
Resilience Articulation Point (RAP):

Cross-layer Dependability Modeling for

Nanometer System-on-chip Resilience

Herkersdorf, Andreas; Aliee, Hananeh; Engel, Michael; Glaß,

Michael; Gimmler-Dumont, Christina; Henkel, Jörg; Kleeberger,

Veit B.; Kochte, Michael A.; Kühn, Johannes M.;

Mueller-Gritschneder, Daniel; Nassif, Sani R.; Rauchfuss, Holm;

Rosenstiel, Wolfgang; Schlichtmann, Ulf; Shafique, Muhammad;

Tahoori, Mehdi B.; Teich, Jürgen; Wehn, Norbert; Weis,

Christian; Wunderlich, Hans-Joachim

Elsevier Microelectronics Reliability Journal Vol. 54(6-7) June-July 2014

doi: http://dx.doi.org/10.1016/j.microrel.2013.12.012

Abstract: The Resilience Articulation Point (RAP) model aims at provisioning researchers and develop-
ers with a probabilistic fault abstraction and error propagation framework covering all hardware/software
layers of a System on Chip. RAP assumes that physically induced faults at the technology or CMOS
device layer will eventually manifest themselves as a single or multiple bit flip(s). When probabilistic
error functions for specific fault origins are known at the bit or signal level, knowledge about the unit
of design and its environment allow the transformation of the bit-related error functions into character-
istic higher layer representations, such as error functions for data words, Finite State Machine (FSM)
state, macro-interfaces or software variables. Thus, design concerns at higher abstraction layers can be
investigated without the necessity to further consider the full details of lower levels of design. This paper
introduces the ideas of RAP based on examples of radiation induced soft errors in SRAM cells, voltage
variations and sequential CMOS logic. It shows by example how probabilistic bit flips are systematically
abstracted and propagated towards higher abstraction levels up to the application software layer, and
how RAP can be used to parameterize architecture-level resilience methods.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

This is the author’s ”personal copy” of the final, accepted version of the paper published by
Elsevier B. V..

c©2014 Elsevier B. V.

http://dx.doi.org/10.1016/j.microrel.2013.12.012

Resilience Articulation Point (RAP):

Cross-layer Dependability Modeling for Nanometer System-on-chip Resilience

Andreas Herkersdorfa, Hananeh Alieec, Michael Engelb, Michael Glaßc, Christina Gimmler-Dumontg, Jörg Henkeld, Veit B.

Kleebergera, Michael A. Kochteh, Johannes M. Kühnf, Daniel Mueller-Gritschnedera, Sani R. Nassife, Holm Rauchfussa,

Wolfgang Rosenstielf, Ulf Schlichtmanna, Muhammad Shafiqued, Mehdi B. Tahoorid, Jürgen Teichc, Norbert Wehng, Christian

Weisg, Hans-Joachim Wunderlichh

aTechnische Universität München
bTechnische Universität Dortmund

cUniversität Erlangen-Nürnberg
dKarlsruher Institut für Technologie
eIBM, Austin Research Laboratory

fUniversität Tübingen
gTechnische Universität Kaiserslautern

hUniversität Stuttgart

Abstract

The Resilience Articulation Point (RAP) model aims at provisioning researchers and developers with a probabilistic fault abstraction

and error propagation framework covering all hardware/software layers of a System on Chip. RAP assumes that physically induced

faults at the technology or CMOS device layer will eventually manifest themselves as a single or multiple bit flip(s). When

probabilistic error functions for specific fault origins are known at the bit or signal level, knowledge about the unit of design and

its environment allow the transformation of the bit-related error functions into characteristic higher layer representations, such as

error functions for data words, Finite State Machine (FSM) state, macro interfaces or software variables. Thus, design concerns

at higher abstraction layers can be investigated without the necessity to further consider the full details of lower levels of design.

This paper introduces the ideas of RAP based on examples of radiation induced soft errors in SRAM cells, voltage variations

and sequential CMOS logic. It shows by example how probabilistic bit flips are systematically abstracted and propagated towards

higher abstraction levels up to the application software layer, and how RAP can be used to parameterize architecture-level resilience

methods.

Keywords: Cross-layer SoC resilience, probabilistic dependability modeling, SRAM error models, critical charge, transient soft

errors, permanent aging defects, error abstraction, error transformation, system-level failure analysis, resilience articulation point

1. Introduction /Motivation

Nanometer feature size CMOS technologies are susceptible

to a variety of dependability threats affecting all abstraction lay-

ers of a System on Chip (SoC). A non-exhaustive list of exam-

ples for possible errors and their corresponding root causes are:

Intermittent or permanent bit flips (SEU, SET) in memories as

well as combinatorial and sequential logic due to radiation in-

duced charge separation in the CMOS substrate; Transient sig-

nal integrity degradations and register timing violations due to

capacitive coupled cross-talk or NBTI aging; Irreversible elec-

tromigration damages on interconnect wires due to excessive

current densities or temperature hotspots, possibly in combina-

tion with manufacturing process variations.

Depending on the where and when such faults occur within

an SoC, they either have no effect at all on the SoC behavior

(because the fault is masked by other circuit conditions), cause

an erroneous function output or data structure corruption or, in

the worst case, result in a system crash.

While all of the above referenced faults originate at the low-

level process or CMOS technology layers, the resulting errors

and failures manifest at, and may propagate through, all hard-

ware/software abstraction layers. Consequently, countermea-

sures have been elaborated to conquer these various error symp-

toms at each abstraction layer. However, it is not clear upfront,

which fault type or error is most effectively tackled at what ab-

straction layer and by what form of countermeasure. Detecting

and correcting an error directly at the level where it occurred

may be possible but may not be the most efficient mean. For

example, hardening SRAM cells against radiation-induced bit

flips by means of using larger-sized transistors comes at the ex-

pense of an area increase for each and every SRAM cell within

the memory array. Applying information redundancy tech-

niques in form of error detection and correction coding (ECC)

during memory write/read operations typically results in much

less area overhead and may achieve the same result.

To effectively tackle these challenges while not compromis-

ing any performance targets, the ability to model and evaluate

the various faults and errors at and across all SoC abstraction

layers is a necessity. It is the declared objective of the German

Preprint submitted to Microelectronics Reliability August 14, 2013

Physical

sources

Faults

Error

Failure

Bit Flip

Radiation Process variation
Temperature Coupling (C)

Jitter

Signal / Vdd noise
Crosstalk

Electromigration

Invalid CPU reg

Wrong branch

decision

…

Crash

Data corruption
„No effect“

Figure 1: Cross-layer representation of faults, errors, and failures with bit flip

as Resilience Articulation Point

Research Foundation (DFG) Priority Program SPP1500 ”De-

pendable Embedded Systems” to develop new cross-layer de-

sign methods and architectures for coping with reliability, per-

formance degradation and increasing power dissipation issues

when migrating to new CMOS technology nodes [1].

The proposed Resilience Articulation Point (RAP) method is

the result of several working group meetings among SPP1500

partners and aims at provisioning a probabilistic error modeling

and bottom-up error abstraction / transformation framework to

characterize errors at different SoC hardware and software lay-

ers.

2. Resilience Articulation Point (RAP) Model

The RAP model is based on three principal pillars: First, the

hypothesis that whatever physical phenomenon is the root cause

for a fault, if it is not masked (i.e. eliminated), it will manifest

with a certain probability as a permanent or transient single-

or multi-bit signal invalidation, modeled by a probabilistic er-

ror function Pbit. Second, cross-layer dependability optimiza-

tion requires probabilistic methods for reliability modeling in

order to cope with, abstract and quantify the impact of com-

plex low-level fault exposures at higher levels. Third, trans-

formation functions TL convert probabilistic error functions PL

at abstraction level L into probabilistic error functions PL+i at

level(s) L + i (i � 1).

In graph theory, an articulation point is a vertex that connects

sub-graphs in a biconnected graph, and whose removal would

result in an increase of the number of connecting arcs within the

graph. Translated to our domain of dependability challenges in

SoC systems, spatially and temporally correlated bit flips rep-

resent the single connecting vertex between lower layer fault

origins and the upper (hour glass) layer error and failure mod-

els of HW/SW system abstraction (see Fig. 1).

Error functions for different fault origins (radiation, aging,

crosstalk or thermal hotspots, to name a few) and error trans-

formation functions (such as for determining silent data cor-

ruption (SDC) or detected uncorrectable error (DUE) rates in

microprocessor designs) are vital for the expressiveness of a

RAP-based dependability assessment. However, it is not the in-

tention of RAP (and beyond its abilities) to consider error and

transformation functions to be an integral part of RAP. Neither

is RAP a tool to develop such functions. RAP rather provides a

framework where different fault origins, each being expressed

as probabilistic bit error functions for a particular signal, can

be accumulated to represent an error function covering several

physical shortcomings. Even when this accumulation and in-

dividual error models are approximate, they relief the SoC de-

signer with expertise at higher abstraction levels from the de-

tails of the technological and device level aspects of SoC. This

concept is applicable at each abstraction level including and

above the bit or signal level.

Cross-layer approaches are suggested in related work as

feasible techniques to enhance reliability of complex sys-

tems ([2],[3]). RIIF [4] proposes a standard language to foster

exchange of reliability information and models among compo-

nents at different levels and different EDA tools. Fault and error

modeling in the space and time domain has a long tradition in

the LSI testing community. The generalized conditional line

flip model [5] allows specification of Boolean and temporal

activation conditions. Excessive process variations may cause

test invalidation of delay tests which threatens product quality.

Probabilistic fault modeling aims to quantify the quality of the

test and final product w.r.t. the parameter space in spite of high

uncertainty of variations [6].

The remainder of the paper is structured as follows: Sec-

tion 3 introduces the basic assumptions of our probabilistic er-

ror modeling under environmental, process and system state re-

lated constraints. A realistic SRAM circuit was used as example

in Section 4 to calibrate the analytical model with real hardware

for the fault scenario of radiation induced bit flips (soft errors).

This is followed by a generalization of the SRAM fault model

towards combinatorial and sequential logic circuits. Section 5

and 6 describe how the RAP bit flip model is propagated to-

wards higher abstraction levels up to the software application

layer.

3. The Lower Half Of The Hour Glass

The task of an error model at the lower levels is to describe

the probability of an occurring bit error as a function of param-

eters that may change during system design or operation.

We propose to model the error probability P of a bit by an

error function F of three parameter vectors: Environmental and

operating conditions E, design parameters D, and (error) state

bits S.

P = F (E,D,S) (1)

This generic model has to be adapted to every circuit compo-

nent and fault type independently. This enables then the mod-

eling of different components (e. g., SRAM or latches) and dif-

ferent errors (e. g., soft errors or timing violations).

2

3.1. Environmental and Operating Conditions E

Almost all the functionality of a circuit is dependent on its

environmental conditions. Device temperature and supply volt-

age values determine the electrical properties of all components

in the circuit. Circuit age changes electrical properties such as

threshold voltage. Other possible parameters include clock fre-

quency or neutron flux density.

These parameters represent an interface to either user deci-

sions or other models in the design process. For example, in a

simplified analysis supply voltage might be a fixed value, while

in a more detailed analysis it might come from some more ad-

vanced model [7].

3.2. Design parametersD

During the design stage several decisions have to be made.

For example, shall arithmetic adders follow a ripple-carry or

carry-lookahead architecture (enumerative decision)? What

technology node to choose (discrete decision)? How much area

should one SRAM cell occupy (continuous decision)?

This allows the designer to make trade-offs between different

decisions which all influence the error probability.

3.3. Correlated (Error) States S

To model the dependence of the error probability on location,

circuit state, and time it might be necessary to include several

state variables.

These state variables lead to a model which is built from con-

ditional probabilities P(b1|b2), where the error probability of

the bit b1 is dependent on the state of the bit b2.

For example, the failure probability of one SRAM cell de-

pends on the error state of neighboring SRAM cells due to the

probability of Multi Bit Upset (MCU) [8]. For an 8T SRAM

cell it also depends on the stored value of the SRAM cell as

the bit flip probability of a stored one is different from a stored

zero.

3.4. The Error Function F

The error function F finally takes the three parameter sets E,

D, and S and returns the corresponding bit error probability.

The error function is unique for a specific type of fault and

for a specific circuit element. It might be possible to express

the error function by simple analytical formulas. On the other

hand, the error function might also require a non-closed form

representation, e.g., a timing analysis engine or a circuit simu-

lator.

4. Examples for Low-Layer Error Models

In the following sections we describe bit flip error models of

SRAMs and combinational or sequential logic cells. Similar

methods were presented in [9].

Technology/VDD

!!
WL

BL

V DD

M
5

M
6

M
4

M
1

M
2

M
3

BL

Q

Q

Internal node Q @ 1

Neg. current injection
with variable pulse height Qcrit

(Fig. 3)

Calculation of
Bit flip prob-
ability (Eq. 4)

Induced
charge

distribution
(Eq. 2 & 3)

Device physics,
Cosmic ray collision

Physics

Circuit
level

Architecture

Figure 2: SRAM Single Event Upset Model

0.5 0.7 0.9

1

3

5

Supply Voltage [V]

C
ri
ti
c
a
l
C
h
a
rg

e
[f
C
]

45 nm

32 nm

22 nm

16 nm

Figure 3: Dependence of Qcrit on VDD for different technologies for a 6T SRAM

cell.

4.1. SRAM Bit Errors

One common example where bit flips are encountered in a

chip is an SRAM cell. We will show in this section how we can

model the bit flip probabilities in an SRAM array by using the

generic model from Section 3.

A bit flip in an SRAM cell occurs for example when a particle

strike induces enough charge on a point within the cell to cause

a flip in the cell’s content. Thus, a bit flip model for this effect

requires the critical charge to flip a cell as well as a distribution

describing the probability of charge injection (see Fig. 2).

The critical charge which is required to flip a cell can be

characterized for a given cell architecture using SPICE simula-

tion [10]. Variation of environment temperature or cell supply

voltage introduces a dependence of the critical charge Qcrit on

environmental conditions (Fig. 3). The dependence on design

parameters can also be characterized in a similar way, and the

influence of cell area can be modeled by varying the size of

the transistors inside the SRAM cell. This results in a discrete

model for the critical charge Qcrit dependent on environmental

and design parameters. Fig. 3 shows the Qcrit dependence on

the different supply voltages.

Fig. 4 shows the distribution of Qcrit for varying process pa-

rameters in a 14 nm FinFET technology for a 6-transistor and

3

200 300 400 500

0

50

100

Critical Charge [aC]

N
o.

of
sa
m
p
le
s

6T-SRAM
8T-SRAM

Figure 4: Qcrit distribution for 6T and 8T architectures in 14 nm FinFET tech-

nology (No. of samples: 1000)

an 8-transistor FinFET technology. According to [11] we mod-

eled mask offsets, line edge roughness, random dopant fluctu-

ations, metal gate granularity, and oxide thickness variations.

Obviously, 8T SRAM cells require more injected charge to flip

the cell content, which makes them more resilient against soft

errors. The obtained distributions can be used to introduce para-

metric yield as a parameter in the model.

For the second part of the model in Fig. 2 we need the proba-

bility that a charge which is larger than the critical charge is in-

jected by a particle strike. The probability that a neutron from

the environment strikes the cell can be modeled by a Poisson

process [12]:

P (N(T) = k) = exp (�Φ · A · T)
(Φ · A · T)k

k!
(2)

This equation expresses the probability that the number N(T)

neutrons hitting an area A during the time interval T which is

exposed to a neutron flux Φ is k. The neutron strike may be

followed by the generation of electron-hole pairs, which have

the potential to change the charge stored on the capacitances

inside the chip. We assume in the following that the probability

distribution of injected charges due to a neutron strike follows

an exponential distribution [13]:

fQ(Qinjected) =
1

Qs

exp

�
Qinjected

Qs

!

(3)

The parameter Qs is the charge collection slope due to one

neutron strike, which is technology dependent [10]. The prob-

ability PSEU of a cell flip, and thus a bit error Pbit(~x, t), can then

be composed from the critical charge of the cell Qcrit (Fig. 3)

and Equation (3):

PSEU(Q � Qcrit|Node Q = 1) =

Z

1

Qcrit

fQ(Q)dQ (4)

With increasing integration density the probability of Multi

Bit Upsets (MBU) increases. Possible reasons for this include

the successive hit of multiple storage nodes by the same neutron

or shared charge to adjacent cells [14]. To correctly account for

0"

0,1"

0,2"

P(2"upsets|

at"least"1"

upset)"

P(3"upsets|

at"least"1"

upset)"

P(4"upsets|

at"least"1"

upset)"

P(5"upsets|

at"least"1"

upset)"

P(6"upsets|

at"least"1"

upset)"

P(7"upsets|

at"least"1"

upset)"

P(8"upsets|

at"least"1"

upset)"

C
o
n
d
i&
o
n
a
l)
P
ro
b
a
b
il
it
y
)

45"nm"

65"nm"

90"nm"

Figure 5: Conditional probabilities for multiple upsets dependent on the first

single event upset for different technologies [16, 8].

1E#10%

1E#08%

1E#06%

1E#04%

1E#02%

1E+00%

600%700%800%900%1000%1100%1200%

E
rr
o
r%
P
ro
b
a
b
il
it
y
%

Supply%Voltage%(mV)%

FuncBonal%Errors%(6T)%

FuncBonal%Errors%(8T)%

SoE%Errors%(6T)%

Figure 6: SRAM error probabilities for 6T and 8T cells in the presence of

voltage drops for a 65 nm technology. The soft-error rate relates to a storage

period of 10 µs.

Multi Bit Upsets we therefore have to add error state variables

to the model. For this we first have to characterize the occur-

rence probability of given shapes [15]. Using these occurrence

probabilities we can account for Multi Bit Upsets using con-

ditional probabilities which determine the probability that an

adjacent cell is upset given the upset of spatially close cells [8].

Figure 5 shows the conditional probabilities of having n addi-

tional upsets given a erroneous bit in an SRAM cell array due

to MBU for different technologies.

SRAM cells can also experience intrinsic errors, such as

functional or delay errors. The probability of these errors is

strongly related to the supply voltage at which the cell is op-

erated. Thus, voltage drops in the system are also a possible

source of additional errors. Figure 6 shows these error probabil-

ities for 6T and 8T SRAM cells for a 65 nm technology, which

were characterized by extensive Monte Carlo simulations [17].

For comparison the error probability due to soft errors is also

shown which is much smaller in this case. Thus, if stringent

power requirements exist—as it is for example the case in low

power systems—the error rate might be dominated by voltage

drop related errors. The error probabilities shown in Fig. 6 can

be well approximated for 65 nm by linear or piece-wise linear

functions in semi-logarithmic representation [18]:

4

clk

A B

C

A

B

C

clk

1
Y

&

Setup
T

Hold
T

p
t

Figure 7: Bit flip as result of SEU or SET.

P6T,cell fail = 10�11.7·VDD/V+5.6 (5)

P8T,cell fail =

(

10�20·VDD/V+7.8 if VDD 0.7 V

10�40·VDD/V+21.8 if VDD > 0.7 V
(6)

4.2. Combinatorial and Sequential Logic

When a neutron strikes a combinatorial or sequential logic

block within the SoC, it will result in a charge separation within

the semiconductor substrate material which may lead to a volt-

age pulse on a signal wire line (see signal A in Fig. 7).

The temporal width of the voltage pulse again depends on the

energy of the particle, the technology feature size, the capaci-

tive load of the signal, the supply voltage (in other words, on

the E,D, and S parameters in Equation (1)). However, the volt-

age pulse only results in a functional error (i.e. a false bit value

latched into the following register stage affecting signal Y), if

the pulse propagates from the location of occurrence to the reg-

ister stage on a combinatorially sensitized path and overlaps

with the critical time window ∆Tcrit = TSetup + THold around the

active clock edge. Otherwise, the pulse will be masked out and

thus, never be noticed. The probability for a bit error Pbit(~x, t)

within sequential logic again is spatially (where in the combi-

natorial net did the strike occur) and temporally (what is the

combinatorial path delay between strike location and register

input) correlated with the fault and, with the probability Psense

to have a sensitized path to the register, approximated as:

Pbit(~x, t) ⇡
TSetup + THold + tp

Tclk

· Psense · PSET (7)

Signal Y in Fig. 7 can be considered as an individual bit of

a data word in a sequential data path pipeline or a bit within

a state vector of a control FSM. Upsets on clock trees would

result in multiple (hundreds of) erroneous register contents

(data / control word corruptions). Clock tree upsets can be

modeled as transient bit flips too, but will occur significantly

less likely as clock buffers are usually hardened by multiple se-

quential nMOS and pMOS transistors in the buffer / inverter

designs. A signal degradation on an i/o bit will result in an

interface (control) error at a higher layer of abstraction and is

also in line with the RAP model. In consequence, we now have

a probabilistic bit flip model for combinatorial and sequential

logic, interconnect wires, external interfaces and memory ar-

rays, and thus cover all fundamental functional building blocks

of SoCs or computing architectures.

5. The Upper Half of the Hour Glass

Bits or individual signals are meaningful targets for describ-

ing errors at the transistor, logic gate and RT levels of abstrac-

tion. At higher layers, compounds of multiple signals/bits, re-

ferred to as data, control or address words, FSM state vectors,

variables, interfaces or data structures, are more intuitive and

descriptive, particularly for software developers (see Fig. 8).

On the other hand, a memory data word is nothing but a bundle

of multiple (say 32) consecutive memory cells or memory bits.

Thus, when assuming individual bit errors Pbit(~x, t) in space ~x

and time t within memory cells to be independent, one can de-

termine the approximate Pword(~x, t) error probability by the fol-

lowing concrete transformation function Tbit:

Pword(~x, t) = Tbit � Pbit(~x, t) = 1 �
Y

xi2~x

(1 � Pbit(xi, t)) (8)

The derivation of word error probabilities under considera-

tion of correlated data bits and interleaving is also possible. We

refer to [19] for a more complete discussion of this more com-

plex case.

When operand variables of arithmetic operations are stored

in an SRAM memory array, then Pword(~x, t) describes the prob-

ability with which these variables contain erroneous data. In

case the same variables are kept in the CPU register file, then

a different Pword(~x, t) describes the trustworthiness of the con-

tents of the register file. The two Pword(~x, t) probabilities are

different because the technological (D) and state-related con-

straints (S) of SRAM arrays and a register files are different.

Pword(~x, t) can also incorporate potential dependability counter-

measures applied at word level abstraction layers (e. g., ECC

detecting and correcting up to k bit errors per word). In case

of ECC protection, only N > k accumulated bit errors within

one and the same data word and between two consecutive write

refreshes will result in a word / variable error. N < k bit flips

per data word remain invisible (i.e., are masked) for the soft-

ware layer. Hence, an ECC protected memory has a different

Pword(~x, t) than a non-protected memory, although both may

have the same bit level Pbit(~x, t).

Similar, the vulnerability of data, address and control word

transports on on-chip buses, or the data transformation within

the combinatorial logic blocks of a CPU data path or FSM con-

trol structure can be expressed as Pword(~x, t). At higher ab-

straction layers, the units of words, or compounds of words

referred to as interfaces (or data structures), substitute bits or

signals. Corresponding interface related probability functions

Pinterface(~x, t) are derived from the error probabilities at bit-level

Pbit(~x, t) or word-level Pword(~x, t), plus additional knowledge on

the internal IP block architecture and topology. In other words,

the D and S constraints at the respective abstraction layers rep-

resent a transformation model between Pbit(~x, t), Pword(~x, t) and

Pinterface(~x, t).

5

Bit Flip

Logic

RTL

Macro

Architecture

S
y
s

te
m

 S
W

L
e

v
e

ls

S
y
s

te
m

 H
W

L
e

v
e

ls

Data

Process

Pvariables

Pinterfaces

Pword

Pbit

Core Bus
Memory

OpCode Data

Driver Tasks

Pipeline

Arbiter

HW-

Accel.

Address

Decoder

I/O

& =1

≥1

& =1 & =1

& =1

& =1

≥1

B2 B1 B0 <

A2 A1 A0 <

S3 S2 S1 S0 <

clk

clk

Figure 8: Abstraction and transformation of bit flips in higher system model

layers

5.1. Divide and Conquer

Once we can describe the dependability exposure of a com-

plex SoC by probabilistic functions for data bus words and

operand variables, higher layer SoC behavior (hardware archi-

tecture and software layers) can again be investigated without

maintaining the complete set of lower layer models. Pword or

Pinterface are adequate representatives of the lower layer errors.

They can be considered as adequate error injection means at,

e.g., architecture or system software levels, thereby replacing

complex lower layer models.

Abstraction level specific probabilistic error models and

transformation functions can be used for propagating error

models towards higher abstraction levels. Mathematically, this

can be expressed by the following equation and is graphically

depicted in Fig. 9:

PL+i = TL(EL,DL,SL) � PL (9)

Transformation functions can stretch one or several abstrac-

tion levels. The SRAM data word example from Eq. (8) dealt

with two consecutive abstraction levels. Section 6 below will

show cases where transformations cover multiple levels, from

bit to architecture level and word to application software level,

respectively. Abstraction levels not only have specific transfor-

mation functions, but also level specific environmental, design

and correlated state parameters. Externally imposed workloads

and fault exposure patterns contribute to the environmental di-

mension, abstraction level related design structures and tem-

plates to the design and state related parameters. Dynamic pro-

gram flow is considered through the workload (environmental

parameters EL) and, thus, affect the error model at higher ab-

straction level(s).

6. Transformations, Tools and Applications for the Upper

Half

Transformation functions are essential for raising the level

of abstraction and obtaining application-specific results out of

RAP-based dependability analysis. However, the transforma-

tion functions themselves are not an integral part of RAP. In the

following sections we provide examples of how transformation

functions can be used in the context of RAP-based system anal-

ysis and drive architecture related design decisions.

Analysis / Simulation

Technique

(Tool)
Environment

RA
P‘

Structure,

Design

Current level

Higher level

Lower level

L
P

iL
P

L
E LL

SD ,

),,(
LLLL

SDET

P
a

tt
e

rn
s

W
o

rk
lo

a
d

R
A

P

Figure 9: Error transformation / propagation in the upper half layers

6.1. Data and Instruction Vulnerability Analysis

A large number of embedded software applications can tol-

erate certain errors with negligible output quality degradation.

Nevertheless, errors leading to significant output deviations or

even system crashes have to be corrected mandatorily. Flexible

error handling requires meta data to indicate the vulnerability of

a given data object or code sequence to errors. This can be ac-

complished by providing reliability annotations in application

source code, e.g., by means of a binary classification into ”crit-

ical” and ”non-critical” objects. This information is propagated

throughout the application using static analysis and source or

binary code transformations.

The SPP1500 FEHLER project uses this meta data at com-

pile time to map data and instructions to components of ap-

propriate reliability [20]. In addition, for errors manifesting at

runtime, meta data is used by the operating system to deter-

mine the appropriate error correction method considering cur-

rent resource availability. Lower level RAP word error models

Pword(~x, t) can be used to decide if, when, and how to correct

a given error. This can significantly help to assess the over-

head required for error correction under different workloads (E

parameter) at runtime. Extensions to the analysis and related

meta data will help to consider additional design (D) trade-offs,

e.g., between output quality, real-time constraints, and energy

consumption.

Instruction Vulnerability Index (IVI) [21, 22] and Instruction

Masking Index (IMI) [23] are alternative approaches provid-

ing probabilistic estimations/quantifications for the vulnerabil-

ity, masking of application software at various granularities, i.e.

instruction, basic block, and function. The IVI model (Eq. (10))

quantifies the spatial and temporal vulnerabilities of different

types of software instructions in different microarchitecture/RT-

level pipeline stages c 2 C of a given processor according to

their area Ac and error probability PE(c) [21]. It jointly consid-

ers the effects of faults in different processor components (spa-

tial), during the execution of different instructions (temporal),

types of errors, (non-)critical instructions, and vulnerable bit

analysis. The error probability PE(c) for each pipeline compo-

nent c is obtained using the HW-level reliability methods like

EPP [24], CEP [25] and CLASS [26]. These techniques pro-

vide probabilistic analysis of error propagation from error site

(Pbit(~x, t) or Pword(~x, t)) to the reachable primary outputs using

topological traversal of the netlist. Moreover, the correlation

6

in propagated errors to multiple outputs as well as multi-cycle

propagation of latent errors in flip-flops and memories are han-

dled by these techniques. The correlation coefficient method is

adopted to obtain error probabilities and correlations of primary

outputs due to a particle strike at internal nodes. Ac is obtained

from the hardware synthesis results.

IVIi =

P

8c2C IVIic ⇥ Ac ⇥ PE(c)
P

8c2C Ac

(10)

IVIic denotes the vulnerability at a processor component c

(with an architecturally-defined size �c) is given as the product

of its vulnerable periods in that processor component (�ic) and

vulnerable bits affecting the Correct Execution (�c(v)), as shown

in Eq. (11). Ac and �c(v) capture the spatial vulnerability, while

�ic captures the temporal vulnerability.

IVIic =
�ic ⇥ �c(v)
P

8c2C �c

(11)

�c(v) is obtained using the program-level analysis of vulner-

able bits [21], bit error probabilities (Eq. (12)) and their cor-

relations [25][26]. The above discussion on IVI model illus-

trates that how hardware- and program-level error analysis can

be combined to accurately estimate the reliability at higher sys-

tem layers.

Pbit AVG(i | j) =
Pbit AVG(i j)

Pbit AVG(j)
(12)

IVI can then be used to derive the vulnerabilities at function,

task, and application program level.

As IVI captures the probability of an error, IMI captures the

software properties of how probable is that this error will ul-

timately propagate to the visible program output. Hence, IMI

provides a transformation function T covering one or multiple

abstraction layers.

6.2. Tool Perspective

The concept and advantages of RAP as a basic model for re-

liability considerations in the MPSoC domain can enhance ex-

isting and guide future design and analysis tools. As outlined in

Section 4, RAP at the level of bit flips has the potential to close

the gap between (a) lowest-level techniques that are aware of

physical effects and (b) numerous higher-level techniques, e.g.,

from the fault-injection domain like [27]. The latter are agnos-

tic of physical causes but rely on a mathematical description of

an error as a discrete deviation from the expected state occur-

ring deterministically or statistically. Given that the single bit

flip is the smallest functional error unit, no inherent abstraction

prevents the model from being generally applicable by already

neglecting certain aspects. But RAP not only has the potential

to bridge between those two worlds, but it also enhances the het-

erogeneous higher-level tool landscape by means of providing a

transformation scheme as a step towards a cross-layer tool flow.

As indicated in Section 5.1, the concept behind RAP enables:

(a) An abstraction from concrete fault models, in particular, it

may even already serve as an abstraction for several concurrent

fault models, and (b) different causes of errors can be composed

1 1.1 1.2 1.3 1.4 1.5 1.6

x 10
−3

0

0.5

1

1.5
DL Comparison for different CGRA slow−down factors s

T
TW

 [s]

D
L

 [
s
]

s=2

s=8

s=16

Figure 10: Write detection latency (DL) comparison with standard deviation �
between s = {2, 8, 16} and P(FD) = q = 10�5

and provided to the next higher level of abstraction. Modeling

errors as flips in bits, words, interfaces, or variables is individ-

ually covered in existing simulation-based and analytical anal-

ysis tools. Here, RAP may serve as an intermediary between

existing analysis tools and techniques; a step towards solving

the problem of cross-layer analysis as, e.g., discussed in [28].

This cross-layer concept behind RAP will also be reflected in

the implementation of a recent concept for cross-layer reliabil-

ity analysis presented in [29].

6.3. Architectural Layer Example

Dynamic Functional Verification (DFV) on Coarse Grained

Reconfigurable Architectures (CGRA) is a low-cost method to

detect faults in SoCs by computing samples of SoC compo-

nents on a fault tolerant CGRA [30]. The method provides

fault detection deadlines which are met with specified proba-

bilities. Specification of these deadlines as well as the desired

confidence to meet the latter allows DFV to be optimized for

the actual demand. CGRAs support this optimization through

temporal and spatial mapping. By mapping these components

into the temporal domain, they are deliberately slowed-down by

the factor s to only calculate as many samples as are absolutely

required to have detection latency DL, the time from fault oc-

currence to fault detection, meet the deadline with the desired

confidence. The usage of fault tolerant CGRAs [31] ensures

that the information thereby acquired is reliable.

However, with the capability to adjust DFV according to

reliability goals, it is important to asses the initial reliability

situation correctly. Prior to the RAP Model, this was mostly

up to experience and experiments, both which left chances

for under- and overestimating the fault occurrence probability

P(FO) and thus also its derivative, the fault detection probabil-

ity P(FD) = q, which is limited by P(FO) as upper boundary

and which shall be assumed to be equal for simplification. In

case of underestimation of P(FO), the risk is deemed lower than

it actually is and system stability is jeopardized. Overestimation

of P(FO) leads to excess checking and thus to a waste of com-

puting power and energy. The RAP model provides a bit flip

probability P, enabling specific optimization for the actual reli-

ability demand, preventing the aforementioned hazardous sce-

narios. The following example shall elucidate.

7

Based on the chart in Fig. 10 faults shall be detected within

0.5s with a confidence of 95.6%. If P(FO) is overestimated

(P(FO) > P), a setup with CGRA slow-down factor s = 2

might be used, using a more resources than necessary. Under-

estimating P(FO) (P(FO) < P) might lead to a solution using

s = 16 which would prevent DFV from ever meeting its goal.

But if P is known upfront through the RAP model, all this can

be prevented. In this case, the optimization algorithm presented

in [30] will suggest a solution of s = 8 and a time window of

TTW = 1.30 ms which will just meet the aforementioned de-

mand.

6.4. System-level Analysis Examples

As outlined in Section 5.1, transformation functions are an

integral part of the RAP concept to enable the propagation of

low-level effects up to the highest level of abstraction. There-

fore, RAP can be used to enhance reliability studies of full ap-

plication systems. Utilizing RAP in this context allows to draw

connections between occurring effects in an application system

and the underlying fault mechanisms.

6.4.1. Distributed Embedded Control Application

Often, it is of interest to not only consider a single source of

unreliability but also other sources such as aging-based perma-

nent faults to decide which effects have the highest impact and

which counter measures to apply. A recent approach presented

in [32] relies on transformation functions from lower levels, see

Section 6.1, and considers soft errors at the level of tasks, i. e.,

Ptask(~x, t) as well as permanent defects of components as de-

rived, e. g., in [29]. The automatic reliability analysis can be

seen as the top-level transformation function to deliver what

could be described as Psystem(~x, t). Based on success trees, a

variant of the well-known fault trees, the proposed method not

only considers multiple transient and permanent faults concur-

rently, but a carefully introduced structure of the success tree

enables to track a system failure back to the critical effect. The

result of such an analysis for a distributed embedded control ap-

plication, cf. [33], is depicted in Figure 11. Shown is the clas-

sic reliability function, denoting the probability that the system

works correctly until a respective point in time, as well as the

ratio of permanent and transient faults with respect to being the

critical effect that caused the system failure. In the beginning,

most components work properly such that soft-errors are the

dominant source of failure. Over time and with aging effects

taking place, more and more components tend to be perma-

nently defective, making permanent effects the dominant source

of failure. As can be seen, the varying impact of the different

effects over the system’s lifetime can be investigated, enabling

a careful and efficient application of counter measures with re-

spect to the real impact of an effect and the targeted main mis-

sion time of a system.

6.4.2. Autonomous Robot

Autonomous vehicles can revolutionize public and industrial

transportation systems. For these systems often safety and reli-

ability are a special concern, because of their autonomous na-

ture – especially when the operate with humans in the same

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

time

r
a
ti
o
%

transient failure ratio permanent failure ratio

0

0.2

0.4

0.6

0.8

1

r
e
li
a
bi
li
ty

Figure 11: Analysis results of an embedded control application: The reliability

function and the ratio of system failures induced by transient effects of the

software tasks or permanent effects of the hardware over the lifetime of the

system. In the beginning, most hardware components are fault free such that

transient effects are a significant cause of system failure. Over time, the aging

and wear-out results in permanent component faults, of course, reducing the

impact of transient effects since there are less and less tasks being executed.

Nominal +10% VDD 1-bit parity Double Area

0

0.5

1

1.5

P
ro
b
ab

il
it
y
⇥

10
−
5
⇤

Probability that error is read from cache

Probability that error affects system behavior

Consumed power per written cache bit

0

0.5

1

1.5

P
ow

er
[f
W

]

Figure 12: Trade-off between failure probability and power for different protec-

tion solutions for the data cache of an autonomous robot for a system runtime

of 10 seconds.

environment. In [34], we studied the effect of soft errors in

the data cache of an two-wheeled autonomous robot. Using a

fault model as it was presented in Section 4.1, faults can be

injected in the simulation environment. The robot in this sim-

ulation was modeled in SystemC/TLM and its environment in

Java. To make the fault injection experiment feasible we used

a Mixture Importance Sampling approach to simulate only rel-

evant scenarios. Using this approach the fault probability of

the whole system can be estimated with high confidence within

1,500 samples. This equals a cumulative simulation time of 2.5

days. We utilized this approach to test the efficiency of different

protection solutions for the data cache in [18].

Figure 12 shows the system failure probability (i.e., the robot

makes a failure in its movement), the probability that a erro-

neous bit is read from the cache, and the consumed power per

written cache bit for different protection solutions. The prob-

abilities were estimated for a system runtime of 10 seconds.

Protecting the cache by hardening the cells with increased cell

area or supply voltage reduces the probability that an erroneous

bit is read from the cache. The system failure probability is

similarily influenced. In contrast, the addition of a 1-bit parity

protection with write-through mode behaves differently. With a

8

7 8 9 10 11 12 13 14 15 16 17 18
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

0
 / dB

F
E

R

pb=0

pb=10
-3

pb=10
-4

pb=10
-6

Figure 13: The system communication performance is gradually decreasing for

random bit-flips in the channel information memory. pb depicts the bit error

probability.

parity protection errors inside the cache occur at the same prob-

ability as for the unprotected case, but only data words from the

cache with an even number of errors contribute to system fail-

ures. Data words with an odd number of errors are fetched at

the penalty of a cache miss from the better protected memory.

According to Fig. 12, the probability that a faulty data word

is read from the cache decreases as expected, while the over-

all system failure probability only slightly decreases compared

to the unprotected cache. Thus, we can conclude that most of

the protected data words (i.e., with an odd number of errors)

are anyway masked by the system architecture. The usage of a

fault model directly derived from the technology level provides

here a possibility to make trade-offs between power and relia-

bility while still being able to evaluate the efficiency of different

protection solutions for the overall system.

6.4.3. Iterative MIMO-BCIM Detector

Multiple-antenna or MIMO systems have the potential to in-

crease the data rate of wireless communication systems. They

belong to the most advanced systems in the upcoming 4G and

5G communication standards, and their very high complexity is

a challenge for any hardware implementation. In [35], we stud-

ied the effects of hardware errors in the system memories of

a MIMO-BICM receiver on the system’s communications per-

formance because the memories consume a large amount of the

systems area. We found out that especially the memories con-

taining complex-valued data, i.e. the channel information and

the received vectors, are very sensitive. Figure 13 shows the

degradation of the communications performance when errors

are injected in the channel information memory. Up to a bit

error probability of pb = 10�6 the degradation is negligible for

the typical frame error rates (FERs) of a wireless system. After-

wards, the performance decreases gradually with an increasing

pb.

We assume that the memory errors result from supply volt-

age drops which occur regularly during power state switching.

According to Equations (5) and (6) each bit error probability pb

corresponds to a specific voltage supply value. For instance a pb

of 10�4 translates to a voltage value of 820 mV for a 6T cell and

590 mV for a 8T cell architecture. Several resilience actuators

exist which can be applied for different degrees of hardware un-

reliability in order to mitigate the impact of the hardware errors

on the system performance [18]. No action has to be taken as

long as there is a high hardware reliability, i.e., voltage drops of

no more than 200 mV . Within this area, the receiver shows an

inherent algorithmic error resilience. For a decreased reliability

in which voltage drops up to 300 mV occur, we can react on the

application layer by increasing the number of iterations in order

to regain communications performance. For transient errors,

this leads only to a temporary throughput degradation without

loss of communications performance. When errors occur with

a high probability pb > 5 · 10�5, application-layer resilience

actuators cannot provide the necessary resilience. On the archi-

tectural layer, the contents of the memory can be protected by

a simple 1-bit error correction code. The resilience can be even

further increased on technology layer by employing 8-transistor

(8T) memory cells instead of 6-transistor (6T) cells resulting in

a smaller implementation overhead. 8T memory cells can even

tolerate voltage drops of 500 mV . However, the increase in area

and power is in both cases permanent.

7. Summary

This paper presented the basic idea of the RAP model, which

is intended to serve as the logical interface point for resilience

analysis between lower (technology, circuit, device) levels of

abstraction and higher levels of system implementation. The

intention behind the development of the RAP model was to al-

low researchers at all levels of abstraction to be able to clearly

and quantitatively describe the error and fault relationships be-

tween these levels in terms of probabilistic models and abstrac-

tion transformation functions. Thereby, detailed implementa-

tion and technology related aspects of the system are considered

via the lower level models. This property allows the designer to

globally optimize system resilience across all relevant abstrac-

tion levels.

The upper levels of the RAP framework are assigned abstract

and meaningful “units of information” to characterize the data

and control entities that are typically processed at the respec-

tive HW/SW levels. Probabilistic error functions PL at higher

levels can be derived / transformed out of the probabilistic error

function describing the lower level bit flips.

Acknowledgment

This research program is supported by the German Research

Foundation (DFG) as part of the priority program “Dependable

Embedded Systems” (SPP1500 - spp1500.itec.kit.edu). We

would also like to thank all partners within the priority program

for their input and feedback.

References

[1] J. Henkel, L. Bauer, J. Becker, O. Bringmann, U. Brinkschulte,

S. Chakraborty, M. Engel, R. Ernst, H. Hartig, L. Hedrich, et al., De-

9

sign and architectures for dependable embedded systems, in: Interna-

tional Conference onHardware/Software Codesign and System Synthesis

(CODES+ ISSS), IEEE, 2011, pp. 69–78.

[2] H. M. Quinn, A. De Hon, N. Carter, CCC visioning study: system-

level cross-layer cooperation to achieve predictable systems from un-

predictable components, Tech. rep., Los Alamos National Laboratory

(LANL) (2011).

[3] W. Robinson, M. Alles, T. Bapty, B. Bhuva, J. Black, A. Bonds, L. Mas-

sengill, S. Neema, R. Schrimpf, J. Scott, Soft error considerations for

multicore microprocessor design, in: IEEE International Conference on

Integrated Circuit Design and Technology, IEEE, 2007, pp. 1–4.

[4] A. Evans, M. Nicolaidis, S.-J. Wen, D. Alexandrescu, E. Costenaro, Riif-

reliability information interchange format, in: IEEE International On-

Line Testing Symposium (IOLTS), IEEE, 2012, pp. 103–108.

[5] H.-J. Wunderlich, S. Holst, Generalized fault modeling for logic diagno-

sis, in: H.-J. Wunderlich (Ed.), Models in Hardware Testing, Vol. 43 of

Frontiers in Electronic Testing, Springer Netherlands, 2010, pp. 133–155.

[6] B. Becker, S. Hellebrand, I. Polian, B. Straube, W. Vermeiren, H.-J. Wun-

derlich, Massive statistical process variations: A grand challenge for test-

ing nanoelectronic circuits, in: IEEE/IFIP International Conference on

Dependable Systems and Networks Workshops (DSN-W), 2010, pp. 95–

100. doi:10.1109/DSNW.2010.5542612.

[7] S. Nassif, O. Fakhouri, Technology trends in power-grid-induced noise,

in: International Workshop on System-level Interconnect Prediction,

2002, pp. 55–59.

[8] S. Lee, S. Baeg, P. Reviriego, Memory reliability model for accumulated

and clustered soft errors, IEEE Transactions on Nuclear Science 58 (5)

(2011) 2483–2492.

[9] H. T. Nguyen, Y. Yagil, N. Seifert, M. Reitsma, Chip-level soft error es-

timation method, IEEE Transactions on Device and Materials Reliability

5 (3) (2005) 365–381.

[10] P. Hazucha, C. Svensson, Impact of CMOS technology scaling on the at-

mospheric neutron soft error rate, IEEE Transactions on Nuclear Science

47 (6) (2000) 2586–2594.

[11] V. B. Kleeberger, H. Graeb, U. Schlichtmann, Predicting future product

performance: Modeling and evaluation of standard cells in FinFET tech-

nologies, in: ACM/IEEE Design Automation Conference (DAC), 2013,

pp. 33:1–33:6.

[12] J. Barth, C. Dyer, E. Stassinopoulos, Space, atmospheric, and terrestrial

radiation environments, IEEE Transactions on Nuclear Science 50 (3)

(2003) 466–482.

[13] M. Zhang, N. Shanbhag, Soft-error-rate-analysis (sera) methodology,

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems 25 (10) (2006) 2140–2155.

[14] E. Ibe, S. Chung, S. Wen, H. Yamaguchi, Y. Yahagi, H. Kameyama, S. Ya-

mamoto, T. Akioka, Spreading diversity in multi-cell neutron-induced up-

sets with device scaling, in: Proceedings of Custom Integrated Circuits

Conference (CICC), 2006, pp. 437–444.

[15] D. Radaelli, H. Puchner, S. Wong, S. Daniel, Investigation of multi-bit up-

sets in a 150 nm technology sram device, IEEE Transactions on Nuclear

Science 52 (6) (2005) 2433–2437.

[16] G. Georgakos, P. Huber, M. Ostermayr, E. Amirante, F. Ruckerbauer, In-

vestigation of increased multi-bit failure rate due to neutron induced seu

in advanced embedded srams, in: IEEE Symposium on VLSI Circuits,

IEEE, 2007, pp. 80–81.

[17] I. Chang, D. Mohapatra, K. Roy, A priority-based 6T/8T hybrid SRAM

architecture for aggressive voltage scaling in video applications, Transac-

tions on Circuits and Systems for Video Technology 21 (2) (2011) 101–

112.

[18] V. B. Kleeberger, C. Gimmler-Dumont, C. Weis, A. Herkersdorf,

D. Mueller-Gritschneder, S. R. Nassif, U. Schlichtmann, N. Wehn, A

cross-layer technology-based study of how memory errors impact system

resilience, IEEE Micro 33 (4).

[19] S. Baeg, S. Wen, R. Wong, SRAM interleaving distance selection with

a soft error failure model, IEEE Transactions on Nuclear Science 56 (4)

(2009) 2111–2118.

[20] A. Heinig, V. J. Mooney, F. Schmoll, P. Marwedel, K. Palem, M. Engel,

Classification-based improvement of application robustness and quality

of service in probabilistic computer systems, in: Proceedings of ARCS

2012, Munich, Germany, 2012, pp. 1–12.

[21] S. Rehman, M. Shafique, F. Kriebel, J. Henkel, Reliable software for un-

reliable hardware: Embedded code generation aiming at reliability, in: In-

ternational Conference on Hardware/Software Codesign and System Syn-

thesis (CODES+ISSS), 2011, pp. 237–246.

[22] S. Rehman, M. Shafique, J. Henkel, Instruction scheduling for reliability-

aware compilation, in: ACM/IEEE Design Automation Conference

(DAC), 2012, pp. 1288–1296.

[23] M. Shafique, S. Rehman, P. V. Aceituno, J. Henkel, Exploiting program-

level masking and error propagation for constrained reliability optimiza-

tion, in: ACM/IEEE Design Automation Conference, 2013, pp. 17:1–

17:9.

[24] S. Z. Shazli, M. B. Tahoori, Obtaining microprocessor vulnerability factor

using formal methods, in: IEEE International Symposium on Defect and

Fault Tolerance of VLSI Systems, 2008, pp. 63–71.

[25] L. Chen, M. B. Tahoori, An efficient probability framework for error prop-

agation and correlation estimation, in: IEEE International On-Line Test-

ing Symposium (IOLTS), 2012, pp. 170–175.

[26] M. Ebrahimi, L. Chen, H. Asadi, M. B. Tahoori, Class: Combined logic

and architectural soft error sensitivity analysis, in: Asia and South Pacific

Design Automation Conference (ASP-DAC), 2013, pp. 601–607.

[27] H. Schirmeier, M. Hoffmann, R. Kapitza, D. Lohmann, O. Spinczyk,

Fail*: Towards a versatile fault-injection experiment framework, in:

ARCS Workshops (ARCS), 2012, pp. 1–5.

[28] S. Mitra, K. Brelsford, P. N. Sanda, Cross-layer resilience challenges:

Metrics and optimization, in: Design, Automation & Test in Europe

(DATE), 2010, pp. 1029–1034.

[29] M. Glaß, H. Yu, F. Reimann, J. Teich, Cross-level compositional reli-

ability analysis for embedded systems, in: International Conference on

Computer Safety, Reliability and Security (SAFECOMP), 2012, pp. 111–

124.

[30] J. Kühn, S. Eisenhardt, T. Schweizer, T. Kuhn, W. Rosenstiel, Improving

system reliability using dynamic functional verification on CGRAs, in:

International Workshop on Highly-Efficient Accelerators and Reconfig-

urable Technologies (HEART), 2012.

[31] T. Schweizer, A. Kuester, S. Eisenhardt, T. Kuhn, W. Rosenstiel, Us-

ing run-time reconfiguration to implement fault-tolerant coarse grained

reconfigurable architectures, in: International Parallel and Distributed

Processing Symposium Workshops (IPDPSW), IEEE, Shanghai, China,

2012, pp. 320–327.

[32] H. Aliee, M. Glaß, F. Reimann, J. Teich, Automatic success tree-based

reliability analysis for the consideration of transient and permanent faults,

in: Design, Automation, and Test in Europe (DATE), 2013, pp. 1621–

1626.

[33] M. Glaß, J. Teich, L. Zhang, A co-simulation approach for system-level

analysis of embedded control systems, in: International Conference on

Embedded Computer Systems: Architectures, Modeling, and Simulation

(IC-SAMOS 2012), 2012, pp. 355–362.

[34] V. B. Kleeberger, D. Mueller-Gritschneder, U. Schlichtmann,

Technology-aware system failure analysis in the presence of soft

errors by mixture importance sampling, in: IEEE Symp. Defect and Fault

Tolerance in VLSI and Nanotechnology Systems, 2013.

[35] C. Gimmler-Dumont, C. Brehm, N. Wehn, Reliability study on system

memories of an iterative mimo-bicm system, in: International Conference

on VLSI and System-on-Chip, IEEE, 2012, pp. 255–258.

10

