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Abstract—Test generation algorithms based on standard n-
valued logic algebras are pessimistic in presence of unknown (X)
values, overestimate the number of signals with X-values and
underestimate fault coverage.

Recently, an ATPG algorithm based on quantified Boolean
formula (QBF) has been presented, which is accurate in presence
of X-values but has limits with respect to runtime, scalability and
robustness.

In this paper, we consider ATPG based on restricted symbolic
logic (RSL) and demonstrate its potential. We introduce a
complete RSL ATPG exploiting the full potential of RSL in ATPG.
Experimental results demonstrate that RSL ATPG significantly
increases fault coverage over classical algorithms and provides
results very close to the accurate QBF-based algorithm. An
optimized version of RSL ATPG (together with accurate fault
simulation) is up to 618× faster than the QBF-based solution,
more scalable and more robust.

Index Terms—SAT, QBF, test generation, ATPG, Unknown
values, Restricted symbolic logic

I. INTRODUCTION

During test application, unknown values (X-values) may

occur at uncontrolled memory elements (uninitialized memory

arrays, non-scan flipflops or latches), clock-domain boundaries

or at analog-digital converters.

X-values reduce observability and controllability of signals

during testing, which results in a reduced fault coverage.

However, due to the performance and area overhead of design-

for-test structures, not all X-values can be avoided by X-

blocking hardware.

Test generation and fault simulation is typically performed

based on logic algebras with a low fixed number of symbols

to distinguish between fault-free, faulty and unknown signal

values. In the five-valued D-calculus [1], a single X-symbol

is used to represent an unknown value in the fault-free or

faulty circuit. The accuracy has been increased by the nine-

valued algebra [2], which uses three values {0, 1,X} both for

the fault-free and faulty circuit. This algebra can also be used

in SAT-based test generation algorithms [3]. The 16-valued

algebra [4] for test generation further distinguishes between

unknown signal values with equivalent or complementary

states in the fault-free and faulty circuit.

However, these algebras do not overcome the fundamental

problem that different X-values are not clearly identified and

distinguished. Thus, such multi-valued modeling still causes

pessimistic results when multiple X-sources exist in the circuit,

and X-valued signals reconverge.

The symbolic representation of signal values, e. g. by

binary decision diagrams [5], allows to accurately express

the dependency on the X-sources. This, however, may incur

prohibitively high memory requirements.

In restricted symbolic logic (RSL), different symbols are

used to represent X-values and their negation. In logic sim-

ulation based on RSL [6] (also known as numbered-X or

indexed simulation) this allows to accurately evaluate simple

reconvergences of X-valued signals. In [7], the idea of using

multiple X-symbols is discussed for the first time. The use of

RSL during the forward implication step in topological test

pattern generation is proposed in [8, 9]. Yet, there has been

no complete ATPG algorithm that also uses RSL during the

backward implication step.

Figure 1 shows a circuit with two X-sources (signals b

and d). In this circuit, the stuck-at-0 fault at output j is

untestable when using three-valued logic since j cannot be

justified to logic-1. Using restricted symbolic logic, the fault

is detected by the pattern (a, c, e) = (1, 0, 1), since the X-

values stemming from signal b reconverge at gate G5, cancel

each other out (X-canceling) and generate a logic-1 value at

signal j.

Fig. 1: Stuck-at-0 fault at output j is undetectable in three-

valued modeling, but detectable using restricted symbolic

logic.

Still, restricted symbolic logic is pessimistic when X-values

from different X-sources converge at a signal.

Accurate logic and fault simulation utilizing SAT-based

reasoning have recently been proposed in [10, 11]. An accurate

ATPG algorithm based on quantified Boolean formulas (QBF),

which is able to generate a test pattern for each testable stuck-

at fault or prove its untestability, is proposed in [12]. However,

deciding about the satisfiability of a QBF is a PSPACE-
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complete problem, which is more complex than classical

NP-complete topological or SAT-based ATPG [13]. Thus,

the increased accuracy in ATPG causes considerably higher

runtime and low scalability.

In this paper we present:

• to the best of our knowledge the first ATPG with the

accuracy of restricted symbolic logic, called complete

RSL ATPG, that uses restricted symbolic logic both

during forward and backward implications.

• an extended version of D-chains [14] to model propa-

gation paths of fault effects in case RSL is used (Sec-

tion III-D).

• a further optimized RSL ATPG algorithm that significantly

reduces runtime at the cost of only slightly increased

pessimism compared to the complete RSL approach

(Section III-D,III-F). This pessimism is compensated by

incorporating accurate fault simulation [10].

• a thorough comparison of the proposed algorithms with

classical three-valued ATPG and accurate QBF-based

ATPG [12, 15] in presence of X-values.

The experimental results demonstrate that the RSL-based

ATPG algorithms increase fault coverage significantly com-

pared to three-valued algorithms and provide a result very

close to an accurate QBF-based ATPG at significantly lower

runtime: The complete RSL ATPG is one order of magnitude

faster than the QBF-based algorithm. The combination of

optimized RSL ATPG and accurate fault simulation further

increases the quality. It is up to two orders of magnitude faster

and has much less aborted faults.

The paper is structured as follows: the next section intro-

duces the used terminology and fault detection requirements.

Section III presents the proposed RSL ATPG algorithms,

followed by the full ATPG framework in Section IV. Experi-

mental results are discussed in Section V.

II. TERMINOLOGY AND PROBLEM STATEMENT

A. X-Values

A signal with an X-value carries a binary value of logic-0 or

logic-1, but it is not known which one. This excludes undefined

voltage levels caused for instance by driver contention. This

corresponds to the semantics of unknown values in Kleene’s

strong three-valued logic [16]. The signals which generate X-

values in the circuit are called X-sources; e. g. uncontrollable

non-scan flip-flops or other uninitialized memory elements. A

signal or gate in the circuit is X-dependent if and only if it is

reachable from an X-source.

B. Two-, Three-Valued and Restricted Symbolic Logic (RSL)

The two-valued (switching) logic distinguishes the two

binary values logic-0 and logic-1. It is extended by a third

value X to denote unknown values in the three-valued logic.

The restricted symbolic logic [6] (RSL) extends this value

domain by named and distinguishable X-values and their

negation. Restricted symbolic logic accurately evaluates sim-

ple, local X-reconvergences and the resulting canceling of X-

values. If X-values from different X-sources converge at a gate,

and the output value is not determined by a controlling value

at an input or by X-canceling, the output is assigned a new,

unique X-symbol. This new X-symbol has no correlation with

the input values any more and therefore introduces pessimism

into the evaluation.

In fault simulation and ATPG, two-, three-valued and re-

stricted symbolic logic can be used to model the signal values

in the fault-free and faulty circuit.

C. Value Encoding for SAT-Based ATPG

In this work, we map the test pattern generation to a Boolean

satisfiability (SAT) problem. Most modern SAT-solvers expect

a conjunctive normal form (CNF) as input. A CNF is a

conjunction of clauses with each clause being a disjunction

of literals – each literal is either a Boolean variable or its

negation.

The size of the CNF encoding highly depends on the number

of distinguishable values a signal should be able to carry. In

two-valued logic, the possible values are logic-0 and logic-1.

Therefore, one literal is sufficient for each signal. In order to

handle unknowns, three-valued logic additionally supports an

X-value. This requires two literals l1, l2 to encode the possible

signal values. Usually, logic-0 and logic-1 are encoded as

l1 = 0, l2 = 1 and l1 = 1, l2 = 0, whereas an unknown

value is encoded as l1 = 0, l2 = 0 [3]. The combination

l1 = 1, l2 = 1 is forbidden by adding the clause (¬l1 ∨ ¬l2)
for any signal. Compared to two-valued logic, the number of

clauses for three-valued encoding is more or less doubled.

Regarding restricted symbolic logic, each signal may carry

a different number of distinguishable X-values: X1, . . . , Xm.

Furthermore, we distinguish between an X-value Xi and its

negation ¬Xi.

The signal encoding with literals directly influences the

number of clauses needed to represent a gate. It is important

that the encoding allows an efficient comparison of X-values:

when a gate has multiple X-values at its inputs, we have to

determine whether there are X-values with the same index.

Therefore, we encode the index of the X-value in binary

representation. This requires ⌈log
2
m⌉ literals (in the following

named b-literals) in order to be able to represent m different

X-values. There are two further literals: the n-literal encodes

if a signal is negated or not, and the x-literal informs whether

the signal carries an X-value. The following table summarizes

the different literal types in our encoding:

Literal Meaning

n n = 1: signal is negated

x x = 1: signal has X-value

bk Xi i = {1, . . . ,m} binary encoded,

k ∈ {1, . . . , ⌈log
2
m⌉}

Furthermore, this encoding easily allows the handling of two-

valued signals, because a two-valued signal is just a special

case: the n-literal represents the logic value of the signal, the

x-literal is always 0 and with x = 0 the values of the b-literals

are irrelevant. Hence, logic-0 is represented as n = 0, x = 0
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and logic-1 as n = 1, x = 0. In fact, our application simplifies

the encoding by omitting the x- and b-literals in such cases.

When referring to a literal l of signal s, we use the notation

s[l], e. g. i1[n] for the n-literal of signal i1.1

D. Fault Detection Requirements

A stuck-at fault f is detected if and only if an output o ∈ O

exists at which the fault is observable independent of the state

of the X-sources. Let vG(p, s) and vf (p, s) return the value

of a signal s under a pattern p in the fault-free circuit and the

circuit under fault f . Then, fault f is detected if and only if

∃o ∈ O : vG(p, o), vf (p, o) ∈ {1, 0}∧vG(p, o) 6= vf (p, o). A

fault for which no test pattern can be generated using restricted

symbolic logic is called RSL-untestable.

III. ATPG BASED ON RESTRICTED SYMBOLIC LOGIC

The next section gives a brief overview of the algorithm,

followed by a detailed discussion.

A. Overview

For each considered fault, a SAT instance is constructed

and evaluated by a SAT-solver. Prior to constructing the SAT

instances, each X-dependent gate is preprocessed to ensure

an efficient encoding (cf. Section III-B). Afterwards, all gates

required to adjust the fault-free value at the faulty signal

(the so called adjustment cone) are encoded as explained in

Section III-C.

If the instance cannot be satisfied, i. e. the fault-free value

cannot be justified at the fault site, the fault is not considered

any further. Otherwise, each output reachable from the fault

site is considered one by one, starting with the output having

the fewest X-dependent signals and gates – i. e. the adjustment

cone of each output is modeled. For all gates which may be

affected by the considered fault, a fault-free and faulty version

of each gate is encoded. For all other required gates, the fault-

free version is sufficient.

The SAT instance is augmented by difference literals (D-

literals) and D-chains to speed up the search for a test pattern

as explained in Section III-D. Finally, a constraint enforcing

a difference between at least one output in the fault-free and

faulty version is added to the instance. If the SAT-solver finds

a satisfying assignment, the fault is detected. The test pattern is

extracted, and fault simulation is performed with the pattern to

find all faults detectable by this pattern and exclude them from

further pattern generation. Otherwise, a test pattern derived

using restricted symbolic logic does not exist.

B. Gate Preprocessing for Efficient Encoding

In principle, each gate depending on an X-source may lead

to a new X-value which needs to be considered at the output

of the corresponding gate. This would require to encode each

of these signals using the previously described two literals for

the n-, x-literals, as well as a rather large number of b-literals

to be able to represent each possible X-value – leading to a

tremendously increased number of clauses. Yet, the structure

1An example for the proposed encoding is given in the Appendix.

of the circuit allows to limit the number of X-values to be

considered at a signal which enables a much more compact

representation of the modeled signals and gates.

In this work, an efficient restricted symbolic representation

of each fault instance is achieved through preprocessing of

each gate. This avoids unnecessary encoding overhead since

only those cases are modeled that can occur in the circuit.

For each gate, the X-dependency of each input is computed.

For gates with one or multiple X-dependent inputs, the circuit

structure is analyzed to find gate output values that cannot

occur and thus, are excluded from the gate encoding:

(1) At gates with only one X-dependent input, the output only

shows a logic value if (i) an X-independent input has the

controlling value of the gate, or (ii) the X-dependent input

shows no X-value. Otherwise, the output carries the same X-

value as the X-dependent input.

(2) For gates with more than one X-dependent input, the

possible output values depend on the input values as follows:

• If an X-value Xi and its negation ¬Xi are present at more

than one input, the output of an AND-gate (NAND-gate)

will show a logic-0 (1). In that case, an OR- or two-input

XOR-gate (NOR- or two-input XNOR-gate) will show a

logic-1 (0).

• If the same X-value is present at all inputs of a two-input

XOR-gate (XNOR-gate), it will generate a logic-0 (1).

• If none of the inputs with logic values has the controlling

value, and all X-dependent inputs carry the same X-value

Xi, then the output has the identical X-value Xi.

• If different X-values are present at the inputs and no

input has the controlling value of the gate, a new X-value

emerges at the output according to restricted symbolic

logic.

Figure 2 shows an example with two X-sources X1, X2, and

five X-dependent gates G1, . . . , G5. Obviously, the X-sources

b,d can only carry an X-value, while all other inputs a,c,e may

show a logic-0 or logic-1.

Fig. 2: Result of the preprocessing.

In the example, gate G1 only depends on one X-source X1.

Therefore, only logic-0 (if a = 0) or the X-value X1 (if a = 1)

can appear at the output of G1. This is also the case for gate

G2 where only logic-0 (if c = 1) or the X-value ¬X1 (if

c = 0) may be present at the output. At the output of gate G3,

logic-1 (if e = 1) or the X-value X2 (if e = 0) can appear.

At gate G4, both inputs are X-dependent. Its output may

show the logic value 0 (if g = 0), the X-value ¬X1 (if

g = ¬X1 and h = 1), or a new X-value X3 (if both inputs
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show an X-value). Therefore, by taking the circuit structure

into account, neither X1, X2, nor ¬X2 are possible at the

output of this gate. The same reasoning applies to the gate

directly located at the output (G5). At its output j, the X-

values X2,¬X2 and ¬X3 are impossible and are excluded

from the encoding.

Furthermore, the preprocessing may also lead to several

already set/determined b-literals. For gate G4 in the example

of Figure 2, the output signal i can only show a logic-0 or the

X-values ¬X1, X3. Thus, the number of b-literals required to

encode the possible X-values of this signal is two. According

to Section II, and using two b-literals b2, b1 for signal i, i = X1

is expressed as b2 = 0, b1 = 1 and i = X3 as b2 = 1, b1 = 1.

Therefore, b1 is always set to 1 as no valid assignment exists

for which b1 is set to 0.

According to this preprocessing, neither the stuck-at-0 fault

at signal g nor the stuck-at-1 fault at signal h are testable based

on restricted symbolic logic since for both faults the required

value in the fault-free circuit cannot be adjusted. Consequently,

these faults are already known to be RSL-untestable after

preprocessing and do not need to be considered further. Also,

a fault is only detectable if for a given pattern at least one

output shows a different logic value comparing the fault-free

and faulty circuit. Thus, also all outputs that cannot show a

logic difference can be ignored during test pattern generation.

If none of the outputs reachable from a faulty signal can show

a logic difference, the fault is also classified as RSL-untestable.

C. Encoding Gates using Restricted Symbolic Logic

During CNF encoding we exploit the knowledge gathered

during preprocessing by distinguishing between the following

three cases. Note that in this paper, for simplicity of presen-

tation, we only consider gates with two inputs. However, the

encoding can be extended to gates with more inputs.

1) No input of a gate will see an X-value. In this case the

encoding of the gate is similar to the encoding for two-

valued logic – only the values of the n-literals are of

interest here. For example, a two-input AND-gate with

inputs i1, i2 and output o has the following implications:

¬i1[n] → ¬o[n]
¬i2[n] → ¬o[n]

i1[n] ∧ i2[n] → o[n]

resulting in the following CNF representation:

(i1[n] ∨ ¬o[n]) ∧ (i2[n] ∨ ¬o[n]) ∧
(¬i1[n] ∨ ¬i2[n] ∨ o[n])

2) One input of a gate may see X-values. Regardless of

the function that is realized by the actual gate, only

these values are possible at the output: 0, 1, Xi or ¬Xi

(with Xi being the actual X-value seen on one input). In

particular this means that the b-literals stay unchanged

and will be shared between the input which may show an

X-value and the output of the gate. Assume a two-input

AND-gate may have an X-value on i1 and is two-valued

on i2. This results in the following implications:

i2[n] → (i1[n] ↔ o[n]) ∧ (i1[x] ↔ o[x])
¬i2[n] → ¬o[n] ∧ ¬o[x]

yielding these six clauses (after applying some CNF

level simplifications):

(¬i2[n] ∨ o[n] ∨ ¬i1[n]) ∧ (¬o[n] ∨ i1[n]) ∧
(¬i2[n] ∨ o[x] ∨ ¬i1[x]) ∧ (¬o[x] ∨ i1[x]) ∧
(i2[n] ∨ ¬o[n]) ∧ (i2[n] ∨ ¬o[x])

3) Two or more inputs of a gate may see X-values. Here,

the basic idea is to do a case distinction depending

on the actual values seen on the inputs. If both inputs

show an X-value, it is checked if the b-literals of

both inputs are equal, i.e. ∀k(i1[bk] ↔ i2[bk]). The

actual encoding uses additional auxiliary literals to share

common subexpressions. Again, we take a two-input

AND-gate as an example. For better readability we just

list the implications. The first part handles the cases with

up to one X-value on the inputs:

¬i1[n] ∧ ¬i1[x] → set_o_zero

¬i2[n] ∧ ¬i2[x] → set_o_zero

i1[n] ∧ ¬i1[x] ∧ i2[n] ∧ ¬i2[x] ↔ o[n] ∧ ¬o[x]
¬o[n] ∧ ¬o[x] ∧ i1[n] ∧ ¬i1[x] → ¬i2[n] ∧ ¬i2[x]
¬o[n] ∧ ¬o[x] ∧ i2[n] ∧ ¬i2[x] → ¬i1[n] ∧ ¬i1[x]

i1[x] ∧ i2[n] ∧ ¬i2[x] → set_i1_o

i2[x] ∧ i1[n] ∧ ¬i1[x] → set_i2_o

o[x] ∧ i1[n] ∧ ¬i1[x] → set_i2_o

o[x] ∧ i2[n] ∧ ¬i2[x] → set_i1_o

If there are X-values on both inputs, the b-literals of

both signals have to be compared. This is handled by

the auxiliary literals equalx_i1_i2 and equal_i1_i2:

equalx_i1_i2 ∧ (i1[n] ↔ i2[n]) → set_i1_o

equalx_i1_i2 ∧ (i1[n]⊕ i2[n]) → set_o_zero

¬equal_i1_i2 ∧ i1[x] ∧ i2[x] → set_o_xnew

The remaining auxiliary literals do the following: (1) if

set_o_zero = 1, then o will be set to logic-0, (2) if

set_o_xnew = 1, then o will be set to the new X-value

which may be introduced by this gate – this may happen

if two different X-values reconverge, (3) if set_i1_o =
1, then o = i1, (4) if set_i2_o = 1, then o = i2, (5)

equal_i1_i2 = 1 if and only if all b-literals of i1 and

i2 are equal.

set_o_zero → ¬o[n] ∧ ¬o[x]
set_o_xnew → ¬o[n] ∧ o[x]∧

∀k set bk accordingly

set_i1_o → (i1[n] ↔ o[n]) ∧ o[x]∧
∀k(i1[bk] ↔ o[bk])

set_i2_o → (i2[n] ↔ o[n]) ∧ o[x]∧
∀k(i2[bk] ↔ o[bk])

equal_i1_i2 ↔ ∀k(i1[bk] ↔ i2[bk])
equalx_i1_i2 ↔ equal_i1_i2 ∧ i1[x] ∧ i2[x]

The cases 1) and 2) result in a low number of clauses per gate.

Obviously, case 3) is more complex, but the number of literals
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only increases logarithmically with the number of X-values to

be distinguished, i. e. if the number of X-values doubles, only

one more b-literal is necessary. The number of clauses for the

comparison of X-values only grows linearly with the number

of b-literals. Therefore, with a reasonable amount of X-values

the overall size of the CNF stays moderate.

D. Valid Difference and D-Chain in RSL ATPG

In SAT- or QBF-based ATPG algorithms, the search for a

test pattern is sped up by introducing D-literals and D-chains

which explicitly model propagation paths of the fault effect

[14]. This restricts the solver to only consider assignments

leading to a test pattern or to a faster abort if such assignments

do not exist.

In two-value based ATPG, each D-literal ds is logic-1 if and

only if signal s in the fault-free (sg) and faulty (sf ) circuit

model have complementary logic values (i. e. ds = sg ⊕ sf ).

The same definition of D-literals is used in the accurate QBF-

based approach of [12].

The D-literals are subsequently used to model the prop-

agation paths of the fault effect with the help of D-chains.

Classically (e. g. [14]), this D-chain starts at the faulty signal

and leads to each reachable output.

For the incremental construction and solving of the SAT

instances [17, 18] considering the outputs reachable from the

fault one at a time, a backward directed D-chain is more

suitable: The backward D-chain starts at a reachable output

and leads backwards to the faulty signal, enforcing that a

difference at the output (of a gate) implies a difference at

at least one of its inputs. This allows to expand the SAT

instance with reachable outputs and corresponding D-chain

clauses incrementally.

For the example in Figure 3, the use of a backward D-

chain leads to the implications (d4 → (d2 ∨ d3)), (d3 → d1),
(d2 → d1) as well as d4 = 1 if only this output is considered.

In case several outputs are considered, an additional clause is

added to guarantee that at least one D-literal of an observable

output shows logic-1.

Fig. 3: Propagation of a fault located at d1.

In the proposed restricted symbolic ATPG, the backward D-

chain is constructed in a similar way. However, the semantic

of the D-literals is different. As stated above, classically a

valid difference at signal s, i. e. ds = 1, always means that s

has complementary binary values in the fault-free and faulty

circuit. In the proposed RSL ATPG, the complementary binary

values are only required at a the detecting output.

At internal signals in the propagation cone of a fault, the

following three cases are considered a valid difference as well:

(i) The signal carries X-values with different polarity in the

fault-free and faulty circuit, i. e. Xi and ¬Xi. (ii) The signal

carries an X-value either in the fault-free or faulty circuit

but not in both. The X-value may reconverge later and cause

complementary binary values at an output. (iii) The signal

carries different X-values in the fault-free and faulty circuit,

which may reconverge later and cause complementary binary

values at an output.

It can be shown that with theses three cases propagation

within RSL is completely modeled. Unfortunately, most of the

possible assignments to the signals on the propagation path are

therefore considered as a valid difference. Thus, the D-chain is

less effective in pruning the search space for a test pattern and

the solver has to explore many possible propagation paths. On

the contrary, not considering these three cases might result in a

loss of fault coverage, as valid propagation paths are excluded

from consideration.

In the following, we explain how to optimize the construc-

tion of the D-chain without loosing accuracy: As explained in

Section II-C, the n-literal denotes whether a signal value is

negated or not. Hence, a logic-0 is represented as n = 0, x =
0, and a non-negated X-value implies n = 0. Furthermore,

a visible binary difference at signal s implies that s shows

complementary logic values in the fault-free and faulty circuit,

i. e. the n-literals of s differ.

As an example, consider a two-input OR gate with one input

showing a logic-0 (n = 0) in the fault-free and Xi (n = 0) in

the faulty circuit. The output can only show a binary difference

if the second input has logic-0 (n = 0) in the fault-free and

¬Xi (n = 1) in the faulty circuit. For the other gate types,

similar examples exist. They all have in common that the n-

literals of one input in the fault-free and faulty circuit are

equal, while the n-literals of the other input differ. Hence,

for all gate types, X-canceling requires these two cases at the

inputs. With the D-chain modeling introduced above in (ii) and

(iii), both of these cases would be considered as difference.

However, as we need both of them, it is sufficient to propagate

only one in the D-chain since the solver will enforce the other

case due to the gate modeling (cf. Section III-C).

Therefore, we constrain the D-literals such that only the

cases with equal n-literals of a signal in the fault-free and

faulty circuit are considered as a valid difference. This rea-

soning is valid for gates with more than two inputs as well.

A further restriction of valid differences leads to even tighter

D-chains but may cause a (minor) loss of accuracy. Still, the

tighter D-chains prune the search space considerably, which

reduces the runtime. Therefore, in addition to the complete

RSL ATPG, we propose an optimized RSL ATPG with notably

reduced runtime. Experimental results will show that this can

be done without compromising the overall quality.

E. Complete RSL ATPG

The complete RSL approach detects a fault if and only if it is

detectable in restricted symbolic logic. Therefore, all possible

differences as stated in Section III-D are considered by the D-

literals and D-chains, as they may lead to a valid test pattern.
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Only this complete RSL approach is able to prove the RSL-

untestability of a fault by showing the unsatisfiability of the

corresponding SAT instance. However, such a comprehensive

D-chain may prevent significant pruning of the search space

resulting in high runtimes.

F. Optimized RSL ATPG

The optimized RSL approach limits the differences which

are considered in the D-literals: All combinations for which

either the fault-free or faulty circuit model, but not both, show

an X-value are forbidden in the D-chain since they incur

high runtime and are rarely required for fault propagation.

This implies much tighter constraints for the search of a test

pattern. Consequently, not all faults detectable by restricted

symbolic logic may be detected by this optimized approach.

Nonetheless, this approach detects a superset of the faults

detectable by three-valued ATPG. In Section V-A we compare

the accuracy of the optimized with the complete RSL ATPG.

In Section V-B, we combine the optimized RSL ATPG with

accurate fault simulation [10] to compensate the potential loss

in fault coverage compared to the complete approach. This

fault simulation uses accurate Boolean modeling and allows

to classify faults as detectable for which both optimized and

complete RSL ATPG may not be able to generate a test pattern.

IV. ATPG FRAMEWORK

The proposed restricted symbolic ATPG approaches have

been extended with fault simulation and a topological untesta-

bility check [12] to minimize runtime. Figure 4 shows the

resulting ATPG framework combining the proposed ATPG 3©

with a hybrid two- and three-valued SAT-based ATPG 1©, the

topological untestability check 2©, and fast fault simulation

with high accuracy in presence of X-values 4©.

༃ Combined two- and three-

valued SAT-ATPG

Detected
RSL-

untestable

No X-Dep.
Some X-dep.  

outputs
Some X-dep. 

inputs
Only X-dep. 

inputs
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༆ Fault simulation
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Fig. 4: Proposed ATPG framework

Prior to each ATPG run, the target faults are partitioned into

four different groups. The first group (No X-dep.) contains

faults that do not depend on the X-sources. Each of these

faults can be analyzed accurately using the combined two-

and three-valued SAT-based ATPG. If a test pattern is found,

fault simulation with high accuracy (see below) is performed

to implement fault dropping (i. e. all faults also detectable by

this test pattern are marked as detected). Otherwise, the fault

is marked as RSL-untestable.

After the faults of the first group are classified, all faults

for which only a subset of the reachable outputs or a subset

of the inputs in the adjustment cone depend on X-sources, are

also analyzed by the two- and three-valued SAT-based ATPG.

However, if the ATPG cannot find a test pattern for these

faults, the faults are not necessarily untestable. Therefore,

the undetected faults of this group are later analyzed using

the proposed restricted symbolic ATPG. If restricted symbolic

ATPG finds a test pattern, it is simulated for fault dropping. If

no test pattern is found, the fault is marked as RSL-untestable.

The last group contains all faults whose input cone is

exclusively driven by X-sources, i. e. fault activation only

depends on X-sources. A binary value at the fault site can

only be generated if X-values reconverge in the input cone.

The topological untestability check traces fanout branches and

checks whether reconvergences exist. If not, the fault is marked

as untestable. Otherwise, the fault is analyzed by the RSL

ATPG.

As the satisfiability check of a SAT instance is an NP-

complete problem, a timeout may be used for practical reasons

depending on the circuit size and complexity. All faults not

classified within the timeout are marked as aborted.

Fault Simulation: Two different fault simulation strategies

with much higher accuracy than classical algorithms are used

in this work. The complete RSL approach is combined with

a restricted symbolic logic based simulation engine to inves-

tigate the achievable fault coverage with restricted symbolic

logic. In contrast, the optimized RSL ATPG uses the accurate

SAT-based fault simulation of [10, 11] which computes the

accurate fault coverage in presence of X-values by a mapping

to a SAT-instance. As shown by the experimental results, this

balances runtime and accuracy.

V. EVALUATION

The proposed algorithms are implemented in C. All SAT-

based approaches use the incremental SAT-solver antom [19].

For comparison, the accurate QBF-based ATPG of [15] is

used. We evaluated the algorithms on full-scan circuits of the

largest ISCAS’85 (c6288, c7552) and ISCAS’89 (cs38417)

benchmarks as well as larger industrial designs from NXP. The

experiments were conducted on an Intel Xeon CPU with 3.3

GHz. We assume that a fixed and randomly selected subset

of circuit inputs generates X-values.2 Five different subsets

of X-source inputs are generated per circuit. The reported

results are the rounded average over these five experiments per

circuit. For each circuit, the collapsed set of stuck at faults is

computed. 1024 random patterns are simulated for each set of

X-sources. The remaining random-pattern resistant faults are

processed using the proposed algorithms.

2The effect of clustered X-sources has been discussed in detail in [11].
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A. Accuracy of ATPG Based on Different Logics

The first experiment investigates the attainable fault cover-

age depending on the underlying logic in test pattern genera-

tion. An ATPG based on three-valued logic is compared with

the accurate QBF-based approach of [15], the proposed com-

plete restricted symbolic logic (RSL) ATPG (Section III-E),

as well as the optimized RSL ATPG (Section III-F). For the

optimized approach, we disable accurate fault simulation to

measure the loss of accuracy during ATPG due to the tightened

D-chain modeling.

In this experiment, the timeout per fault used in [15] for

the QBF-based ATPG is doubled (22 seconds) to classify as

many faults accurately as possible.3 For all other approaches,

no faults are aborted.

Figure 5 shows the achieved fault coverage considering

up to 20% of the inputs as X-sources for the ISCAS85

circuit c7552 – an adder with comparator and parity logic.

Additionally, the absolute difference between the optimized

and the complete RSL approach, and the absolute difference

between the optimized RSL and the accurate approach is

displayed.

Fig. 5: Fault Coverage of ATPG based on different logics for

circuit c7552.

ATPG based on three-valued logic already leads to a 1%

loss in fault coverage compared to the more accurate solutions

if only 1% of the inputs are selected as X-sources. Higher

numbers of X-sources further increase the pessimism of three-

valued logic. The greatest difference is observed when 12% of

the inputs are selected as X-sources. Here, the fault coverage

of the three-valued ATPG is over 37% lower than in the

optimized RSL-based approach.4

Comparing the optimized RSL-based and the complete

RSL-based approach, the fault coverage for all tested X-ratios

is about the same. For X-ratios smaller than 5%, the difference

is below 0.05% (i. e. six detectable faults). On average for

circuit c7552, the optimized RSL-based approach leads to a

loss of less than 0.09% compared to the complete RSL-based

3An even higher timeout of 60 seconds results only in a few more faults
classified as untestable but still does not allow to classify all faults accurately.

4The difference in fault coverage is not monotonously falling as different X-
ratios may lead to different numbers of reconvergences and therefore decreases
or increases the pessimism of three-valued logic.

approach (i. e. seven faults). Similar results are achieved for

the larger circuits in the experiments in the next section.

Comparing the results of the complete RSL-based approach

to the accurate QBF-solution and X-ratios smaller than 5%,

the difference in fault coverage is negligible and below 0.01%

(one or no detectable fault). For higher X-ratios, the difference

grows slightly. The peak is reached for an X-ratio of 14% with

a difference of 4.6% (i.e. 181 detectable faults). For this X-

ratio, ATPG based on complete RSL already detects 1 165

faults more than the three-valued approach (i.e. 50%).

However, as the number of X-sources grows, the number

of faults not classified by the QBF-based approach within

22 seconds increases. On average, 4.60% of the faults were

aborted. Hence, there are still some faults left, which might

be detectable using the QBF-based ATPG with an even higher

timeout. Nevertheless, the difference in fault coverage between

both restricted symbolic approaches and the accurate solution

is quite low.

B. Fault Coverage in Larger Circuits

In the second experiment we provide comparative results for

several larger benchmark circuits. In particular, we consider

the optimized RSL ATPG with the accurate fault simulation

of [11] since this combination promises a high fault coverage

and good scalability at the same time. In this way, it is possible

to compensate the small loss in coverage due to the D-chain

optimization without a negative effect on the overall runtime.

The achieved fault coverage is compared to the complete

RSL ATPG, a three-valued ATPG, and the accurate QBF-

based ATPG of [15]: The accurate QBF-based ATPG is used

to demonstrate the quality achieved by RSL ATPG methods

presented in this paper. On the other hand, three-valued ATPG

provides data on how these faults are handled in classical

algorithms showing the prevailing pessimism in widely used

tools. Results of experiments with a state-of-the-art X-aware

commercial ATPG are in line with the fault coverage of the

used three-valued ATPG. These tools seem to be incapable of

evaluating reconvergences of X-values accurately.

For all considered approaches, a timeout of 11 seconds per

fault is used. All faults not classified within this timeout are

marked as aborted. The runtime of the QBF-based approach

for circuit p141k already exceeds 48h. For circuit p267k

with 271 538 gates and over 650 000 faults, no results were

available after 72h. Thus, no results are given for this circuit,

and we do not list even larger circuits.

Table I shows the results in detail. For each circuit, the

name, the number of gates and the number of collapsed stuck-

at faults are listed in columns 1 to 3. Per circuit, we conduct

the experiments for 1%, 2% and 5% of the circuit inputs as

X-sources (‘X-ratio’ in column 4). For circuit c6288 with only

32 inputs, the case of 2% is omitted since an X-ratio of 1%

and 2% results in a single X-source.

For each of these cases the fault coverage for a three-valued

ATPG is given in column 5. The results of the proposed

complete approach are given in columns 6 to 8 (‘Complete

RSL ATPG’). Columns 9 to 11 provide data for the optimized
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RSL ATPG including accurate simulation (‘Optimized RSL

ATPG & acc sim’). Columns 12 to 14 list the results of the

accurate QBF-based approach.

The results show that both restricted symbolic logic based

approaches are less pessimistic than three-valued ATPG and

classify a higher number of faults as detectable. For an X-

ratio of 5% and the ISCAS benchmarks, the fault coverage

increases by up to 33% (from 70.47% to 94.29% for circuit

c6288) using the complete RSL ATPG, or by up to 35% (from

70.47% to 95.04% for circuit c6288) when the optimized RSL

ATPG is used.

For the industrial circuits from NXP, the complete RSL

ATPG classifies up to 16 601 more faults as detectable than the

three-valued ATPG (p78k), i. e. an increase in fault coverage

of up to 8.7%. With the optimized RSL ATPG, the difference

is even higher, and fault coverage increases by up to 9.2%

(i. e. 17 424 faults).

In most cases, the fault coverage of both RSL-based ap-

proaches is also close to the accurate result. The maximum

loss in accuracy of the complete RSL ATPG is measured for

circuit c6288 and an X-ratio of 5%. Here, the achieved fault

coverage is 0.80% lower than the accurate solution. For the

optimized RSL ATPG including accurate fault simulation, the

difference is even smaller. The highest loss in fault coverage

of only 0.28% is measured for circuit p78k and an X-ratio

of 5%. Hence, the combination of optimized RSL ATPG with

accurate fault simulation allows in most cases to compensate

the inaccuracy of RSL logic and thus, fault coverage deviates

only slightly from the accurate result.

On the other hand, as the number of aborted faults of the

QBF-based approach increases for larger circuits, both RSL-

based approaches may also show a higher fault coverage than

the QBF-based approach. Thus, for circuit p141k, the complete

RSL ATPG classifies up to 0.27% more, and the optimized

RSL ATPG classifies up to 0.30% more faults as detectable

than the QBF-based approach.

On average over all circuits, the complete RSL ATPG

achieves only a 0.07% lower fault coverage than the accurate

solution,5 and the fault coverage of the optimized RSL ATPG

which includes accurate fault simulation is only 0.02% lower

compared to the accurate solution. This shows that for almost

all testable faults, the accuracy of RSL is sufficient to find

a test pattern, and only very few faults require accurate

reasoning.

The runtime of the complete RSL ATPG is on average

one order of magnitude lower than the accurate QBF-based

algorithm. The optimized RSL approach further decreases the

runtime by on average two orders of magnitude compared to

the QBF-based approach. The largest difference for ISCAS

benchmarks of factor 618 is achieved for circuit c7552 and an

X-ratio of 2%. For industrial circuits, the largest speed-up of

236× is achieved for circuit p78k and an X-ratio of 5%. In

this case, the runtime drops from over 7 hours to 113 seconds.

5This represents the limit of any pure RSL-based fault simulation and test
generation approach.

The proposed RSL ATPG algorithms are also much more

robust than the accurate QBF-ATPG: The number of aborted

faults is significantly smaller. The complete RSL approach de-

creases the number of aborts by 54.8%, and the optimized RSL

approach aborted no faults for all but one circuit (reduction

by 92.1%).

These results demonstrate that RSL ATPG offers compara-

ble quality to the accurate approach and scalability to industrial

circuits at the same time.

VI. CONCLUSIONS

In this paper we presented novel SAT-based algorithms

for test generation in presence of unknown values. Unknown

values are modeled in the so-called restricted symbolic logic

(RSL) known to provide superior accuracy compared to stan-

dard three-valued logic.

We propose the first complete RSL ATPG algorithm, i. e.

the algorithm generates a test pattern if and only if the fault

considered is testable in RSL logic. To do so, it includes

an extended version of D-chains that explicitly models the

propagation paths with the resolution of RSL. It achieves a

fault coverage very close to the accurate result of a QBF-

based ATPG, while being one order of magnitude faster and

having fewer aborted faults.

To further reduce the runtime, we propose an optimized

RSL ATPG based on a more restricted version of D-chains.

This reduces the number of fault propagation paths considered

during the test pattern search. To compensate the minor

loss of accuracy, the algorithm is combined with accurate

fault simulation. Experimental results show the high accuracy,

scalability, and robustness of this optimized approach. The

achieved fault coverage in many cases even exceeds that of the

complete approach. On average, the optimized RSL ATPG is

two orders of magnitude faster than the QBF-based accurate

solution. In addition, aborted faults are reduced by 92.1%.
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TABLE I: RESULTS OF THE PROPOSED ATPG IN CONTRAST TO A THREE-VALUED AND ACCURATE SOLUTION.

circuit gates faults
X-Ratio 3-val. ATPG Complete RSL Optimized RSL & acc. sim. Accurate ATPG of [15]

[%] FC[%] FC[%] Aborts Time[s] FC[%] Aborts Time[s] FC[%] Aborts Time[s]

c6288 2 416 8 704
1.0 86.43 97.38 3 50 97.38 0 12 97.38 9 110
5.0 70.47 94.29 41 676 95.04 0 22 95.04 25 296

c7552 4 043 10 816
1.0 91.80 92.77 0 2 92.74 0 2 92.77 91 1 089
2.0 88.51 90.23 0 4 90.21 0 3 90.23 169 2 168
5.0 68.02 74.50 0 15 74.44 0 10 74.50 254 3 478

cs38417 23 537 59 041
1.0 95.54 95.71 0 25 95.71 0 17 95.71 32 439
2.0 93.58 93.83 0 33 93.83 0 21 93.83 57 799
5.0 86.54 86.99 0 64 86.99 0 32 86.99 86 1 085

p78k 74 243 225 476
1.0 97.30 98.67 0 282 98.67 0 17 98.69 241 3 656
2.0 93.60 96.97 0 639 96.94 0 35 97.03 506 7 506
5.0 84.25 91.61 2 2 099 91.97 0 113 92.23 1 762 26 989

p89k 88 726 239 090
1.0 91.11 92.11 0 2 303 92.11 0 1 578 92.11 1 364 22 693
2.0 85.49 86.59 0 3 119 86.59 0 1 924 86.59 1 430 27 992
5.0 70.90 72.76 11 4 293 72.76 0 2 789 72.76 1 726 32 942

p100k 96 685 259 322
1.0 95.31 96.16 432 8 069 96.12 15 2 080 96.16 979 15 473
2.0 91.48 93.48 646 12 519 93.45 15 2 565 93.54 1 169 20 404
5.0 80.54 83.75 4 421 60 947 83.80 1 597 24 745 83.99 3 867 65 154

p141k 172 686 452 599
1.0 95.18 96.24 630 13 546 96.24 0 3 645 96.22 810 43 303
2.0 93.25 94.51 941 19 467 94.51 0 4 754 94.45 1 410 68 106
5.0 85.58 87.61 2 171 43 045 87.63 0 10 598 87.37 4 532 182 282

p267k 271 538 658 395
1.0 94.71 95.06 41 13 934 95.02 0 11 724 - - -
2.0 90.95 91.38 132 18 535 91.33 0 15 060 - - -
5.0 80.00 81.99 218 28 647 81.97 0 24 944 - - -

Paper 26.2 INTERNATIONAL TEST CONFERENCE 9



APPENDIX

The example below shows a circuit with two X-sources X1, X2 as well as the information gained by the preprocessing

explained in Section III-B. Additionally, the table below lists for each signal the resulting n-, x- and b-literals (columns 2

to 4) according to Section II-C. If only one gate input is X-dependent, no additional b-literals are generated. Furthermore,

column 5 lists all assignments to literals already determined by the preprocessing. For this circuit, 25 variables are sufficient

for the signal encoding with RSL resolution. To test the stuck-at-1 fault at signal j, it must be set to logic-1. In the proposed

encoding, this is achieved by assigning l21 = 1, l22 = 0.

signal n-literal x-literal b-literals Comments

a a[n] = l1

b b[n] = l2 b[x] = l3 b[b1] = l4
Signal b always shows X1 leading to the assignments:

l2 = 0, l3 = 1, l4 = 1

c c[n] = l5

d d[n] = l6 d[x] = l7
d[b1] = l8 Signal d always shows X2 leading to the assignments:

d[b2] = l9 l6 = 0, l7 = 1, l8 = 0, l9 = 1

e e[n] = l10

f f [n] = l11 f [x] = l12
Signal f may only show a logic value or the same X-value

as signal a. Therefore no b-literals are necessary.

g g[n] = l13 g[x] = l14 At signal g, as for signal f , no b-literals are required.

h h[n] = l15 h[x] = l16
Signal h may only show logic-1 or the X-value of signal d.

Hence, no b-literals are required.

i i[n] = l17 i[x] = l18
i[b1] = l19 At signal i, the b-literals may only represent X1 or X3. This leads to:

i[b2] = l20 l19 = 1

j j[n] = l21 j[x] = l22

j[b1] = l23 In order to adjust a logic value, no X-values are allowed for signal j.

j[b2] = l24
j[b3] = l25

Fig. 6: Restricted symbolic literal encoding (according to Section II-C).
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