mechanism. 

4 Simulation Results 

To validate the presented approach, a simulation study was performed with several industrial circuits 

kindly provided by NXP. The fault-simulation environment used in earlier work was extended to handle 

intermittent faults as described in Section 2.1 [Cook11a, Cook11b]. In three different experiments, 

intermittent faults, transient faults, and intermittent faults with transient background noise were injected 

randomly. Then a mixed-mode test was run with 10,000 pseudo-random patterns and deterministic patterns 

for the remaining hard to test faults. The test was partitioned into windows of 32 patterns, and for response 

compaction a 48-bit MISR was used. For fault detection during test, only 8 bits of the MISR were observed. 

As described in Section 3.3 the classification was performed with several different values of λ, here 0.4, 0.1, 

and 0.001 were used. The specific details and results of the experiments are described in the following 

subsections. 



4.1 Intermittent Faults  

To inject an intermittent fault at a randomly chosen location v, high frequency power droop was simulated 

with varying parameters for the radius r of the neighborhood N 
r
(v) and the threshold value τ for the 

switching activity. The radius r ranged from 1 to 3, and the threshold value τ was set to 15 %, 30 % or 50 % 

of nodes in the neighborhood. To model the unpredictable behavior of intermittent faults, the fault was only 

activated with probability 0.5, if the conditions were met. Overall, 120 randomly selected candidate locations 

were analyzed for all parameter combinations. As the available netlists represented the circuits before 

technology mapping, faults at gates with extremely large fanouts and unrealistically large neighborhoods 

were not considered. To correlate the experimental data with the network model described in Section 3.2, the 

actual fault activation rate λexp achieved in the experiments was estimated by logic simulation. The observed 

activation rates ranged from zero over low rates in the order of 10
-5

 to high rates larger than 0.5. 

For the third immediate classification rule in section 3.1, the limit Tmax for the number of faulty sessions 

that can be caused by transient errors was set to Tmax = 10. Assuming a transient error rate µ = 10
-5

 this keeps 

the probability of Tmax faulty sessions due to transient errors below 10
-13

. Table III shows the results after 

immediate classification. 

 
TABLE III: IMMEDIATE CLASSIFICATION (TMAX = 10) 

Circuit Experiments Fault Free Permanent 

Failures 

Changing 

Failures 

Above 

Tmax 

Bayesian 

Classification  

p45k 1044 171 692 140 1 40 

p100k 1059 112 807 110 1 29 

p141k 1014 116 761 107 2 28 

p239k 1050 84 827 116 2 21 

p259k 966 54 835 55 0 22 

p267k 1053 56 733 234 3 27 

p269k 1041 151 741 119 0 30 

p279k 1044 227 671 108 0 38 

p286k 891 101 693 69 0 28 

p295k 1047 271 663 60 0 53 

 

The first column shows the circuit names, and the overall number of evaluated experiments is listed in the 

second column. The following columns three to five show the number of experiments without any fault 

effect, the number of experiments with at least one session showing the same faulty signature in all 

repetitions, the number of remaining experiments with at least one session having different faulty signatures, 

the number of remaining experiments with the number of faulty sessions exceeding Tmax. Finally, the sixth 

column reports the number of experiments where Bayesian classification was needed. The results show that 

the immediate classification helps to reduce the computational effort for Bayesian classification drastically. 

The results of the overall classification procedure are summarized in Table IV. 

To evaluate the quality of the overall classification procedure, experiments without any fault effect were 

discarded. The second column therefore shows the number of experiments with at least one faulty session. 

Column three summarizes the results of immediate classification, and column four lists the number of 

experiments where the Bayesian network identified an intermittent fault. As both permanent and intermittent 

faults are considered as critical failures, the overall number of experiments with classification permanent or 

intermittent is shown in column five. Accordingly, if an intermittent fault is classified as critical failure this 

is considered as correct classification. Therefore the values in column five are divided by the number of 

experiments with failures to obtain the percentage of correctly classified failures in column six. The ratio of 



correctly classified faults is above 95% for all circuits, but obviously the Bayesian network could not classify 

all injected faults correctly. The results of Bayesian classification are analyzed in more detail in Table V. 

The analysis distinguishes between experiments with a single faulty session only and experiments with 2 

to 9 faulty sessions. For each case the number of experiments is shown as well as the number of experiments 

with classification “transient” (T) and “intermittent” (I). The last column presents the ratio of correctly 

classified experiments considering only those cases with 2 to 9 faulty sessions. If only a single faulty session 

is observed during test, then the Bayesian network cannot collect enough information to distinguish the 

observed failure from a transient failure. However, if more faulty sessions occur, then the Bayesian network 

provides the correct classification in almost all cases. 

 
TABLE IV: OVERALL CLASSIFICATION (TMAX = 10) 

Circuit Experiments 

with Failures 

(F) 

Critical Failures 

after Immediate 

Classification (IC) 

Classified as Intermittent 

by Bayesian 

Classification (BC) 

Overall Critical 

Failures  

(CF = IC + BC) 

Correctly 

Classified 

(CF/F) 

p45k 873 833 11 844 0.967 

p100k 947 918 13 931 0.983 

p141k 898 870 7 877 0.977 

p239k 966 945 15 960 0.994 

p259k 912 890 13 903 0.990 

p267k 997 970 10 980 0.983 

p269k 890 860 12 872 0.980 

p279k 817 779 17 796 0.974 

p286k 790 762 10 772 0.977 

p295k 776 723 17 740 0.954 

 
TABLE V: BAYESIAN CLASSIFICATION (TMAX = 10) 

1 Faulty Session 2 to 9 Faulty Sessions 

Circuit 
Experi-

ments  
Experi-

ments 
T I 

Experi-

ments 
T I 

Percentage Classified 

as Intermittent 

p45k 40 29 29 0 11 0 11 1.000 

p100k 29 15 15 0 14 1 13 0.929 

p141k 28 21 21 0 7 0 7 1.000 

p239k 21 6 6 0 15 0 15 1.000 

p259k 22 9 9 0 13 0 13 1.000 

p267k 27 17 17 0 10 0 10 1.000 

p269k 30 18 18 0 12 0 12 1.000 

p279k 38 21 21 0 17 0 17 1.000 

p286k 28 18 18 0 10 0 10 1.000 

p295k 53 34 34 0 19 2 17 0.895 

 

4.2 Transient Faults 

The injection of a transient fault at location v is randomly controlled by the activation probability µa. In the 

reported experiments, probabilities 2·10
-3

, 2·10
-4

, and 2·10
-5

 were chosen. It should be noted that these 

probabilities are higher than the probabilities typically reported for transient errors caused by radiation. But 

here also transient errors caused by parameter variations are taken into account, which may occur with 

higher probabilities. This makes it more difficult to distinguish transient faults from intermittent faults. 



Transient faults were assumed to behave like stuck-at faults being active for exactly one clock cycle. Overall 

140 experiments were performed for each circuit. Table VI shows the results of immediate classification 

using again Tmax = 10 and the same format as in Section 4.1. 

 
TABLE VI: IMMEDIATE CLASSIFICATION WITH TMAX = 10 

Circuit Experiments Fault Free Permanent 

Failures 

Changing 

Failures 

Above 

Tmax 

Bayesian 

Classification  

p45k 140 11 0 43 14 72 

p100k 140 15 0 15 15 95 

p141k 140 16 0 22 29 73 

p239k 140 13 0 36 32 59 

p259k 140 14 0 15 18 93 

p267k 140 14 0 22 50 54 

p269k 140 13 0 32 45 50 

p279k 140 16 0 31 23 70 

p286k 140 16 0 14 14 96 

p295k 140 13 0 14 17 96 

 

While Tmax = 10 worked well for the experiments in section 4.1, where a transient error rate of µ = 10
-5

 was 

assumed, for the higher rates used in this experiment, it results in a wrong classification for a considerable 

number of experiments (column 6). In fact, in all the experiments with at least Tmax faulty sessions the 

injection rate was 2·10
-3

. If expert knowledge about the expected transient error rate is available, then Tmax 

can be better tuned to the considered scenario. Assuming for example a transient error rate of µ = 10
-4

, the 

threshold Tmax must be set to 21 to keep the probability of Tmax faulty sessions caused by transient errors 

below 10
-13

. Table VII updates the results for Tmax = 21. It can be observed, that in this case the number of 

faulty session is always below Tmax, and consequently the Bayesian network must be applied more often.  

 
TABLE VII: IMMEDIATE CLASSIFICATION WITH TMAX = 21 

Circuit Experiments Fault Free Permanent 

Failures 

Changing 

Failures 

Above 

Tmax 

Bayesian 

Classification  

p45k 140 11 0 43 0 86 

p100k 140 15 0 15 0 110 

p141k 140 16 0 22 0 102 

p239k 140 13 0 36 0 91 

p259k 140 14 0 15 0 111 

p267k 140 14 0 22 0 104 

p269k 140 13 0 32 0 95 

p279k 140 16 0 31 0 93 

p286k 140 16 0 14 0 110 

p295k 140 13 0 14 0 113 

 

The results of the overall classification procedure for Tmax = 21 are summarized in Table VIII using the 

same format as in Section 4.1. As transient faults were injected in this experiment, the classification “critical 

failure” is wrong, and the number of correctly classified experiments is obtained by subtracting column 5 

(CF) from column 2 (F). The overall ratios of correctly classified experiments are lower than in section 4.1. 

This is partly due to the immediate classification rule 2, which considers a session with changing faulty 

signatures as an indicator of a critical failure. However, as pointed out in section 3.1 this rule is necessary to 



ensure a high product quality, and its pessimistic effect can be reduced by allowing more than just one 

repetition of a test session (Rmax = 2) like here. 

 
TABLE VIII: OVERALL CLASSIFICATION (TMAX = 21) 

Circuit Experiments 

with Failures 

(F) 

Critical Failures 

after Immediate 

Classification (IC) 

Classified as Intermittent 

by Bayesian 

Classification (BC) 

Overall Critical 

Failures  

(CF = IC + BC) 

Correctly 

Classified  

((F – CF)/F) 

p45k 129 43 1 44 0.659 

p100k 125 15 4 19 0.848 

p141k 124 22 1 23 0.815 

p239k 127 36 1 37 0.709 

p259k 126 15 2 17 0.865 

p267k 126 22 1 23 0.817 

p269k 127 32 2 34 0.732 

p279k 124 31 0 31 0.750 

p286k 124 14 0 14 0.887 

p295k 127 14 0 14 0.890 

 

The quality of the Bayesian classification is studied in more detail in Table IX. In the same way as in 

Section 4.1 the ratio of correctly classified experiments is only determined for experiments with 2 to 20 

faulty sessions. Again, this rate is very high for all circuits ranging from 96.2 % to 100 %. 

 
TABLE IX: BAYESIAN CLASSIFICATION (TMAX = 21) 

1 Faulty Session 2 to 20 Faulty Sessions 

Circuit 
Experi-

ments  
Experi-

ments 
T I 

Experi-

ments 
T I 

Percentage Classified 

as Transient 

p45k 86 6 6 0 80 79 1 0.988 

p100k 110 6 6 0 104 100 4 0.962 

p141k 102 6 5 1 96 96 0 1.000 

p239k 91 3 3 0 88 87 1 0.989 

p259k 111 4 4 0 107 105 2 0.981 

p267k 104 2 1 1 102 102 0 1.000 

p269k 95 5 4 1 90 89 1 0.989 

p279k 93 1 1 0 92 92 0 1.000 

p286k 110 6 6 0 104 104 0 1.000 

p295k 113 6 6 0 107 107 0 1.000 

 

4.3 Intermittent Faults with Transient Background Noise 

In this experiment intermittent faults were injected as described in Section 4.1, and in addition to that 

transients faults were randomly injected with probabilities 2·10
-3

, 2·10
-4

, and 2·10
-5

 as described in Section 

4.2. The threshold Tmax was set to 10 to allow a comparison with the experiments in Section 4.1, where 

intermittent faults without background noise were considered. Tables X and XI show the results of 

immediate classification as well as the results of the overall classification procedure. 

It can be observed that the ratios of correctly classified experiments are still very high, yet they are a little 

bit lower than in the first experiment without background noise. This can be explained by the relatively high 

activation rates for the background noise. In the same experiment both intermittent and transient faults with 



comparable activation rate may be present, which makes it extremely difficult for the Bayesian network to 

distinguish between the two types of faults.  

 
TABLE X: IMMEDIATE CLASSIFICATION (TMAX = 10) 

Circuit Experiments Fault Free Permanent 

Failures 

Changing 

Failures 

Above 

Tmax 

Bayesian 

Classification  

p45k 1044 51 696 157 25 115 

p100k 1788 44 1369 255 19 101 

p141k 1014 36 761 133 30 54 

p239k 1050 31 817 143 32 27 

p259k 966 32 832 62 7 33 

p267k 1053 65 734 159 52 43 

p269k 1041 54 737 178 36 36 

p279k 1044 73 670 159 36 106 

p286k 891 57 693 76 10 55 

p295k 1047 80 665 85 41 176 

 
TABLE XI: OVERALL CLASSIFICATION (TMAX = 10) 

Circuit Experiments 

with Failures 

(F) 

Critical Failures 

after Immediate 

Classification (IC) 

Classified as Intermittent 

by Bayesian 

Classification (BC) 

Overall Critical 

Failures  

(CF = IC + BC) 

Correctly 

Classified 

(CF/F) 

p45k 993 878 20 898 0.904 

p100k 1744 1643 47 1690 0.969 

p141k 978 924 30 954 0.975 

p239k 1019 992 12 1004 0.985 

p259k 934 901 13 914 0.979 

p267k 988 945 27 972 0.984 

p269k 987 951 19 970 0.983 

p279k 971 865 55 920 0.947 

p286k 834 779 19 798 0.957 

p295k 967 791 28 819 0.847 

 

Table XII shows that, despite these problems, the Bayesian network still considerably helps to adjust the 

results of immediate classification. As before, the experiments with 2 to 9 faulty sessions give a deeper 

insight into the quality of the Bayesian classification. As expected the percentage of correctly classified 

intermittent faults is lower than before, because fault effects of intermittent faults can now be modified by 

transient faults and the explanation of symptoms is not as clear as in the previous experiments. However, 

compared to a diagnosis approach without Bayesian classification this can still help in two ways. Without 

Bayesian classification, the immediate classification must also provide a rule for dealing with changing 

faulty signatures. On the one hand, a pessimistic rule would sort out all devices with this result, and the 

Bayesian classification reduces unnecessary yield loss. On the other hand, an optimistic rule would assume 

transient faults and accept the respective devices. In this case, the Bayesian classification considerably 

improves the product quality. Hence, in average around 50 % of the intermittent faults are finally filtered out 

by the Bayesian classification in table XII, and only for two circuits the additional gain is below 20 %. 



TABLE XII: BAYESIAN CLASSIFICATION (TMAX = 10) 

1 Faulty Session 2 to 9 Faulty Sessions 

Circuit 
Experi-

ments  
Experi-

ments 
T I 

Experi-

ments 
T I 

Percentage Classified 

as Intermittent 

p45k 115 8 8 0 107 87 20 0.187 

p100k 101 7 7 0 94 47 47 0.500 

p141k 54 2 2 0 52 22 30 0.577 

p239k 27 4 4 0 23 11 12 0.522 

p259k 33 4 4 0 29 16 13 0.448 

p267k 43 2 2 0 41 14 27 0.659 

p269k 36 4 4 0 32 13 19 0.594 

p279k 106 3 3 0 103 48 55 0.534 

p286k 55 8 8 0 47 28 19 0.404 

p295k 176 10 10 0 166 138 28 0.169 

 

5 Conclusions 

For innovative technologies, for opportunistic computing schemes and for some yield enhancement 

strategies, the amount of both transient and intermittent faults will increase significantly. This paper 

presented a unified method for classifying faults into permanent, intermittent and transient ones during 

volume testing even after test response compaction. The method can be seamlessly integrated into the 

standard embedded test and built-in self-test schemes. If logic diagnosis and Bayesian classification are 

combined, it is possible to identify intermittent faults with a confidence of more than 98%. By adjusting a 

priori probabilities and decision values it is possible to find appropriate trade-offs between yield by reducing 

false-positives for intermittent faults and product quality by reducing false-positives for transient faults. 

6 References 

[Agosta04] J. M. Agosta, T. Gardos, “Bayes Network “Smart” Diagnostics,” Intel Technology Journal, Vol. 8, No. 
4, November 2004. 

[Amgalan08] U. Amgalan, C. Hachmann, S. Hellebrand, Hans-Joachim Wunderlich, “Signature Rollback - A 
Technique for Testing Robust Circuits,” Proceedings IEEE VLSI Test Symposium (VTS’08), San 
Diego, CA, USA, May 2008, pp. 125-130. 

 [Aminian01] F. Aminian and M. Aminian. “Fault Diagnosis of Analog Circuits Using Bayesian Neural Networks 
with Wavelet Transform as Preprocessor,” Journal of Electronic Testing (JETTA), Vol. 17, No. 1, 
February 2001, pp. 29-36. 

[Barber12] D. Barber, “Bayesian Reasoning and Machine Learning,” New York: Cambridge University Press, 
2012. 

[Bardell82] P. H. Bardell and W. H. McAnney, “Self-Testing of Multichip Logic Modules,” Proc. IEEE Int. Test 
Conference (ITC’82), Philadelphia, PA, USA, Nov. 1982, pp. 200-204. 

[Barford04]  L. Barford, V. Kanevsky, and L. Kamas, “Bayesian fault diagnosis in large-scale measurement 
systems,” Proceedings IEEE Instrumentation and Measurement Technology Conference (IMTC’04), 
Como, Italy, 2004, Vol. 2, pp. 1234-1239. 

[Baumann05] R. Baumann, “Soft errors in advanced computer systems,” IEEE Design & Test of Computers, Vol. 22, 
No. 3, 2005, pp. 258-266. 

[Ben-Gal07] I. Ben-Gal, “Bayesian Networks,” in F. Ruggeri, F. Faltin, and R. Kenett, “Encyclopedia of Statistics in 
Quality & Reliability,” Wiley & Sons, 2007. 

[Borkar05] S. Borkar, “Designing Reliable Systems from Unreliable Components: The Challenges of Transistor 
Variability and Degradation,” IEEE Micro, Nov. 2005, pp. 10-16. 

[Brglez85] F. Brglez, et al., “Accelerated ATPG and fault grading via testability analysis,” Proc. IEEE International 
Symposium on Circuits and Systems (ISCAS’85), Kyoto, 1985, pp. 695-698. 



[Cheng06] W.-T. Cheng, M. Sharma, T. Rinderknecht, L. Lai, and C. Hill, “Signature based diagnosis for logic 
BIST,” in Proc. IEEE Int. Test Conference (ITC’06), Santa Clara, CA, USA, 2006, pp. 1-9. 

[Constantinescu03] C. Constantinescu, “Trends and Challenges in VLSI Circuit Reliability,” IEEE Micro, Vol. 23, 
No. 4, July 2003, pp. 14-19. 

[Cook11a] A. Cook, M. Elm, H.-J. Wunderlich, U. Abelein, “Structural In-Field Diagnosis for Random Logic 
Circuits,” Proc. European Test Symposium (ETS’11), Trondheim, May 2011, pp. 111-116. 

[Cook11b] A. Cook, S. Hellebrand, T. Indlekofer, H.-J. Wunderlich, “Diagnostic Test of Robust Circuits,” 
Proceedings Asian Test Symposium (ATS´11), New Delhi, India, November 2011, pp. 285-290. 

[Cook14] A. Cook and H.-J. Wunderlich, “Diagnosis of Multiple Faults with Highly Compacted Test Responses,” 
Proc. 19th IEEE European Test Symposium (ETS'14), Paderborn, Germany, May 2014, pp. 1-6 

[DeKler09] Johan De Kleer, “Diagnosing multiple persistent and intermittent faults,” Proceedings 21st International 
Joint Conference on Artificial Intelligence (IJCAI'09), Pasadena, CA, USA, 2009, pp. 733-738. 

[Elm10] M. Elm and H.-J. Wunderlich, “BISD: Scan-Based Built-In Self-Diagnosis,” Proc. Design Automation 
and Test in Europe (DATE’10), Dresden, Germany, March 8-12, 2010. 

[Ernst04] D. Ernst, et al., “Razor: Circuit-Level Correction of Timing Errors for Low Power Operation,” IEEE 
Micro, Vol. 24, No. 6, Nov.-Dec. 2004, pp. 10-20. 

[Fechner09] Bernd Fechner, “A Dynamic Fault Classification Scheme”, Proceedings European Safety and 
Reliability Conference (ESREL’08), Valencia, Spain, September 2008, pp. 147-153. 

[Ghosh00] J. Ghosh-Dastidar and N. A. Touba, “A rapid and scalable diagnosis scheme for BIST environments 
with a large number of scan chains,” Proc. 18th IEEE VLSI Test Symposium (VTS’00), Montreal, 
Canada, 2000, pp. 79-85. 

[Gupta13] P. Gupta, Y. Agarwal, L. Dolecek, N. Dutt, R. K. Gupta, R. Kumar, S. Mitra, A. Nicolau, T. S. Rosing, 
M. B. Srivastava, S. Swanson, D. Sylvester, “Underdesigned and Opportunistic Computing in Presence 
of Hardware Variability,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and 
Systems, Vol.32, No.1, Jan. 2013, pp. 8-23. 

[Holst09] S. Holst and H.-J. Wunderlich, “Adaptive Debug and Diagnosis Without Fault Dictionaries,” Journal of 
Electronic Testing: Theory and Applications (JETTA), Vol. 25, No. 4-5, pp. 259-268. 

[Indlekofer10] T. Indlekofer, M. Schnittger, S. Hellebrand, “Efficient Test Response Compaction for Robust BIST 
Using Parity Sequences,” Proc. 28th IEEE Int. Conference on Computer Design (ICCD'10), 
Amsterdam, The Netherlands, October 2010, pp. 480-485.  

[Krishnan10] S. Krishnan, K. D. Doornbos, R. Brand, H. G. Kerkhoff, “Block-Level Bayesian Diagnosis of Analogue 
Electronic Circuits,” Proceeding Design, Automation and Test in Europe (DATE'10), Dresden, 
Germany, March 2010, pp. 1-6. 

[Liu02] C. Liu, K. Chakrabarty, and M. Goessel, “An interval-based diagnosis scheme for identifying failing 
vectors in a scan-BIST environment,” Proc. Design, Automation and Test in Europe (DATE’02), Paris, 
France, 2002, pp. 382-386. 

[Liu06] F. Liu, P. K. Nikolov, and S. Ozev. “Parametric Fault Diagnosis for Analog Circuits Using a Bayesian 
Framework,” Proceedings 24th IEEE VLSI Test Symposium (VTS’06), Berkeley, CA, USA, April 30 - 
May 4, 2006, pp. 272-277. 

[Nicolaidis99] M. Nicolaidis, “Time Redundancy Based Soft-Error Tolerant Circuits to Rescue Very Deep 
Submicron,” Proc. 17th IEEE VLSI Test Symposium, San Diego, CA, USA, April 1999. 

[Nicolaidis07] M. Nicolaidis, “GRAAL: A New Fault Tolerant Design Paradigm for Mitigating the Flaws of Deep 
Nanometric Designs,” Proceedings IEEE International Test Conference (ITC’07), San Jose, CA, USA, 
October 2007, pp. 1-10. 

[O’Farrill05] C. O’Farrill, M. Moakil-Chbany, and B. Eklow, “Optimized reasoning-based diagnosis for non-random, 
board-level, production defects,” Proceedings IEEE International Test Conference (ITC’05), Austin, 
TX, USA, November 2005, pp. 173–179. 

[Pearl88] J. Pearl, “Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,” Revised 2
nd

 
Printing, San Francisco: Morgan Kaufmann Publishers, 1988. 

[Polian07] I. Polian, A. Czutro, S. Kundu, B. Becker, “Power Droop Testing,” IEEE Design & Test of Computers, 
Vol. 24, No. 3, May-June 2007, pp. 276-284. 

[Przytula00] K. W. Przytula, D. Thompson, “Construction of Bayesian networks for diagnostics,” Proceedings 2000 
IEEE Aerospace Conference, Big Sky, Montana, USA, March 2000, Vol. 5, pp.193-200. 

[Rajski99] J. Rajski and J. Tyszer, “Diagnosis of scan cells in BIST environment,” IEEE Trans. on Computers, 
Vol. 48, No. 7, July 1999, pp. 724-731. 

[Tang07] H. Tang, S. Manish, J. Rajski, M. Keim, B. Benware, “Analyzing Volume Diagnosis Results with 
Statistical Learning for Yield Improvement,” Proceeding 12

th
 IEEE European Test Symposium 

(ETS’07), Freiburg, Germany, May 2007, pp. 145-150. 



[Tirumurti04] C. Tirumurti, S. Kundu, S. Sur-Kolay, Y.-S. Chang, “A Modeling Approach for Addressing Power 
Supply Switching Noise Related Failures of Integrated Circuits,” Proceedings Design, Automation and 
Test in Europe (DATE'04), Paris, France, February 2004, pp. 1078-1083. 

[Wang09] S. Wang, W. Wei, “Machine Learning-Based Volume Diagnosis,” Proceedings Design, Automation and 
Test in Europe (DATE'09), Nice, France, April 2009, pp. 902-905. 

[Wohl02] P. Wohl, J. A. Waicukauski, S. Patel, and G. Maston, “Effective diagnostics through interval unloads in 
a BIST environment,” Proc. 39th Design Automation Conference (DAC’02), New Orleans, LA, USA, 
2002, pp. 249-254. 

[Ye08] B. Ye, Z. Luo, W. Zhang, and C. Piao, “Fault diagnosis for power circuits based on SVM within the 
Bayesian framework,” Proceedings World Congress on Intelligent Control and Automation, Chongqing, 
China (WCICA’08), 2008, pp. 5125–5129. 

[Zhang10] Z. Zhang, Z. Wang, X. Gu, and K. Chakrabarty, “Board-Level Fault Diagnosis using Bayesian 
Inference,” Proceedings 28th IEEE VLSI Test Symposium (VTS’10), Santa Cruz, CA, USA, April 
2010, pp. 244-249. 

 


