
Area-Efficient Synthesis of Fault-Secure

NoC Switches

Dalirsani, Atefe; Kochte, Michael A.; Wunderlich, Hans-Joachim

Proceedings of the 20th IEEE International On-Line Testing Symposium (IOLTS’14) Platja

d’Aro, Catalunya, Spain, 7-9 July 2014

doi: http://dx.doi.org/10.1109/IOLTS.2014.6873662

Abstract: This paper introduces a hybrid method to synthesize area-efficient fault-secure NoC switches to

detect all errors resulting from any single-point combinational or transition fault in switches and interconnect

links. Firstly, the structural faults that are always detectable by data encoding at flit-level are identified.

Next, the fault-secure structure is constructed with minimized area such that errors caused by the remaining

faults are detected under any given input vector. The experimental evaluation shows significant area savings

compared to conventional fault-secure schemes. In addition, the resulting structure can be reused for test

compaction. This reduces the amount of test response data and test time without loss of fault coverage or

diagnostic resolution.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic

reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form

to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

http://dx.doi.org/10.1109/IOLTS.2014.6873662

Area-Efficient Synthesis of Fault-Secure NoC Switches

Atefe Dalirsani, Michael A. Kochte, Hans-Joachim Wunderlich

Institut für Technische Informatik, Universität Stuttgart, Germany

email: {dalirsani,kochte}@iti.uni-stuttgart.de, wu@informatik.uni-stuttgart.de

Abstract—This paper introduces a hybrid method to synthesize
area-efficient fault-secure NoC switches to detect all errors
resulting from any single-point combinational or transition fault
in switches and interconnect links. Firstly, the structural faults
that are always detectable by data encoding at flit-level are
identified. Next, the fault-secure structure is constructed with
minimized area such that errors caused by the remaining faults
are detected under any given input vector.

The experimental evaluation shows significant area savings
compared to conventional fault-secure schemes. In addition, the
resulting structure can be reused for test compaction. This
reduces the amount of test response data and test time without
loss of fault coverage or diagnostic resolution.

Index Terms—Network-on-Chip, self-checking, fault-secure,
online testing, concurrent error detection.

I. INTRODUCTION

A Network-on-Chip (NoC) is a communication alternative

for many-core System-on-Chips. In current deep sub-micron

technologies, latent defects, wear-out, soft errors, cross-talk,

power supply noise and radiation effects affect the reliability

of the system [1], [2] as well as the NoC structure. Having a

reliable communication through the NoC is essential because

an erroneous message transfer over the NoC may lead to

an erroneous data delivery to cores and consequently wrong

system operation. Furthermore, it may generate spurious traffic

leading to a deadlock for example. Therefore, it is crucial to

concurrently detect a fault as soon as it causes an erroneous

operation of NoC switches or interconnect links. This way

fault tolerance mechanisms can be activated immediately to

avoid error propgation in the system.

Concurrent error detection (CED) techniques are used in

safety-critical applications to detect errors caused by perma-

nent and transient faults during the operation of the circuit

[3]. Conventionally, duplication with comparison has been

used to detect any single- and multi-bit error. In order to

decrease duplication overhead, Error Detecting Codes (EDC)

are employed. Fig. 1 presents the general structure for CED

using EDC. Check bits over output bits of the circuit are

computed in the checker. The checker compares the check

bits to those generated by the prediction logic and signals

an error in case of a mismatch. A circuit is fault-secure for

Checker

Output

bits

Check

bits

Error

Input

bits

Circuit

Prediction logic

Fig. 1: General structure of Concurrent Error Detection (CED)

a set of faults if for every considered fault that produces an

error at the circuit outputs, wrong check bits are generated [4].

Moreover, a circuit is self-testing, if for every considered fault,

there exists at least one input vector for which the error at the

outputs produces wrong check bits. Finally, a circuit is Totally

Self-Checking (TSC) if it is self-testing and fault-secure.

To conduct CED in NoCs, hardware redundancy schemes

(such as duplication or triplication) have been examined [5]–

[7]. Since the NoC may integrate hundreds of switches in a

single chip, these methods impose a huge area overhead. Error

detecting codes can also be exploited to synthesize a fault-

secure NoC switch. However, considering the switch without

regard to its datapath elements also leads to an unacceptable

area cost.

In NoCs, data encoding using error detecting codes in

combination with data retransmission is typically used to

detect and correct errors during the system operation [6],

[8]–[13]. Check bits are computed and appended to data bits

which are transported over the network. Several researchers

have investigated error detecting/correcting codes in terms of

silicon area, encoder/decoder delay, performance, and energy

consumption to trade-off costs and reliability [11]–[13]. Up to

now, these methods are mainly devoted to detect faults in the

inter-switch links and intra-switch datapath elements such as

multiplexers.

Faults in the datapath elements mainly cause data corruption

which may be detected and corrected by an error correcting

code [14] even at the system-level. However, a part of the

switch logic is dedicated to manage the flow of data, for

example the routing algorithm, scheduling, and congestion

control. Faults in this part can be even more severe and have

uncorrectable effects leading to a system crash. For example,

a fault in the routing logic may cause a misrouting of packets

leading to a deadlock.

This paper proposes a hybrid method to synthesize an

area efficient fault-secure NoC switch for any single point

combinational or transition delay fault in the switch or inter-

connect links, irrespective of its temporal nature (permanent,

transient or intermittent fault). The method incorporates error

detecting codes for data flits and a low-area concurrent error

detecting structure to handle faults not covered by the flit

encoding. Firstly, structural faults that are always detectable

by data encoding at the flit-level are identified. Next, the fault-

secure structure is constructed such that the rest of the faults

become detectable under any given input vector using a parity

based code. A Boolean satisfiability (SAT) based approach

examines the fault-secureness property of the data encoding

scheme as well as the final fault-secure structure. The method

is architecture independent and can be applied to arbitrary

switches of any desired NoC topology with arbitrary routing

function. To enable efficient online and offline testing of the

switch, the parity trees of the fault-secure switch are reused

to reduce the test response data volume and the test time.

The rest of the paper is organized as follows: Section

II describes the fault-secure architecture and introduces the

synthesis flow. Sections III and IV explain the SAT model

construction and the synthesis algorithm in detail. Section V

describes the structure reuse for test compaction. Experimental

results are presented in section VI, followed by a conclusion.

II. OVERVIEW

A. Fault-Secureness

A circuit is fault-secure for a set of faults F if and only if:

∀f ∈ F : ∀i ∈ In : C(i) = Cf (i) ∨Π(C(i)) 6= Π(Cf (i)). (1)

For In being the set of possible input vectors of n bits, C(i)
denotes the circuit response for input vector i in the fault

free case, while Cf (i) is the response under fault f . Π is a

function that computes the check bits of the circuit response

for the selected error detecting code. The formula expresses

that for any input vector, the fault either is not propagated to

the circuit outputs, i.e. C(i) = Cf (i), or it is detected by the

check bits, i.e. Π(C(i)) 6= Π(Cf (i)) [4]. If a fault propagates

to the circuit outputs but it is not detectable by the check bits,

Silent Data Corruption (SDC) occurs.

B. Fault-Secure Architecture for Error Detection at Flit-Level

The NoC switch incorporates multiple input/output ports,

crossbar multiplexers and control logic to manage the dataflow

between input and output ports. Each switch is connected to its

neighboring switches and a network interface via interconnect

links. Each interconnect link consists of parallel data bits in

the width of a flit (flow control unit) and handshake signals.

The fault-secure switch presented here uses data encoding at

the flit-level. As depicted in Fig. 2 for a sample five port

switch of a 2D mesh topology, flit checkers (Flit chk) are

positioned at output ports of the switch over the data bits.

Port 03

P
o

rt
 0

2

P
o

rt 0
4

Port 00

F
lit c

h
k

Fault-secure

critical region

Port 01

Flit chk

Critical

region
Prediction

... CB

Encoder Π

Comparator

Flit:

Error

Errorc

Dual Rail

Checker

D

Error1

Flit chk

Error3

F
lit

 c
h

k

E
rr

o
r 4

E
rr

o
r 2

Flit chk

E
rror

0

Data

bits

Check bits

Fig. 2: Fault-secure structure of the NoC switch

Error0 to Error4 are the error signals of the flit checkers

of port 00 to 04. Each flit includes a number of check bits

appended to its content. Check bits are generated by the sender

once a packet is injected into the network. Upon passing a flit

through the flit checker, the encoder recomputes the check bits

and compares them against the check bits stored in the flit. A

mismatch causes the assertion of the error signal. Depending

on the EDC, a subset of faults in the incoming data links and

in the switch datapath are detectable by the flit checkers. In

case of an end-to-end error control, e.g. [10], and omission

of the flit checkers of the switch, the fault-secureness of the

switch cannot be ensured anymore because a fault effect might

be masked in upcoming switches.

Since flit checkers are constructed over a subset of switch

outputs, i.e. data outputs, they are not sufficient to ensure the

fault-secureness in the switch [15]. Some errors may propagate

either to internal states of the switch or to other outputs than

the data outputs. Moreover, certain faults may cause an error

on the data outputs that is not detectable by the error detecting

code (EDC) at flit-level. As an example, let us consider a 2-

to-1 multiplexer as part of the crossbar in the switch datapath

and assume a single parity bit is added to the flit as the check

bit. In the 2-to-1 multiplexer of Fig. 3, z = ¬s · x + s · y.

For Π that computes the parity check bit of a flit, when s is

zero, Π(z) = Π(x) and when s is one, Π(z) = Π(y). Assume

that there exist a stuck-at-1 fault at line a of the multiplexer

as shown in Fig. 3. In this case, the multiplexer function for

every bit i changes to: zi = xi+s·yi. When s is zero, z carries

the value of x, and the fault is not detectable. However, when

s = 1, z carries a bit-wise OR of the data on the lines x and

y (z = x + y), and therefore Π(z) = Π(x + y). In this case,

erroneous data on z is not necessarily detected by the parity

bit.

0

1

x

y
z

s

x1

y1

s

z1

a Stuck-at-1

x2

y2

z2

Fig. 3: 2-to-1 multiplexer: Stuck-at-1 fault violating fault-secureness

C. Synthesis Flow for Fault-Secureness

Figure 4 depicts the overall flow of the synthesis scheme.

Initially, the switch including the flit checkers is analyzed

to identify which faults propagate to data outputs and are

detectable by flit checkers under any given input vector. These

faults are named covered faults. The rest of the faults are

categorized as uncovered faults, Funcov (details in Section III).

With respect to the uncovered faults, a sub-block of the

circuit is extracted, which is called critical region. It includes

only the parts that influence the propagation of errors caused

by uncovered faults. A CED structure is synthesized to make

the critical region fault-secure. The method concentrates only

on the uncovered faults in order to reduce the area overhead

(details in Section IV).

Per switch, one error signal is generated by the disjunction

over the error signals of the flit checkers and the error signal

of the fault-secure critical region. It is sent to neighboring

switches and the network interface via a dedicated error port

in order to invoke an error recovery mechanism. The resulting

switch, including flit checkers and CED circuitry of the critical

region is fault-secure. If the original switch is non-redundant,

it is also totally self-checking.

Analysis of the faults in the switch

with flit checkers

Covered

faults

Uncovered

faults

Extract critical region

Yes No

Fault-secure synthesis of critical region

to enable CED of the uncovered faults

Fault always detectable

by flit checkers?

Fig. 4: Overall flow of the synthesis scheme

III. IDENTIFICATION OF UNCOVERED FAULTS USING

BOOLEAN SATISFIABILITY

The switch with flit checkers is fault-secure, if the effect of

faults that propagate to switch outputs is never masked at flit

checkers under any input vector. Conducting exhaustive fault

simulation to check this property for all faults in the switch is

not possible due to the huge input vector space, In, when

n = #switch input ports × (flit size + #handshake signals).
However, to identify the faults that violate fault-secureness

(i.e. uncovered faults Funcov), it is sufficient to find one input

vector (i ∈ In) for which the fault effect is propagated to

switch outputs and masked at flit checkers. This is defined as

a Boolean satisfiability (SAT) problem. Fault f violates fault

secureness if and only if:

∃i ∈ In : C(i) 6= Cf (i) ∧
∧

0≤j<m Π(Dj(i)) = Π(Df
j (i)). (2)

C(i) is the switch response (including data outputs) for input

vector i, and Cf (i) is the switch response under fault f . For

a switch with m output ports, Dj(i) are the data outputs of

port j in the fault-free case, and D
f
j (i) are the data outputs

under fault f . Π computes the check bits over the data bits of

each port.

Inspired by statement (2), Fig. 5 shows the structure of

the SAT instance to identify uncovered faults. The instance

is satisfiable if and only if statement (2) is true. The com-

binational netlist of the switch is extracted by removing

flipflops and replacing the input/output of flipflops by pseudo

primary output/input ports respectively. As shown in Fig. 5, the

outputs of the switch and the faulty copy, including primary

and pseudo primary outputs, are compared bit-wise 1 . The

encoder structures Π compute the check bits which are then

compared to those in the faulty instance 2 .

The SAT instance Φf is a Boolean formula in Conjunctive

Normal Form (CNF) of the characteristic function of the

switch and the faulty copy, the encoder structures, and the

functions required for comparison:

Φf = CNF (S) ∧ CNF (Sf) ∧ (C 6= Cf)∧

CNF (Π) ∧ CNF (Πf) ∧
∧

0≤j<m

(ΠDj
= Πf

Dj
).

It includes the characteristic equations of the gates in the fault-

free and faulty switch, CNF (S) and CNF (Sf). CNF (Π)
and CNF (Πf) represent the encoder structure over the data

outputs, C and Cf represent switch outputs, and ΠDj
and

Πf
Dj

represent encoder outputs of each switch port j in the

fault-free and faulty copy, respectively. For each fault, a new

instance Φf is constructed. Φf is satisfiable if there exists one

input assignment such that the outputs of the switch differ

(C 6= Cf) and the encoder outputs are equal. In this case,

the fault is an uncovered fault which is not detectable by flit

checkers for at least the satisfying input vector found by the

SAT solver.

P
o

rt 0
 .. m

D
f

0

..
.

D
f

m

Non-data

outputs

Encoder Π

Equal?

P
o

rt 0
 .. m

D0

Switch

Faulty

Copy

f

In
p

u
ts

n

..
.

Encoder Π
Dm

Non-data

outputs

..
.

Encoder Π

Encoder Π

..
.

Not

Equal?

f ϵ Funcov

..
.

..
.

S
f

S

2

1

Fig. 5: Schematic of the SAT instance to identify uncovered faults

IV. FAULT-SECURE SYNTHESIS FOR UNCOVERED FAULTS

We define the critical region C of the switch as the part

of the logic that may influence the propagation of uncovered

faults in the switch:

C := ∪f∈Funcov
support(f).

The support of a signal support(f) is the union of the gates

in the input cones of all outputs reachable from f .

To ensure that uncovered faults do not violate fault-

secureness by Silent Data Corruption (SDC), a multi-bit parity

code is constructed over the outputs of the critical region. The

outputs are distributed among the parity groups. A parity tree

generates the parity bit over the outputs in the same group. To

avoid masking of fault effects in parity trees, outputs in the

same parity group must not share any logic in their input cone

[16].

Figure 6 depicts the synthesis flow of the critical region.

It starts with a topological analysis to construct initial parity

groups. A SAT instance is constructed to identify the remain-

ing faults in Funcov that still cause SDC. The initial parity

groups are split iteratively until all cases of SDC are resolved.

A. Topological Analysis

To reduce the area overhead of a parity-based fault-secure

circuit, the number of parity groups must be minimized.

Topological analysis for initial

parity group construction

Group splitting

More

SDC?
Done

Yes

No

Fig. 6: Code synthesis for fault-secureness of the critical region

Therefore, the initial parity groups are constructed based on a

topological analysis such that every uncovered fault effect is

not masked in at least one parity group.

The topological analysis only considers the uncovered

faults. If the gate of a fault f ∈ Funcov is not shared among

the input cones of the outputs in at least one parity group, it is

allowed to be shared among the outputs in the other groups.

This is clarified with an example in Fig. 7. The striped area

S is in the input cone of v2, v3, and v4. Let us assume S

contains an uncovered fault. Since v2 is encoded in group 1

and is the only output in group 1 containing S in its input cone,

it is allowed to put v3 and v4 in the same group, although they

share the logic in S. Considering only the uncovered faults, the

initial parity groups are constructed using the greedy algorithm

given in [17].

The topological analysis reduces the probability of SDC

and serves as a starting point to synthesize the fault-secure

structure.

Parity tree of

Group 1

Parity tree of

Group 2

. . .Inputs
.

Outputs

Error Error

v1 v2 v3 v4

Shared logic S

Input

cone of

output v1

Fig. 7: Topological analysis for constructing initial parity groups

B. Resolving Silent Data Corruption

The topological analysis cannot guarantee the fault-

secureness yet, since it only ensures that a fault effect is not

masked in one parity group. There may exist input vectors

that propagate the fault effect only to the groups where error

masking is not inhibited, i.e. SDC occurs.

The SAT instance, Φf constructed to find the uncovered

faults, is extended to find faults in Funcov that cause SDC in

the switch, which includes flit checkers and parity trees of the

critical region. The clauses to represent the parity trees over

the outputs of the critical region in the good copy CNF (PV),
the parity trees over outputs in the faulty copy CNF (PV f),
as well as the clauses to compare the parity bits in the good

and faulty copy, i.e. P (V) and P (V f), are added to the SAT

instance:

Φf
SDC = Φf ∧ CNF (PV) ∧ CNF (PV f) ∧ P (V) = P (V f). (3)

The SAT instance Φf
SDC is satisfiable if there exists one input

vector if such that the fault is observable at switch outputs

(C 6= Cf , defined in Φf), and it is not detectable by neither

the flit checkers nor the parity groups of the critical region.

Fault f is simulated with input vector if to find the outputs

and parity groups to which the fault effect propagates. Then,

using the group splitting algorithm of [17], the existing groups

are partitioned so that the number of faults carry SDC is

minimized. The splitting refines the parity groups iteratively

until fault-secureness is achieved, i.e. any SDC is resolved.

V. STRUCTURE REUSE FOR TEST COMPACTION

The parity trees of the fault-secure switch can be reused for

test response compaction to reduce the storage and bandwidth

requirements for manufacturing and in-field testing. For the

compaction, the largest parity tree with n inputs is used.

The scan chain is restructured (Fig. 8) such that in each

shift-out cycle, the output bits included in a parity group are

compacted by the largest parity tree. To compact and shift-out

the responses of k parity groups, k cycles are required. The

scan flip-flops of the outputs encoded at flit checkers are also

included into the scan chains. A further reduction of the shift-

out cycles is possible, if these flip-flops are used to balance

the length of the parallel scan chains.

..
.

Chain 1

Chain n

Group 1

Group 2

..
.

...

Flit checker groups k Groups (critical region)

Parity tree of

the largest

group

Fig. 8: Scan restructuring for test compaction

VI. EXPERIMENTAL RESULTS

The fault-secure synthesis scheme is evaluated for a typ-

ical NoC switch. Firstly, we introduce the characteristics of

the considered switch. Next, different error detecting codes

(EDCs) for data encoding at flit-level are implemented and

compared in terms of fault coverage and area overhead. Then,

the result of the fault-secure switch is presented. Finally, we

discuss the impact of the proposed fault-secure structure on

test data compaction and diagnosis.

A. Switch Characteristics

The considered switch, designed for 2D mesh topology,

consists of five input/output ports. It implements a wormhole

XY routing and processes input ports in a round-robin fashion.

The switch is synthesized using Synopsys Design Compiler.

The target library lsi10k is constrained to basic gate primitives.

Because memory elements are usually equipped with advanced

BIST/BISR features [18], the storage elements of input ports

are not considered in the fault-secure synthesis flow. Still, the

error detecting code (EDC) of the flits partially protects the

memory elements. The memory elements are also excluded

from the area computations.

B. Evaluation of Flit Checkers

The choice of the code used for flit checkers influences

both the number of covered faults and the area overhead. A

single-bit parity code needs only a single check bit per flit and

because of the simple encoder structure, it imposes a small

hardware overhead. It detects single bit errors and multi-bit

errors of odd multiplicity. On the other hand, more complex

EDCs such as cyclic codes are better suited to detect burst

errors but impose a larger area or performance overhead.

The parity, Hamming, Berger, Hsiao, and CRC(4) (i.e.

an unrolled cyclic code with a generator of degree 4) are

implemented as the EDC in flit checkers with a flit width of

eight bits. The SAT instances Φf are constructed for each code

to compute the number of covered/uncovered faults. Fig. 9

compares the codes in terms of the area overhead of the flit

checker with respect to the switch area and the portion of

uncovered faults. A structural analysis shows that 6931 faults

(56.85%) out of 12191 collapsed faults in the switch are not

propagated to data outputs. Therefore, they are in principle

not detectable by flit checkers. In all cases, around 60% of

faults are recongnized as uncovered faults, that is they are not

detectable by flit checkers for at least one input vector. Among

the remaining 5260 faults that are propagated to data outputs,

only the ones which are detectable by flit checkers belong to

covered faults. In order to evaluate the detectability of EDCs

in flit checkers, parameter γ is defined as:

γ =
number of covered faults

number of faults propagated to data outputs
× 100%.

γ quantifies the portion of faults that are detectable by flit

checkers over the number of faults which are propagated

to data outputs. Fig. 9 compares parameter γ of the se-

lected EDCs. The Berger code has the highest detectability

of 99.38%, while the other codes have a detectability of

approximately 87%. In general, the flit checkers can detect

around 40% of the faults of the 8-bit switch with a maximum

area overhead of 15%.

To investigate the flit width impact on the effectiveness

of flit checkers, the number of covered/uncovered faults are

computed for the switch with the flit width of 16, 32, 64, and

128 bits while parity is selected as the EDC. Table I depicts the

results. The second column reports the cell area of each switch

next to the flit width. The third and forth column report the

number of collapsed faults and the number of uncovered faults

in each switch. The fifth column shows the number of faults

which are propagated to data outputs and the next column

3,70% 3,70%

15,54%
11,10%

8,14%

62,23% 62,23%
57,12%

62,23% 62,17%

87,55% 87,55%

99,38%

87,55% 87,67%

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

Parity Hamming Berger Hsiao Cyclic (4)

Flit checker overhead (%)
Uncovered faults (%)
γ

Fig. 9: Error detecting codes: flit checker overhead - uncovered faults - γ

reports γ.

The result reveals that in the switch with the larger flit

width, the portion of uncovered faults is less. This is because

more faults are propagated to switch data outputs and the

fraction of faults detected by the flit checkers increases. When

the flit width increases, the width of datapath elements such

as crossbar multiplexers increases. Moreover, parameter γ

indicates that as the flit width increases, a bigger portion of

faults which are propagated to data outputs become detectable

by flit checkers. In fact, the number of faults which are not

detectable by flit checkers remained unchanged (940 faults).

These faults are located at some of the control signals, for

example multiplexer select signals, and resulting errors are

propagated to data outputs. Changing the flit width does not

influence the portion of control logic in the considered switch.

The time required to compute the uncovered faults and the

corresponding critical region is reported in the last column

of Table I. In bigger switches more faults are propagated to

the data outputs that must be traced by SAT for SDC. But

the time does not increases linearly because the size of the

switch, which determines the complexity of the SAT instance,

increases as well. Despite that, the method can still generate

the fault-secure switch in a reasonable time.

C. Result of Fault-Secure Synthesis

Considering parity as the EDC in flit checkers and based on

the list of uncovered faults, the critical region is constructed

and the synthesis process is performed to enable concurrent

error detection of uncovered faults.

Table II summarizes the result. As shown in the first row, by

constructing only flit checkers with 3.7% area overhead, 7871

faults still cause SDC. According to the proposed synthesis

procedure, by constructing 43 extra parity groups over outputs

of the critical region, fault-secureness is ensured (i.e. no

SDCs). The resulting fault-secure switch has 52% area over-

head compared to the original switch. The overhead includes

the flit checkers, prediction logic and dual rail checkers for

the critical region. Any single transient and permanent fault

that generates erroneous bits in the switch is detectable by this

fault-secure structure.

As shown in the third row of Table II, duplication with

comparison for the entire switch with 1040 primary and

pseudo primary outputs imposes a huge area overhead of

more than 370% due to the large number of outputs and the

overhead of dual rail checkers which are required to ensure

fault-secureness. Even without dual rail chackers duplication

imposes an area overhead of 204%. It reveals that for bigger

switches with even more outputs the area overhead of dupli-

cation will increase drastically.

The critical region occupies 41% of the switch area and

contains 185 outputs. As shown in the last row of Table II,

using duplication with comparison of just the critical region

imposes an area overhead of 89% (including dual-rail checkers

for output comparison). The presented fault-secure switch

saves almost 37% area cost compared to duplication with

comparison for the critical region and significantly reduces

TABLE I: Number of covered/uncovered faults with respect to the switch flit width

Flit
Width

Cell
Area

Collapsed
Faults

Uncovered
Faults

Faults propagated
to data outputs

γ (%) Time (s)

16-bit 7259 18901 10261 (54.29%) 9580 (50.69%) 90.19 784
32-bit 11979 32341 15061 (46.57%) 18220 (56.34%) 94.84 1924
64-bit 21419 59221 24661 (41.64%) 35500 (59.94%) 97.35 7266
128-bit 39017 112991 43871 (38.83%) 70060 (62.00%) 98.66 42963

the area overhead compared to conventional duplication with

comparison for the entire switch.

TABLE II: Result of fault-secure synthesis - 8-bit switch

Synthesis technique # groups # SDCs overhead

Switch + flit checkers 5 7871 3.70%
Proposed fault-secure switch 48 0 52.01%
Duplicated switch - 0 371.29%
Duplicated critical region - 0 89.09%

D. Test Compaction and Diagnosis

Table III presents the result of test pattern generation for

the original switch and the switch with parity trees (fault-

secure switch) using a commercial ATPG tool. The result

shows that with only 9% of test response data 100% stuck-at

fault coverage is achieved in the fault-secure switch.

TABLE III: Comparison of test and diagnosis results

Switch Fault-secure switch

Test patterns 372 394
Fault coverage (%) 100 100
Test response volume [bit] 386880 34672

Diagnostic success (%) 98.76 98.50

The compacted test responses can still be used for the

diagnosis of the switch [19]. Using the algorithm in [20],

diagnosis is performed for the switch and the switch with

parity trees. The last row of Table III compares the diagnostic

success (i.e. the top-ranked fault suspect corresponds to the

defect [20]) of the uncompacted response of the original switch

with the diagnosis of the parity streams in the fault-secure

switch targeting stuck-at faults. Even with the compacted test

response, the diagnostic success rate is approximately the same

as the uncompacted response. Indeed, without loss of fault

coverage and diagnostic success, the parity trees of the fault-

secure switch can be used to reduce the amount of response

data as well as the response shifting cycles by a factor of 11x.

VII. CONCLUSION

This paper presented a hybrid method to synthesize a fault-

secure NoC switch employing data encoding at flit-level and

concurrent error detection with multiple parity trees. Boolean

satisfiability is used to identify faults that cause silent data

corruption and to direct the construction of an error detecting

code. With an area overhead of only 52%, the resulting fault-

secure switch is able to detect any single combinational and

transition delay fault in the switch and interconnect links. The

structure can be reused for test compaction, which reduces the

amount of response data as well as test time without loss of

fault coverage and diagnosis success.

VIII. ACKNOWLEDGMENT

This work was supported by the German Research Founda-

tion (DFG) under grant WU 245/12-1 (ROCK).

REFERENCES

[1] G. Gielen et al., “Emerging yield and reliability challenges in nanometer
CMOS technologies,” in Proc. Design, Automation and Test in Europe
(DATE), 2008, pp. 1322–1327.

[2] S. Borkar, “Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation,” IEEE Micro,
vol. 25, no. 6, pp. 10–16, 2005.

[3] M. Nicolaidis and Y. Zorian, “On-line testing for VLSI - A compendium
of approaches,” Journal of Electronic Testing – Theory and Applications,
vol. 12, no. 1-2, pp. 7–20, 1998.

[4] P. K. Lala, Self-Checking and Fault Tolerant Digital Design. Morgan
Kaufmann, 2001.

[5] Y. Zhang, H. Li, and X. Li, “Reliable network-on-chip router for
crosstalk and soft error tolerance,” in Proc. IEEE Asian Test Symp. (ATS),
2008, pp. 438–443.

[6] A. P. Frantz et al., “Dependable network-on-chip router able to simulta-
neously tolerate soft errors and crosstalk,” in Proc. IEEE Intl. Test Conf.
(ITC), 2006, pp. 1–9.

[7] A. Yanamandra et al., “Optimizing power and performance for reliable
on-chip networks,” in Proc. 15th Asia and South Pacific Design Automa-
tion Conf. (ASP-DAC), 2010, pp. 431–436.

[8] A. Ghofrani et al., “Comprehensive online defect diagnosis in on-chip
networks,” in Proc. IEEE VLSI Test Symp. (VTS), 2012, pp. 44–49.

[9] T. Lehtonen et al., “Self-adaptive system for addressing permanent errors
in on-chip interconnects,” IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, vol. 18, no. 4, pp. 527–540, 2010.

[10] D. Rossi, P. Angelini, and C. Metra, “Configurable error control scheme
for NoC signal integrity,” in Proc. IEEE Intl. On-Line Testing Symp.
(IOLTS), 2007, pp. 43–48.

[11] M. Palesi et al., “Data encoding schemes in networks on chip,” IEEE
Trans. CAD, vol. 30, no. 5, pp. 774–786, 2011.

[12] D. Bertozzi, L. Benini, and G. De Micheli, “Error control schemes
for on-chip communication links: the energy-reliability tradeoff,” IEEE
Trans. CAD, vol. 24, no. 6, pp. 818–831, 2005.

[13] C. Grecu et al., “Essential fault-tolerance metrics for NoC infrastruc-
tures,” in Proc. IEEE Intl. On-Line Testing Symp. (IOLTS), 2007, pp.
37–42.

[14] A. Dutta and N. A. Touba, “Reliable network-on-chip using a low cost
unequal error protection code,” in Proc. IEEE Symp. Defect and Fault-
Tolerance in VLSI Systems (DFT), 2007, pp. 3–11.

[15] M. Augustin, M. Gossel, and R. Kraemer, “Reducing the area overhead
of TMR-systems by protecting specific signals,” in Proc. IEEE Intl. On-
Line Testing Symp (IOLTS), 2010, pp. 268–273.

[16] N. Touba and E. McCluskey, “Logic synthesis of multilevel circuits with
concurrent error detection,” IEEE Trans. CAD, vol. 16, no. 7, pp. 783–
789, 1997.

[17] A. Dalirsani, M. A. Kochte, and H.-J. Wunderlich, “SAT-based Code
Synthesis for Fault-Secure Circuits,” in Proc. IEEE Symp. Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFTS), 2013.

[18] M. Zhang et al., “Sequential element design with built-in soft error
resilience,” IEEE Trans. VLSI, vol. 14, no. 12, pp. 1368–1378, 2006.

[19] A. Dalirsani et al., “Structural test for graceful degradation of noc
switches,” in Proc. IEEE European Test Symp. (ETS), 2011, pp. 183–
188.

[20] S. Holst and H.-J. Wunderlich, “A diagnosis algorithm for extreme space
compaction,” in Proc. Design, Automation and Test in Europe (DATE),
2009, pp. 1355–1360.

