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I. INTRODUCTION

Recent semiconductor manufacturing technology nodes are

heavily affected by massive parameter variations which create

severe challenges for design and test of state-of-the-art circuits

[1, 2]. Manufacturing defects interact with the effects of

variations in complex and often unpredictable ways. This

holds in particular for small-delay faults, which are defined as

fixed amounts of extra delay at a given gate. Traditional fault-

coverage metrics and test-generation methods are insufficient

for circuit populations affected by variations. They ignore

the fact that a given test set could detect a fault in some

manufactured instances of the circuit but miss the same fault in

other instances. The fault may also be provably undetectable in

some of the instances, and such faults should not count towards

fault efficiency. However, the parameters affected by variability,

i.e., delays, are continuous and the number of possible circuit

instances is infinite.

A further substantial difficulty in variation-aware testing is

the reliance of traditional test methods on the concept of path

sensitization [3, 4]. It is assumed that, in order to detect a

small-delay fault f on a given gate, it is sufficient to find a

test pair that sensitizes the longest path that goes through that

gate. However, even in absence of variations, such procedures

are not suited to identify undetectable faults. They enforce

certain sensitization conditions, including robust, non-robust

and functional sensitization. If no robustly sensitizable path

of sufficient length (that is, cumulative delay) exists through

the fault location, the fault is not proven undetectable, as

detection through non-robustly or functionally sensitized path

could be possible. On the other hand, non-robust or functional

sensitization is prone to invalidation, and faults for which such

a path has been found may actually not be detected [5]. This

situation is even worse under variations where the same path

may have a length that is sufficient for detection in one instance

but not sufficient in an other.

In this paper, we present a statistical metric that generalizes

the concept of fault efficiency (FE) to circuits under variations.

We assume that variations are described by a known probability

distribution, which may be correlated or uncorrelated. The

metric consists of three parts: fault efficiency bound FEmin,

probability c and confidence γ. An individual circuit instance

i has fixed delays, and the fault efficiency (FE) of a test (pair)

set T with respect to an instance i is the number of faults

detected by T divided by the number of detectable faults in i.
Under variations, there are infinitely many instances i, and the

same test set T may have different FE on different instances.

T achieves fault efficiency FEmin with probability c if the

share of instances on which the fault efficiency of T is equal

to or greater than FEmin is at least c. In other words, if a

large number N of random circuit instances is drawn according

to the known probability distribution, at least c · N of them

will have FE ≥ FEmin and at most (1 − c) · N may have

FE < FEmin.

We introduce an automatic test generation algorithm that

produces a test set that achieves FEmin with probability c.
This property of the test set holds with confidence level γ. The

probability distribution and the parameters FEmin, c and γ are

inputs of the algorithm. Larger values of these parameters result

in a larger test set. In contrast to previous variation-aware test

generation approaches [6–12], the proposed algorithm relies

on accurate fault efficiencies of the generated test sets. For

this reason, the algorithm employs a very recently introduced

SAT-based test-generation engine WaveSAT [5] that works with

waveform precision and does not rely on path sensitization.

WaveSAT is able to accurately classify a given fault, that is,

to generate a test pair that detects it or to prove that the fault

is undetectable and should be removed from fault efficiency

calculation.

We applied our algorithm to mid-size industrial circuits and

were able to generate test sets for large values (≥ 0.98) of

FEmin, c and γ. The approach is validated on uncorrelated and

correlated probability distributions. The scalability is achieved

by complementing WaveSAT by a fast timing-aware path-



sensitization procedure PHAETON [13, 14] and an efficient

parallel delay fault simulator fsim running on general-purpose

graphics processing units (GPGPUs) [15].

The remainder of the paper is organized as follows. Section II

provides background on variation-aware test and the metrics

used in this paper. It also introduces the statistical model of

fault detection with a guaranteed confidence level. Section III

starts with a brief review of procedures which generate

test pairs for faults in circuit instances with fixed delays.

The discussion of these procedures and their properties is

essential as they are the basis of the adaptive confidence-guided

algorithm, which is presented in the remainder of Section III.

Experimental results are reported in Section IV. Section V

concludes the paper.

II. VARIATION-AWARE TEST

A. Circuit model under variations

We assume that variability affects the delays of all gates of

a circuit while leaving its topology unchanged. Therefore, gate

delays are random variables described by a probability distribu-

tion. While uncorrelated variations have been predicted to be

dominant in the nanoscale technologies [16–18], our approach

is based on Monte-Carlo experiments and therefore works

independent of the distribution. We will report experimental

results for both uncorrelated and uncorrelated variations. In

this paper, we assume circuits composed of primitive gates and

a simplified timing model: each gate gj has an input-to-output

delay pj . Each pj is a random variable, and a circuit C with

n gates is completely described by a parameter configuration

p = (p1, . . . , pn). This model can be easily extended by

incorporating different rising and falling delays, pin-to-pin

delays and pattern-dependent delays, resulting in more random

variables per circuit. It is also possible to include travel times

on wires and pulse filtering.

A circuit i = C[p] where all gate delays have fixed values

(p1, . . . , pn) is called a circuit instance or simply an instance.

The nominal instance i0 has all delays set to the expected

values of their distributions. When circuits are manufactured,

each produced circuit is described by an instance. Manufac-

turing N circuits corresponds to a Monte-Carlo experiment

where the parameters (p1, . . . , pn) of each instance are drawn

according to the distribution. It is possible to simulate this

process by drawing sets of random parameters without actually

manufacturing the circuit. This Monte-Carlo simulation yields

a set of instances called population. Properties that are valid

for the simulated population of sufficient size hold for different

populations, including the actual manufactured circuits, with

some probability called confidence level.

B. Fault detection under variations

We consider small-delay faults (SDFs) that are defined at

logic gates in the circuit. An SDF (g, s) results in a slow-down

of gate g by s time units. An SDF is detected by a test pair

(v1, v2) if the circuit affected by this SDF has an incorrect

value on at least one output at the observation time tobs. We

define tobs as the time when the circuit’s outputs are read out.

tobs typically equals the clock cycle duration, and a (fault-free)

circuit instance in which all possible transitions are finished

before tobs is called timing-correct. We assume that the value

of tobs is not affected by variations and is hence equal for all

circuit instances in the population. Under normal circumstances,

the designer will set tobs such that the majority of (fault-free)

circuit instances in a population are timing-correct and only a

few instances have delays (p1, . . . , pn) that are so large that

tobs is exceeded. Such instances contribute to the parametric

yield loss and are not considered here.

Detection of an SDF in two individual instances of the same

circuit, i1 and i2, is illustrated in the left and the right part of

Figure 1, respectively. The SDF of size ε is located on gate g1.

Gate delays are indicated by numbers, and the transitions on

the individual lines are shown for the test pair AB = 11/01.

In general, an SDF can only be detected if there is (at least

one) input-to-output path that includes g, has a length that

exceeds (tobs − s) and is sensitized, i.e., has transitions at

the outputs of all gates. In Figure 1, test pair AB = 11/01
sensitizes path A-g1-g3-g4. For example, the small-delay fault

of size ε = 3.5 would be detected in instance i1 (transition

on the output at time 10.5, after tobs = 8) and not detected in

instance i2 (output transition at time 7.5, before tobs). However,

this fault is detectable in instance i2 through path B-g1-g2-g4,

sensitized by a different test pair AB = 11/10 and inducing

the output transition at time 8.5.

A fault is undetectable if there is no path of sufficient length

(≥ tobs − s) through its location. We refer to this case by the

term structural undetectability. In our example, the SDF on

g1 with size ε = 2 is detected in instance i1 but structurally

undetectable in instance i2. If a sufficiently long path does

exist, it may or may not be possible to find a test pair that

sensitizes it such as to induce the incorrect value at time tobs.

In summary, a given test set T partitions the set F of all

considered SDFs in circuit instance i into three parts: F =
Fdet(i, T )∪Fnd(i)∪Fmiss(i, T ), where Fdet(i, T ), Fnd(i) and

Fmiss(i) are the sets of faults detected by T in instance i, faults

that are provably undetectable in instance i, and faults that are

detectable in i but have been missed by T , respectively. Note

that Fnd(i) depends on the instance (the same fault could be

undetectable in some instances and detectable in others) but

not on test set T . The fault efficiency of a test set T with

respect to a fault set F in an instance i is

FE(F, T, i) =
|Fdet(i, T )|

|F \ Fnd(i)|
. (1)

It is important to point out the significance of the set Fnd(i)
of undetectable faults. When stuck-at faults are considered,

most circuits have no or very few undetectable faults. In case

of small-delay faults considered here, the detection depends

on the relationship between the slack of the sensitized path

(the difference between tobs and its length) and the size s
of the SDF. If many SDFs have a size that is close to the

slack of a sensitizable path, they may be detectable in some

circuit instances but undetectable in others. Fault coverage

metrics employed in previous work [19] that did not incorporate
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Fig. 1. Small-delay fault detection under variation.

accurate detectability status yielded quite low coverages (5%

to 35%) for test sets that achieve 76% to 86% fault efficiency

according to Eq. 1. Since our test generation is controlled by

FE and we aim at rather high values (in excess of 98%), we

employ a sophisticated undetectability check to each missed

fault to decide whether it counts towards the denominator in

Eq. 1 or not.

C. Statistical fault efficiency for circuit populations

The fault efficiency metric defined above is valid for one

specific circuit instance i described by a given parameter config-

uration (p1, . . . , pn). In this section, we introduce a statistical

metric that holds for an entire population of circuit instances

that share the same probability distribution of random variables

(p1, . . . , pn). As already mentioned in the introduction, this

metric evaluates a test set T with respect to the three values

FEmin, c and γ. For N randomly drawn circuit instances of

a given parameter space, test set T achieves a fault efficiency

of FEmin with probability c for an instance i (of the same

distribution), if at least ⌈(c ·N)⌉ out of the N instances have

a fault efficiency that matches or exceeds FEmin:

Pr[FE(F, T, i) ≥ FEmin] ≥ c. (2)

Recall that calculating the fault efficiency (Eq. 1) requires

classification of all considered faults into sets Fdet(i, T ), Fnd(i)
and Fmiss(i).

Since the number of different instances in the parameter

space is infinite, it is impossible to evaluate Eq. 2 directly.

Instead, FEmin will be estimated with respect to the full

parameter space by the following Monte-Carlo experiment:

• Draw k random instances of the circuit using the known

probability distribution.

• If the fault efficiency of each of the k instances is equal

to or larger than FEmin, assume that Eq. 2 holds.

However, this conclusion is not universal but rather holds with a

certain confidence γ that is related to the number of repetitions

k and the probability c. For example, if k = 1, only one

random instance is evaluated and if its fault efficiency exceeds

FEmin, the test set fulfills Eq. 2. There is still a probability

that this particular random instance simply happened to have

an excessively high FE by chance and that the performance

of the test set T on other instances is worse than FEmin.

Therefore, the confidence γ for guaranteeing the probability

of achieving FEmin is considerably low. On the other hand,

for k = 100 the test set must exceed FEmin on 100 random

instances in a row which raises the confidence. We will now

establish the formal relationship between k, c and γ.

Assume that the actual probability for test set T having a

fault efficiency of FEmin with respect to N random instances

is c̃. In other words, this means that out of N instances, FE of

T will exceed FEmin for (c̃·N) instances. Running the Monte-

Carlo experiment as described above will lead to a positive

result and find a sequence of k instances where the FE of each

instance is larger than or equal to FEmin with a probability

of c̃k. Now, the confidence level γ captures the probability

that this positive result of the Monte-Carlo experiment implies

Eq. 2. This is best formulated using the opposite event, namely

that the outcome of the Monte-Carlo experiment is positive

but the actual probability c̃ is less than the desired probability

c. Hence, the result of Monte-Carlo experiment was positive

and misled to the belief that the probability is no less than c
while in reality it was c̃ < c.

The probability for this opposite event is (1−γ). Therefore,

the probability of the positive result of the Monte-Carlo

experiment, or c̃k, must be less than (1 − γ) for all c̃ < c.
From c̃k ≤ 1 − γ for all c̃ < c, it follows ck ≤ 1 − γ. This

implies that in order to obtain a desired confidence level γ,

the following number k of instances must be considered:

k ≥

⌈

ln(1− γ)

ln(c)

⌉

. (3)

Eq. 3 delivers k with the following property. If a test set T
is applied to k randomly generated instances and exceeds fault

efficiency FEmin for all of them, then the probability that an

arbitrary randomly generated circuit instance will exceed fault

efficiency FEmin is c with confidence γ. This property will be

utilized in the adaptive test generation procedure in Section III.

III. CONFIDENCE-GUIDED TEST GENERATION

The confidence-guided test generation procedure aims at

producing a test set T that achieves a certain desired fault

efficiency FEmin on any arbitrary instance with probability

c and confidence γ. As explained in Section II-C, a test set

T fulfills this condition if it exceeds FEmin for k randomly

generated circuit instances, where k is calculated using Eq. 3.

The pseudo-code of the procedure is found in Algorithm 1.

Before the algorithm is explained, key sub-routines called by

the method and their relevant properties are outlined.

• PHAETON is a SAT-based path-oriented small-delay test

pattern generator [13, 14]. Given a set of faults F and a

circuit instance i, it searches, for each fault f ∈ F , for

the longest path through the fault location that can be

sensitized in i and calculates the test pair that does the

sensitization. In this work, PHAETON uses robust path



sensitization that is not prone to invalidations but may

miss detectable faults.

• WaveSAT is a small-delay ATPG engine that generates

timed sequences of rising and falling transitions (wave-

forms) on the circuit lines [5] that lead to the detection of

the fault. Since WaveSAT does not necessarily sensitize

the longest possible path, its generated test pair do not tend

to detect many faults. However, WaveSAT allows accurate

classification: if no test pair is found, it is guaranteed

that none exists, i. e., the fault is undetectable under

the given timing assumptions. WaveSAT is used for two

purposes: close the gaps in fault coverage by pinpointedly

generating test pairs for faults missed by PHAETON test

pair sets, and prove that a fault is undetectable in a specific

circuit instance and can be excluded from fault-efficiency

calculation.

• fsim is a delay fault simulator that runs in parallel on

general-purpose graphic processing units (GPGPUs) [15].

The high degree of parallelization is beneficial when

grading a large number of circuit instances that have the

same structure but different delays.

To construct T with the desired property, the nominal

instance i0 and a number of further instances i1, i2, . . ., called

the training set, are considered (the number of instances in

the training set is not known ahead of time, as new instances

are added to the training set until the test set reaches the

required quality). The initial T is generated to obtain 100%

fault efficiency on the nominal instance i0 in Lines 1 through 4

of Algorithm 1. PHAETON is used to quickly generate a good

test set and WaveSAT to cover the missed faults identified by

fsim. In Line 5, the number k of circuit instances that need to

be considered to obtain the fault-efficiency estimate with the

desired confidence γ is calculated according to Eq. 3. Then,

Lines 7 through 16 are repeated until the test set T fulfills the

FE target, that is, exceeds FEmin for k consecutive random

instances i. This is implemented as follows.

The random instance i is generated in Line 8, and the faults

Fdet detected by T are determined by fault simulation in Line

9. The set of undetectable faults Fnd is obtained by running

WaveSAT and collecting all faults shown to be undetectable.

In addition, WaveSAT generates top-up test pairs for faults not

detected by the initial T ; these pairs are collected in set Ttu.

If at least one of k instances does not reach fault efficiency

of FEmin, the top-up pairs are added to T and another k
instances are considered (this is achieved by setting the loop

variable j to 0). The iterations stop when T exceeds FEmin for

k instances in a row. This means that T is of sufficient quality

and fulfills the specification; therefore, this T is returned in

Line 18.

IV. EXPERIMENTAL RESULTS

A. Explicit test generation for random circuit instances

To evaluate the need for considering variations during

test generation, we performed the following experiment for

combinational cores of industrial circuits provided by NXP.

Algorithm 1 Confidence-guided test generation algorithm.

Procedure conf testgen(C, F , FEmin, c, γ)
Inputs: Circuit C with random parameter distribution,

fault set F , fault efficiency target FEmin,
probability c, confidence γ.

Output: Test set T with fault efficiency ≥ FEmin

with probability c and confidence γ.
(1) i := nominal instance(C);
(2) T := PHAETON(i, F );
(3) Fdet := fsim(i, T , F );
(4) T := T ∪ WaveSAT(i, F \ Fdet);

// T has 100% fault efficiency on the nominal instance

(5) k :=
⌈

ln(1−γ)
ln(c)

⌉

;

(6) Ttu := ∅; j := 1;
(7) while (j ≤ k) begin
(8) i := random instance(C);
(9) Fdet := fsim(i, T , F );

(10) T̃ := WaveSAT(i, F \ Fdet); Ttu := Ttu ∪ T̃ ;
(11) Fnd := F \ fsim(i, T , F \ Fdet);

(12) if
(

|Fdet|
|F\Fnd|

< FEmin

)

then begin

// Insufficient F for one of k instances, enlarge T
(13) T := T ∪ Ttu; Ttu := ∅;
(14) j := 0; // Evaluate k new instances
(15) end if
(16) j := j + 1;
(17) end while // Sufficient FE for k instances in a row, T finished
(18) return T ;
end conf testgen

For each circuit, we generated one nominal instance i0 with

all delays set to their nominal values, and 1000 instances

i1, . . . , i1000 with delays described by independent random

variables according to a Gaussian distribution with standard

deviation of 20%. We considered small-delay faults at 100

randomly chosen but fixed fault locations (gates) with nine

different sizes equiprobably distributed across the clock cycle,

i.e., 10% of tobs, 20% of tobs, through 90% of tobs. A

substantial portion of these faults are provably undetectable,

as no sensitizable path of sufficient length exists through their

location. We generated a number of test sets TN with complete

coverage of detectable faults (fault efficiency of 100%) on

the instances i0 through iN . This has been done by running

PHAETON on i0, simulating the generated test set on instances

i0, . . . , iN , and using WaveSAT to either detect all undetected

faults or classify them as provably undetectable. For example,

test set T10 detects all detectable faults in the nominal instance

i0 and ten further instances i1 through i10.

The quality of test sets TN is reported in Columns 6–15 of

Table I (the numbers for 5-detect and 10-detect timing-aware

transition fault test sets generated by a commercial tool by

sensitizing the longest path through a fault location are given

in Columns 4 and 5 for reference). Column 3 contains the

number of detectable faults aggregated over all 1001 instances.

For each test set, the size of the test set |T |, the number |F |
of detected faults in all instances and the fault efficiency FE,

obtained by dividing this number by the value in Column 3,

are quoted. It can be seen that the fault efficiency of variation-



TABLE I
TEST SET SIZE |T |, NUMBERS OF DETECTED FAULTS |F | AND FAULT EFFICIENCY FE [%] OVER 1001 CIRCUIT INSTANCES (9 FAULT SIZES).

Circuit Gates Detectable Timing-aware for i0 Variation-aware test sets TN generated for instances i0, . . . , iN

Faults 5-detect 10-detect T0 T5 T10 T25 T50 T100 T200 T400 T500 T800 T1000

p45k 25679 210290
|T | 110 215 317 363 386 421 449 489 531 581 602 655 686
|F | 176466 181531 196490 204601 207241 208611 209250 209679 210016 210147 210185 210259 210290
FE 83.916 86.324 93.438 97.295 98.550 99.202 99.505 99.709 99.870 99.932 99.950 99.985 100.000

p78k 70475 434292
|T | 41 75 605 672 734 849 993 1175 1401 1675 1774 1967 2096
|F | 352426 364983 416520 420808 424169 427853 430093 431759 432878 433662 433859 434150 434292
FE 81.150 84.041 95.908 96.895 97.669 98.517 99.033 99.417 99.674 99.855 99.900 99.967 100.000

p89k 58638 155318
|T | 95 192 284 309 322 355 381 416 462 515 538 575 594
|F | 118412 124450 149104 151967 152642 153569 154236 154780 155027 155205 155243 155298 155318
FE 76.238 80.126 95.999 97.842 98.277 98.874 99.303 99.654 99.813 99.927 99.952 99.987 100.000

p100k 61066 201883
|T | 77 145 303 349 372 432 481 532 613 709 744 822 873
|F | 167021 172682 187173 194385 196259 199152 200180 200848 201331 201644 201716 201826 201883
FE 82.732 85.536 92.714 96.286 97.214 98.647 99.156 99.487 99.727 99.882 99.917 99.972 100.000

aware test sets dramatically exceeds the values achieved by the

conventional timing-aware test sets even if a small number of

instances is considered. Moreover, the fault efficiency of test

set TN quickly saturates with growing N , exceeding 99% for

low double-digit values of N . The test set size |TN | increases

only moderately with the size of the training set. For N ≈ 50
the average |TN | is about twice the size of the 10-detect test

set, while reaching a fault efficiency of more than 99%.

B. Confidence-driven test generation

The application of the confidence-guided test-generation

algorithm conf testgen is reported in Table III. Recall that the

algorithm takes the circuit, the fault set (same as in the first

experiment), the fault-efficiency target FEmin, the confidence

level γ and the probability c as inputs, where c stands for

likelihood that the generated test set T exceeds FEmin on

a randomly generated circuit instance. Results are reported

for a number of γ values (groups of columns) and a number

of FEmin with c set to the same value (groups of rows).

Since both γ and c affect the number of instances k that

have to be considered in the Monte-Carlo experiments (Eq. 3),

the respective value of k is denoted in Table II for each

combination.

Table III shows six columns for each experiment performed:

The size |Iγ | of the training set, that is, the number of

random circuit instances considered before test T (Iγ) passed

the statistical test of Eq. 3; the size |T (Iγ)| of this test set; the

pattern generation time tp; and the simulation time ts; the fault

efficiency FE achieved by this test set on 200 new random

instances (not included in the training set); and the percentage

c̃ of instances with FE ≥ FEmin among these 200 random

instances.

TABLE II
VALUE OF k DEPENDING ON TARGET PROBABILITY c AND CONFIDENCE γ .

γ = 0.95 γ = 0.98 γ = 0.99

c = 0.98 k=149 k=194 k=228
c = 0.985 k=199 k=259 k=305

It can be seen that the obtained test sets are of extremely

high quality. The average FE substantially exceeds the target

FEmin in all cases. The percentage c̃ of individual instances for

which the test sets exceed FEmin is always much larger than

the target value c, and in most cases even reaches 100%. The

runtimes associated with the confidence-driven test generation

are moderate and do not exceed a few hours, even for large

circuits under high confidence and probability targets. Recall

that the test sets are evaluated on random circuit instances

unrelated to the ones for which they have been generated.

Interestingly, while the number of considered instances Iγ
appears to scale with k, the differences between the test set

sizes and fault efficiencies reached for a fixed circuit are rather

small.

We also applied the test sets (that were obtained assuming

uncorrelated variations) to a population that consists of 1025

correlated instances. The correlated instances were drawn from

a two-dimensional parameter space that describes gate delay

distributions with multiple gradients and different orientations

in order to model spatial correlations. This parameter space

has the same mean and variance over all instances as compared

to the random cases.

The results can be found in Table IV. Columns FE quote

the average fault efficiency of the generated test set among all

the correlated instances, and columns c̃ contain the percentage

of instances with FE exceeding FEmin. It can be seen that

test sets generated assuming no correlations are highly effective

even in presence of (unexpected) correlations. One explanation

for this is the fact that the set of possible combinations of

delay value in the uncorrelated case is a strict superset of any

corresponding set for the correlated case. In other words, any

delay combination that can occur in presence of correlations

can also occur in absence of correlations, and there is some

chance that a test pair for this combination is included in test

set T .

All experiments have been conducted on a host system

equipped with Intel Xeon processors clocked at 2.8GHz,

256GB RAM and NVIDIA GeForce GTX 480 graphics

processing cards with 1.6GB RAM.



TABLE III
NUMBER OF CONSIDERED INSTANCES |Iγ |, TEST SET SIZE |T (Iγ)|, PATTERN GENERATION TIME tp , SIMULATION TIME ts , FAULT EFFICIENCY FE AND

ACTUAL PERCENTAGE OF SUFFICIENTLY COVERED INSTANCES c̃ FOR FAULT-EFFICIENCY TARGET FEmin , TARGET PROBABILITY c AND CONFIDENCE γ .

γ = 0.95 γ = 0.98 γ = 0.99

Circuit |Iγ | |T (Iγ)| tp ts FE c̃ |Iγ | |T (Iγ)| tp ts FE c̃ |Iγ | |T (Iγ)| tp ts FE c̃
[#] [#] [s] [s] [%] [%] [#] [#] [s] [s] [%] [%] [#] [#] [s] [s] [%] [%]
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b
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y
c

)

0
.9

8

p45k 248 547 1109 808 99.679 100.0 293 547 1109 957 99.686 100.0 327 547 1109 1069 99.693 100.0
p78k 287 1351 532 2214 99.495 100.0 332 1351 532 2614 99.497 100.0 366 1351 532 2916 99.492 100.0
p89k 248 458 1322 1519 99.617 100.0 293 458 1322 1827 99.626 100.0 327 458 1322 2062 99.658 100.0

p100k 316 631 6189 1930 99.625 99.5 361 631 6189 2174 99.645 99.5 604 789 6587 3811 99.812 99.5

0
.9

8
5

p45k 301 517 1108 983 99.681 99.5 581 656 1110 1924 99.893 100.0 627 656 1110 2078 99.883 100.0
p78k 352 1337 532 2606 99.513 99.5 646 1849 535 5861 99.794 100.0 692 1849 535 6387 99.768 100.0
p89k 314 430 1321 2050 99.648 99.0 621 565 1323 4225 99.855 100.0 667 565 1323 4551 99.875 100.0

p100k 575 755 6532 3801 99.792 99.0 635 755 6532 4194 99.794 99.0 681 755 6532 4497 99.784 99.0

TABLE IV
TEST SET VALIDATION ON 1025 CORRELATED INSTANCES.

γ = 0.95 γ = 0.98 γ = 0.99

Circuit FE c̃ FE c̃ FE c̃
[%] [%] [%] [%] [%] [%]
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)

0
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8

p45k 99.276 91.4 99.276 91.4 99.276 91.4
p78k 99.825 99.9 99.825 99.9 99.825 99.9
p89k 99.308 85.2 99.308 85.2 99.308 85.2

p100k 99.342 96.6 99.342 96.6 99.668 99.5

0
.9

8
5

p45k 99.257 81.9 99.674 92.1 99.674 92.1
p78k 99.835 99.9 99.888 99.9 99.888 99.9
p89k 99.371 78.1 99.599 88.2 99.599 88.2

p100k 99.668 97.6 99.668 97.6 99.668 97.6

V. CONCLUSIONS

We presented the first test generation method that produces

test sets with proven statistical performance under variations.

Its core procedure iteratively enriches the test set by ex-

plicitly considering random circuit instances, guided by an

estimated confidence level. The method employs the latest

SAT-based timing-aware test generation engines which can

provide complete testability characterization of all faults in a

circuit instance, thus extending the concept of fault efficiency

to variation-aware testing for the first time. The obtained test

sets guarantee a minimum fault efficiency on all instances with

user-defined probability and confidence bounds. The method

is applicable to industrial circuits.
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