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Abstract—Graphics processing units (GPUs) enable large-
scale scientific applications and simulations on the desktop.
To allow scientific computing on GPUs with high performance
and reliability requirements, the application of software-based
fault tolerance is attractive. Algorithm-Based Fault Tolerance
(ABFT) protects important scientific operations like matrix
multiplications. However, the application to floating-point op-
erations necessitates the runtime classification of errors into
inevitable rounding errors, allowed compute errors in the
magnitude of such rounding errors, and into critical errors
that are larger than those and not tolerable. Hence, an
ABFT scheme needs suitable rounding error bounds to detect
errors reliably. The determination of such error bounds is a
highly challenging task, especially since it has to be integrated
tightly into the algorithm and executed autonomously with low
performance overhead.

In this work, A-ABFT for matrix multiplications on GPUs
is introduced, which is a new, parallel ABFT scheme that
determines rounding error bounds autonomously at runtime
with low performance overhead and high error coverage.
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I. INTRODUCTION

Scientific computing and simulation technology are con-

stantly gaining importance in many fields of research, in-

dustrial development, and even daily life. Computer-based

simulations (”in silico”) are increasingly used to substitute

practical scientific experiments since they are often faster,

cheaper, and in many cases even more comprehensive than

experimental installations [1]. Most scientific computing

applications have two major characteristics in common:

First, they are typically associated with extensive runtimes

and a high computational demand, which push even latest

computing systems to their limits. Second, they have strict

requirements regarding their reliability. Computed results

have to be trustworthy to draw reliable conclusions, which

can have direct influence on scientific, economical, social

or political processes. Therefore, dependable scientific com-

puting represents a major challenge for scientists, hardware

architects and software developers.

General-purpose computations on Graphics Processing

Units (GPUs) [2] have become increasingly popular in re-

cent years, since latest generation GPUs deliver tremendous

floating-point performance at very low cost. This offers far-

reaching and new possibilities to bring complex scientific

simulations from very different domains like EDA [3, 4],

biology [5] or thermodynamics [6] to the desktop with

substantial speedups in the order of several magnitudes.

However, like most CMOS semiconductor devices manufac-

tured in 28nm technology and below, GPUs are increasingly

prone to transient effects [7], process variations and latent

defects, as well as stress and aging mechanisms [8]. In

contrast to traditional high-performance computing (HPC)

systems, where high effort and cost are spent to ensure reli-

ability through hardware- and software-based fault tolerance

measures [9], GPUs are still designed and manufactured with

the graphics and multimedia mass-market in mind.

As a consequence, to achieve the goal of dependable

scientific computing on GPUs, the application of software-

based fault tolerance (SBFT) is highly attractive. Unfortu-

nately, the integration of SBFT into scientific GPU appli-

cations is often a challenging task, especially when low

performance overhead and transparent operation without

user interaction have to be achieved.

Algorithm-Based Fault Tolerance (ABFT) [10] encodes

input data with checksums before the data are processed

by modified algorithms that produce encoded results. To

check the results for errors, new checksums are computed

on the result data and compared to the original ones that

went through the algorithm. Checksum mismatches are used

to detect and locate errors. ABFT has proven to allow

the effective and efficient protection of important scien-

tific kernels, for instance from linear algebra (e.g. matrix

multiplication, LU decomposition [10, 11], QR factorization

[12], and singular value decompositions [13]). Some of these

ABFT schemes have also been adapted for GPU accelerator

architectures [14–17].

Since GPUs are floating-point accelerators, their results

are inevitably prone to rounding errors. This generates an

extraordinary challenge for ABFT, because now, the check

procedure has to cope with rounding errors in the check-

sums, which make a fast and direct comparison impossible.

Hence, suitable rounding error bounds are required that

enable the efficient and effective runtime classification of

errors into inevitable rounding errors, tolerable compute er-

rors in the magnitude of the rounding errors, and intolerable

critical compute errors that are larger than the two afore-

mentioned types of errors. Although there exist different

approaches to tackle this problem, none of them allows a

fully autonomous operation of ABFT, which however, is the

key to a successful use of ABFT on GPUs for dependable

scientific computing.



In this work, A-ABFT for matrix multiplications on GPUs

is introduced, which is a new parallel ABFT scheme that

determines rounding error bounds for the runtime error

classification autonomously. A-ABFT is based on a proba-

bilistic model for the rounding error distribution in floating-

point computations and utilizes the parallel compute power

of GPUs for the determination of error bounds with low

performance overhead. Although A-ABFT is introduced on

the example of an ABFT matrix multiplication, the approach

itself is much more general and can be extended to other op-

erations as well. As a by-product, A-ABFT is able to deliver

error functions or rounding error analyses for the performed

operation with little additional overhead. However this is

not in the scope of this paper. In contrast to most existing

approaches, A-ABFT enables the fully autonomous operation

without any calibration runs or external intervention by the

user.

II. ABFT FOR MATRIX OPERATIONS ON GPUS

ABFT for matrix operations has been introduced in [10].

Given the m× n matrix A and the n× q matrix B

A =







a1,1 . . . a1,n
...

. . .
...

am,1 . . . am,n






, B =







b1,1 . . . b1,q
...

. . .
...

bn,1 . . . bn,q






.

ABFT encodes matrix A into a m+1×n column-checksum

matrix Acc:

Acc =











a1,1 . . . a1,n
...

. . .
...

am,1 . . . am,n

am+1,1 . . . am+1,n











, am+1,j =

m
∑

i=1

ai,j

(1)

and matrix B into a n× q + 1 row-checksum matrix Brc:

Brc =







b1,1 . . . b1,q b1,q+1

...
. . .

...
...

bn,1 . . . bn,q bn,q+1






, bj,q+1 =

q
∑

j=1

bi,j .

(2)

For the matrix multiplication, the result Cfc = Acc ·Brc is

a m + 1 × q + 1 full-checksum matrix with an additional

checksum row and column respectively:

Cfc =











c1,1 . . . c1,q c1,q+1

...
. . .

...
...

cm,1 . . . cm,q cm,q+1

cm+1,1 . . . cm+1,q cm+1,q+1











. (3)

For the check, new checksums c∗i,j are computed on the

result data and compared to the checksums that went through

the linear operation to detect errors. Errors can be located

at the intersection of mismatching checksum rows and

columns. For the column and row checksums this leads to

c∗m+1,j =
m
∑

i=1

ci,j , and c∗i,q+1 =

q
∑

j=1

ci,j (4)

with 1 ≤ j ≤ q and 1 ≤ i ≤ m. In the error free case,

the original and the reference checksum elements have to

be equal

cm+1,j = c∗m+1,j , and ci,q+1 = c∗i,q+1. (5)

With rounding errors, appropriate error bounds ε are

required for the error detection. This changes (5) to

|c∗m+1,j − cm+1,j | < εj and |c∗i,q+1 − ci,q+1| < εi. (6)

Error bounds that are chosen too tight will cause false-

positive detections, which increase the overhead and affect

the performance on the GPU negatively, because they trigger

unnecessary corrections. In contrast, error bounds that are

chosen too loose will allow significant errors to slip through

the error check (false-negative) and affect the final result.

Contemporary GPUs are tightly coupled many-core pro-

cessors that gain high floating-point performance through

very large numbers of concurrently executing threads. To

ease the handling of many threads and the development of

parallel GPU code (kernels), the abstraction of thread blocks

is often used. A thread block describes a group of threads

that are scheduled together to execute the same code, follow-

ing the single instruction, multiple data (SIMD) paradigm.

ABFT matrix multiplications on GPUs are performed in

a block-based manner. The input matrices A and B are

subdivided into rows and columns of smaller, square sub-

matrices. The dimensions of these sub-matrices typically

match the dimensions of the thread blocks. To compute a

sub-matrix of the result matrix C, a row of sub-matrices

from A and a column of sub-matrices from B are processed

by a thread block. Details on efficient block-based GPU

matrix multiplications can be found in [18, 19].

The A-ABFT matrix multiplication uses a partitioned

encoding scheme [20], which encodes the sub-matrices

of A and B with a block size of BS × BS. Figure 1

shows the partitioned encoding for the column-checksum

matrix Acc and the row-checksum matrix Brc. The complete

Column-Checksum 

Matrix Acc

Row-Checksum 

Matrix Brc

Full-Checksum Matrix 

Cfc

* =

BS

BS

BS

BS

BS

BS

Figure 1. Block-based ABFT with partitioned encoding for row and
column checksums of the sub-matrices.

algorithm for the A-ABFT matrix multiplication is given in

Section VI, together with the extensions required to perform

fault injection experiments (see Algorithm 3).



III. STATE OF THE ART

Different approaches for the determination of rounding

error bounds in the ABFT checking procedure have been

published. In [21] and [22] the experimental evaluation of

error bounds has been proposed by performing multiple

calibration runs of the target operation on similar data sets.

An initial error bound is set and increased after each oper-

ation until no more false-positives are detected. Besides the

high computational and time overhead for such calibration

runs, the determined error bounds are dependend on the

problem size and very likely to fail if slightest changes

happen to the characteristic of the input data. This makes

such calibration approaches highly unattractive and prohibits

a real autonomous operation of ABFT schemes without

external user intervention.

For matrix multiplications, [23] proposed to treat the

mantissa of the involved matrix elements as integers and

to use the integer ALU to check the operation of the

floating-point multiplication. Although this approach covers

the multiplication step within an ABFT matrix multiplica-

tion, it leaves out the floating-point addition and it only

detects errors within the lower bits of mantissa products. In

[24], the authors extended this approach with floating-point

checksums for the addition, which still makes appropriate

error bounds for the comparison necessary.

Another option for the determination of rounding error

bounds is the evaluation of classic analytical error estima-

tions. Inter alia, such techniques are described in [25] and

[26]. Besides the computational evaluation overhead, these

approaches are in most cases very pessimistic and hence

often lead to error bounds which are too loose. This increases

the risk of false-negatives.

In [27] the authors introduced input-independent tests to

check results of different numerical operations for errors.

The tests are based on analytical error bounds and involve

the computation of matrix and vector norms. User interaction

is required to select the optimal test for a given operation,

as well as the appropriate parameters.

Based on the aforementioned analytical rounding error

estimates, a simplified error analysis (SEA) approach for

ABFT is introduced in [28]. The authors neglect second

order rounding error terms and derive their bounds on the

total error for groups of variables, like all the elements

within a row or column of a matrix. SEA for ABFT matrix

multiplications is presented by considering the matrix-vector

product A·b = c, where A is an m+1×n column-checksum

matrix, b is a 1× n column vector from matrix B and c is

a 1× n column vector from the result matrix C. The SEA

error bound is defined as:

|cn+1 − c∗n+1| < ((n+ 2m− 2) · ‖b‖2 ·
m
∑

i=1

‖ai‖2

+ n · ‖am+1‖2 · ‖b‖2) · εM ,

where cn+1 is the original column-checksum element that

went through the multiplication and c∗n+1 is the reference

column-checksum element. ai denotes the i-th row vector

and am+1 the column-checksum vector from A. εM = 2−t

is the machines unit rounding error and t is the number of

mantissa bits. Although this approach reduces the overhead

compared to the classic analytical bounds, it still contains

the compute-intensive evaluation of numerous vector norms.

Moreover, the difference between actual rounding errors and

error bounds determined by this approach can be large.

IV. PROBABILISTIC ROUNDING ERROR

DETERMINATION FOR ABFT ON GPUS

A-ABFT utilizes a probabilistic model for rounding errors

occurring in floating-point operations to determine error

bounds for the comparison of ABFT checksums. Since

contemporary GPUs follow the IEEE-754 floating-point

standard, the model is introduced in the following for base

B = 2.

The core idea is to determine a confidence interval for a

checksum element c comprising the mean value EV(c) and

the variance Var(c). With the standard deviation σ(c) =
√

Var(c) and a scaling factor ω, the confidence interval is

defined as

[EV(c)− ω · σ(c), EV(c) + ω · σ(c)]. (7)

In [29], the distribution of rounding errors in different

floating-point operations is investigated, starting with the

four cardinal operations ⊙ ∈ {+,−, ∗, /}. Let

s ≡ a⊙ b ≡ s∗ + ǫ (8)

be the exact result of such an operation ⊙, a and b t-
digit floating-point numbers, and s∗ the result computed

in floating-point arithmetic, like on GPUs. The occuring

rounding error is denoted by ǫ. Under the assumption that

s and s∗ have the same exponent E — the case where the

exponents differ arises with about probability O(2−t) — s
and s∗ are represented as

s = x · 2E and s∗ = x∗ · 2E , (9)

with the mantissas x, x∗ ∈ [ 1
2
, 1]. Then

ǫ = (x− x∗) · 2E = β · 2E , (10)

where β is called the mantissa error.

For all four cardingal floating-point operations ⊙ it is

assumed that the mantissas follow a reciprocal distribution

on [ 1
2
, 1) (see Section IV-A). Under this assumption, a

distribution for the mantissa error β can be derived and

the mean EV(β), as well as the variance Var(β) can be

determined. Following [29], these values can be used to

compute the mean and variance of the occuring rounding

error:

EV(ǫ) = sgn(s∗) · 2E · EV(β) (11)

Var(ǫ) = 22E · Var(β) (12)

E = ⌈log2|s
∗|⌉. (13)



A. Reciprocal Distribution of Mantissa Bits

Benford’s Law [30] describes the observation that mantis-

sas of floating-point numbers in arbitrary data sets tend to

follow the reciprocal distribution (base B = 2 case) given

by

r(x) =
1

x · ln(2)
, x ∈ [

1

2
, 1). (14)

In [31], Hamming showed that floating-point operations

influence the distribution of the mantissas to follow the

reciprocal distribution. The assumption taken in Section IV

is further justified in [32, 33] and summarized in [34].

For the A-ABFT matrix multiplication Acc · Brc = Cfc,

each element ci,j of the result full-checksum matrix Cfc can

be described by the inner product of the row vector ai of

the column-checksum matrix Acc and the column vector bj
of the row-checksum matrix Brc:

ci,j =

n
∑

k=1

ai,k · bk,j =
n
∑

k=1

ĉk. (15)

The following sections introduce the probabilistic rounding

error determination for these inner products.

B. Probabilistic Error Bounds for Summations

For the summation of n intermediate products c1, ..., cn
the following recursion applies for the GPU-compute results

and the rounding error ǫk:

s∗k+1 + ǫk+1 = s∗k + ĉ∗k+1, for k = 1, ..., n− 1. (16)

The recursion for the difference between the exact and the

GPU-computed result ∆sk = sk − s∗k is ∆sk+1 = ∆sk +
ǫk+1 and can be expressed as

∆sn =

n
∑

k=2

ǫk. (17)

For the probabilistic rounding error determination of the sum

sn the confidence interval based on the mean EV(∆sn) and

the variance Var(∆sn) has to be determined with

EVSum(∆sn) =

n
∑

k=2

EV(ǫk) (18)

VarSum(∆sn) =
n
∑

k=2

Var(ǫk). (19)

For the addition and subtraction of two floating-point num-

bers we have:

EV(β) = 0 (20)

and

Var(β) ≤
1

8
· 2−2t. (21)

With the Equations (11) and (12) the mean and variance are

EVSum(∆sn) = 0 (22)

and

VarSum(∆sn) =

n
∑

k=2

Var(ǫk) (23)

≤
n
∑

k=2

22Ek · Var(β) (24)

≤
1

8
· 2−2t ·

n
∑

k=2

22Ek , (25)

where 22Ek denotes the exponent of the intermediate result

s∗k after addition of the k-th addend. With normalized

floating-point numbers, we have Ek ≤ s∗k, which allows

to consider Equation (25) for the intermediate results s∗k of

the summation:

VarSum(∆sn) ≤
1

8
· 2−2t ·

n
∑

k=2

(s∗k)
2. (26)

For an upper bound y with s∗k ≤ k · y, Equation (26) can be

bounded by

VarSum(∆sn) ≤
1

8
· 2−2t ·

n
∑

k=2

(k · y)2

≤
1

8
· 2−2t ·

(

n · (n+ 1) · (2n+ 1)

6

)

· y2.

With the standard deviation σ, the confidence interval is

determined by

EV(∆sn) = 0 (27)

and

σ(∆sn) ≤

√

n · (n+ 1) · (2n+ 1)

48
· y · 2−t. (28)

C. Probabilistic Error Bounds for Inner Products

For the inner product, the additional rounding error αk

caused by the multiplication ĉk = ai,k · bk,j has to be

considered:

ĉ∗k + αk = ĉk. (29)

The recursion for the summation within the inner product is

then ∆sk+1 = ∆sk + ǫk+1 +αk+1 and can be expressed as

∆sn =

n
∑

k=2

ǫk +
n
∑

k=1

αk. (30)

Analogous to the Equations 18 and 19, mean and variance

can be defined as

EVInProd(∆sn) = EVSum(∆sn) + EVProd(∆sn) (31)

=

n
∑

k=2

EV(ǫk) +

n
∑

k=1

EV(αk) (32)

and

VarInProd(∆sn) = VarSum(∆sn) + VarProd(∆sn)

=
n
∑

k=2

Var(ǫk) +
n
∑

k=1

Var(αk). (33)



To complete the rounding error determination for the inner

product, the mean and variance of the multiplication has

to be considered. Following [29], mean and variance for the

mantissa error in the multiplication/division of floating-point

numbers with symmetric rounding is given as

EV(β) =
1

3
· 2−2t (34)

and

Var(β) =
1

12
· 2−2t. (35)

The contribution of the rounding error variance after k
multiplications is the sum of all partial variances

VarProd(∆sn) =

n
∑

k=1

Var(αk). (36)

For y = ad · bd with d ∈ {1, ..., n} where Var(αd) is

maximal, Equation (37) can be bounded:

VarProd(∆sn) ≤ n · Var(αd). (37)

The variance is maximal if the exponent E of the multipli-

cation’s result is maximal:

Var(αd) = 22Ed ·Var(β) ≥ 22Ek ·Var(β) = Var(αk). (38)

y can be used as upper bound, which leads to

VarProd(∆sn) ≤ n · Var(αy) (39)

≤ n · y2 · Var(β) (40)

=
n

12
· 2−2t · y2. (41)

Analog, we derive the mean value

EVProd(∆sn) = n · y · EV(β) (42)

≤
n

3
· 2−2t · y. (43)

With the variances and mean values from the summation

and the multiplication, all components are determined that

are required for the standard deviation of the inner product’s

rounding error:

σ(∆sn) =
√

VarInProd(∆sn) (44)

=
√

VarProd(∆sn) + VarSum(∆sn) (45)

≤

√

n · (n+ 1) · (n+ 1

2
) + 2n

24
· 2−t · y.

D. Rounding, Truncation and Fused MAD

The probabilistic model for rounding errors in floating-

point arithmetic applies for operations that are carried out

with symmetric rounding, as well as truncation with only

minor changes. Modern GPUs and CPUs that implement

the IEEE-754-2008 standard often provide so-called fused

multiply-add operations to allow for higher performance and

higher accuracy. Such operations perform the multiplication

with increased precision and round only the result of the

addition. For these operations, the rounding error contribu-

tion of the multiplication is not present and hence only the

probabilistic error bound for the summation is used.

E. Determination of the Upper Bound

To apply the probabilistic rounding error determination for

the checksum comparison of a result matrix element ci,j , an

upper bound yi,j has to be determined:

∀ck = ai,k · bk,j : yi,j ≥ ck. (46)

The determination of this upper bound depends on the

indices i and j. The required row and column elements

can be pre-processed in a sorting step. For each vector

ai from matrix A and each vector bj from matrix B,

the p elements with the largest absolute values and the

corresponding indices are determined. Let Aidx be the set of

the p elements with the largest absolute values from vector

ai and let Bidx be the set of these p elements from vector

bj . For any indices i and j the upper bound yi,j can be

determined as the maximum of the three cases:

• S = Aidx∩Bidx 6= ∅ and two large values from vector

ai and bj are multiplied. ⇒ y = max(|as · bs|) with

s ∈ S.

• S = Aidx ∩ Bidx = ∅, but the maximum of the p
absolute values from vector ai is multiplied with any of

the elements from vector bj . ⇒ max(|ar|) ·min(|bs|),
with r ∈ Aidx and s ∈ Bidx.

• S = Aidx ∩ Bidx = ∅, but the maximum of the p
absolute values from vector bj is multiplied with any of

the elements from vector ai. ⇒ max(|bs|) ·min(|ar|),
with r ∈ Aidx and s ∈ Bidx.

The quality of the error bound can be improved by increasing

the number p of considered largest absolute values. However,

this also increases the computational overhead.

For each element ci,j of the full-checksum result matrix

Cfc, this upper bound gives an expectation value and a

variance. This value is directly applied for the column-

checksum elements cn+1,j and the row-checksum elements

ci,p+1 in Cfc.

V. PARALLEL IMPLEMENTATION OF A-ABFT ON

GPUS

As introduced in Section II, the proposed A-ABFT scheme

for matrix multiplications is block-based and therefore in-

tegrates the runtime determination of the rounding error

bounds into the checksum encoding and checking proce-

dures. A-ABFT comprises of the following algorithmic steps:

1) GPU kernel for checksum encoding and maximum

absolute value determination:

a) Computation of column checksums for the sub-

matrices of matrix A.

b) Determination of the p largest absolute values of the

row elements in each sub-matrix of matrix A.

c) Computation of the row checksums for the sub-

matrices of matrix B.

d) Determination of the p largest absolute values of the

column elements in each submatrix of matrix B.



2) Computation of the matrix product

3) Reduction of blockwise determined largest absolute

values to p global largest values per row/column

4) GPU kernel for error bounds determination and

checksum comparison:

a) Determination of the rounding error bounds for the

row and column checksum elements of each result

sub-matrix of matrix C.

b) Computation of the reference row and column check-

sums for each result sub-matrix of matrix C.

c) Comparison of original and reference checksum ele-

ments using the determined rounding error bounds.

In the following, a detailed description is given for the

encoding and checking kernels.

A. GPU Kernel for Checksum Encoding and Largest

Absolute Value Determination

The encoding kernel combines the computation of row

or column checksums with the first step of the rounding

error bounds determination, which is to find the p largest

absolute values and their indices within the rows or columns

of the sub-matrix. It is invoked before the kernel for the

computation of the matrix product starts. The kernel reduces

expensive accesses to the global GPU device memory by

loading the elements of the processed sub-matrix into the

shared memory. As shown in Figure 2 for the column-

checksum case with a block size of 5 × 5, the threads

iterate over the sub-matrix elements from top to bottom

and accumulate them into the respective checksum elements.

After an element has been added, it is replaced in shared

memory by its absolute value. In a second step, the threads

CS CS CS CS CS

CS

CS CS CS CS CS CS CS CS CS CS

...

T T T T

T

T

T T T T

T

+ + + + +

+

+ + + + +

+ + + +

T TT T T

= checksum element = abs. value= GPU thread

Iterations over rows to encode column checksums

AV AV AV AV AV AV

AV

AV AV AV AV

AV AV AV AV AV

AV AV AV AV AV

AV AV AV AV AV

Figure 2. Column-checksum encoding for a block size of 5 × 5 with
absolute value replacement.

iterate over the columns of the sub-matrix to find the p
largest elements within each row and store the corresponding

indices. This step is depicted in Figure 3. For the sub-

matrices with the dimensions BS × BS, the kernel is

launched with thread blocks of size BS × 1. The encoding

for the row checksums works the same way. Algorithm 1

describes all performed steps in detail. Since the p largest
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Figure 3. Search for p maximum absolute values and the corresponding
indices.

Algorithm 1: Kernel for encoding the column-

checksums of matrix A and the determination of the p
elements with maximum absolute values per row for this

block.
Input: padded matrix A, numMax
Output: encoded matrix A, maxV alues, maxV alueIDs

Launch Dimensions: BS × 1 threads, one thread block for each
BS ×BS sub-matrix of A

Data: local registers sum, maxV al, maxSum
Data: shared Asub[BS][BS], localSums[BS]

/* loop through rows of block */

for i← 1 to BS do
/* each thread calculates column checksum

for its own column. tid is the thread’s

ID. */

load one element of sub-matrix of A into Asub[i][tid];
sum← sum+Asub[i][tid];
Asub[i][tid] = abs(Asub[i][tid]);

end
write back column-checksum sum into A;
sync

sum← abs(sum)
for m← 1 to numMax do

/* init local sums and current maximum */

maxV al← 0;
localSums[tid]← abs(sum);

/* search maximum value in row */

for i← 1 to BS do
maxV al← max(maxV al, Asub[tid][i]);
update maxV alueID;

end

/* search maximum value of previously

calculated checksum entries */

maxSum← maxReduce(localSums);
update maxSumID;

/* write back maximum values, their location

and exclude those values from the next

round of calculation */

write back maxV alues and maxV alueIDs;
Asub[tid][maxID]← 0;
if maxSumID == tid then

write back maxSum and maxSumID;
sum← 0;

end
end



absolute values are determined within each sub-matrix, a

global reduction step is required to reduce these m
BS

·p largest

absolute values to the required p per vector. This reduction

kernel is executed in parallel to the matrix multiplication

kernel and not further discussed at this point.

B. GPU Kernel for Error Bound Determination and

Checksum Comparison

The checking kernel is invoked after the matrix multi-

plication has finished. It combines the computation of the

rounding error bounds with the computation of the reference

checksums and the final checksum comparison. The indices

that have been stored by the encoding kernel are loaded and

the possible combinations are checked. Depending on these

combinations, the rounding error bounds are computed. Af-

ter the error bounds, the reference checksums are computed

on the result sub-matrix elements and then compared to the

original checksum elements that went through the matrix

multiplication. If the difference between these checksum

elements is larger than the determined rounding error bound,

an error is detected. Algorithm 2 shows the different steps

in detail.

VI. EXPERIMENTAL RESULTS

The proposed A-ABFT approach has been evaluated with

respect to the computational performance, the quality of

the determined rounding error bounds, and the achievable

error coverage. The term quality refers in this context to

the difference between the actual rounding error and the

computed error bounds.

A. Performance

To evaluate the performance overhead of the introduced

A-ABFT scheme due to the autonomous computation of

rounding error bounds, a comparison has been performed

against three software-based fault tolerance approaches. The

first contender is a standard ABFT scheme for matrix

multiplications on GPUs, whose error bounds have to be

set manually by the user. This scheme has no additional

overhead compared to an unprotected matrix multiplication

besides the encoding and checking procedure. The second

candidate is an ABFT scheme based on the simplified error

analysis approach (SEA-ABFT) from [28]. This scheme

determines the required rounding error bounds at runtime

based on the computation of norms of the involved row

and column vectors. The third candidate is a triple modular

redundancy (TMR) approach, which performs the matrix

multiplication three times and which compares the three

results at the end. Hence, the TMR approach does not

incorporate any overhead due to checksum encoding and

comparison, or due to the computation of rounding error

bounds. The experiments are performed over random input

values and across matrix dimensions from 512 × 512 to

8192 × 8192. All experiments have been performed on an

Nvidia K20C GPU accelerator in double precision. This

Algorithm 2: Kernel for computation of rounding error

bounds and checking of result sub-matrices.

Input: matrix C, maxA, maxB, maxAIDs, maxBIDs,
numMax

Output: corrected matrix C or error information

Launch Dimensions: BS × 1 threads, one threadblock for each
submatrix of C

Data: local registers Aidx[numMax], Bidx[numMax], max,
sum, eps

Data: shared Csub[BS][BS]

/* load max indices */

for i← 1 to numMax do
Aidx[i]← maxAIDs; Bidx[i]← maxBIDs;

end

/* check for combinations */

max ← 0;
for m← 1 to numMax do

for n← 1 to numMax do
if Aidx[m] == Bidx[n] then

max ← maxA[n] ·maxB[m];
end

end
end

/* use minimum if no combination was found */

if max == 0 then
max ← min(maxA) ·min(maxB);

end

/* recalculate column checksums */

for i← 1 to BS do
load one element of submatrix of C into Csub[i][tid];
sum← sum+ Csub[i][tid];

end

/* load checksum element of C, calculate

epsilon and compare checksums */

ref ← columnChecksum(C, tid);
eps← calculateEpsilon(max);
if abs(ref − sum) > eps then

write back error location or start correction;
end

/* analogously recalculate and check the row

checksums, all necessary data is already in

the shared memory... */

accelerator is based on the Nvidia GK110 Kepler GPU

architecture, offers 5GB of GDDR5 global device memory

and 2496 processing cores, which deliver a peak double

precision floating-point performance of about 1.17 TFLOPs.

Table I shows the results of this performance evaluation

in GFLOPS. The standard ABFT matrix multiplication with

manually set error bounds achieves the highest performance

with a peak value of 942.6 GFLOPs for 8192 × 8192
matrices. However, this scheme is not able to operate au-

tonomously and in a transparent way. The user has to know

the full characteristics of the input data and suitable error

bounds have to be set manually before each operation. In

real applications, this is very often not possible.

The TMR matrix multiplication performs well for small

matrices, which are often not of interest for large-scale

scientific applications. For growing matrix dimensions, the

expected overhead of TMR becomes clearly visible. For this



evaluation, a very basic TMR scheme has been implemented,

which executes an identical kernel three times and which

performs a direct comparison of the result matrices. While

this is good for the performance in this evaluation, in real

applications one would prefer to use three different kernels

with different implementations to ensure different execution

paths. This in turn would cause different rounding errors

in the final results, which makes the direct comparison of

the results impossible and which makes the computation of

rounding error bounds necessary.

Table I
COMPARISON OF PERFORMANCE BETWEEN ABFT WITH FIXED ERROR

BOUND, THE PROPOSED A-ABFT, SIMPLIFIED ERROR ANALYSIS ABFT,
AND TMR.

MATRIX ABFT A-ABFT SEA-ABFT TMR
[n× n] [GFLOPS] [GFLOPS] [GFLOPS] [GFLOPS]

512 382.30 279.19 307.75 185.56
1024 659.02 514.17 499.53 322.22
2048 807.91 706.85 635.67 335.65
3072 872.93 772.64 657.28 339.33
4096 894.14 829.10 686.39 345.26
5120 924.38 848.43 690.51 344.95
6144 926.61 874.59 703.91 346.76
7168 944.50 885.23 705.51 347.68
8192 942.61 903.44 712.75 348.09

The simplified error analysis approach (SEA-ABFT) per-

forms quite well with increasing matrix dimensions and

reaches a peak performance of about 712.8 GFLOPS for

8129× 8192 matrices. The lower performance compared to

A-ABFT and the standard ABFT scheme is mainly due to the

fact that the necessary computation of the vector norms uses

only a small fraction of the available GPU threads. This sub-

optimal utilization of the GPU’s compute resources leads to

a noticable performance penalty.

With 903.4 GFLOPS for 8192 × 8192 matrices, the

performance of A-ABFT almost reaches the level of the stan-

dard ABFT scheme and the gap between both approaches

becomes smaller and smaller with increasing matrix di-

mensions. A completely unprotected matrix multiplication,

which almost fully utilizes the GPU’s hardware, delivered

up to 1048.4 GFLOPS peak performance for 8192 × 8192
matrices in several tests. Although the proposed A-ABFT

scheme incorporates the overhead of encoding and compar-

ing ABFT checksums, as well as the autonomous determi-

nation of rounding error bounds – tasks which exhibit a

rather low hardware utilization – it reaches 86.2% of this top

performance. In other words, the overhead of A-ABFT can

be as low as 13.8% while delivering a fault tolerant matrix

multiplication and exceeding the performance of TMR and

SEA-ABFT by far, especially for larger matrix dimensions.

B. Quality of the Error Bounds

To evaluate the quality of the computed rounding error

bounds, multiple series of A-ABFT and SEA-ABFT matrix

multiplications have been performed in double precision for

random input values from the ranges −1.0 to 1.0, −100.0
to 100.0 as well as matrices with high value range dynamic

generated by the formula

A = 10α · U ·Dκ · V T (47)

as proposed by [27]. For the probabilistic rounding error

determination the parameter p has been set to p = 2. All

experiments have been performed across matrix dimensions

from 512 × 512 to 8192 × 8192. The determined rounding

error bounds are compared against exact rounding errors that

have been computed using GMP, a multi-precision floating-

point library. The experiments have been performed on the

GPU’s host server using two Intel Xeon E5-2650 CPUs.

Table II shows the results of the evaluation runs for random

input values in the range of −1.0 to 1.0 and Table III shows

the results for random input values from −100.0 to 100.0,

respectively. Table IV shows the results for the paramters

α = 0 and κ = 2. The tables clearly state that the rounding

Table II
COMPARISON OF DETERMINED ROUNDING ERROR BOUNDS FOR THE

RANDOM INPUT VALUE RANGE −1.0 TO 1.0.

MATRIX AVG. AVG. AVG.
[n× n] RND. ERROR A-ABFT SEA-ABFT

512 2.25 · 10−14 1.68 · 10−11 8.58 · 10−10

1024 4.53 · 10−14 4.88 · 10−11 3.30 · 10−9

2048 9.09 · 10−14 1.46 · 10−10 1.29 · 10−8

3072 1.35 · 10−13 2.77 · 10−10 2.88 · 10−8

4096 1.81 · 10−13 4.27 · 10−10 5.09 · 10−8

5120 2.25 · 10−13 6.21 · 10−10 7.95 · 10−8

6144 2.71 · 10−13 8.15 · 10−10 1.14 · 10−7

7168 3.17 · 10−13 1.06 · 10−9 1.56 · 10−7

8192 3.62 · 10−13 1.28 · 10−9 2.03 · 10−7

Table III
COMPARISON OF DETERMINED ROUNDING ERROR BOUNDS FOR THE

RANDOM INPUT VALUE RANGE −100.0 TO 100.0.

MATRIX AVG. AVG. AVG.
[n× n] RND. ERROR A-ABFT SEA-ABFT

512 2.22 · 10−10 1.61 · 10−7 8.65 · 10−6

1024 4.55 · 10−10 4.92 · 10−7 3.30 · 10−5

2048 9.07 · 10−10 1.48 · 10−6 1.29 · 10−4

3072 1.36 · 10−9 2.81 · 10−6 2.88 · 10−4

4096 1.81 · 10−9 4.27 · 10−6 5.10 · 10−4

5120 2.26 · 10−9 6.10 · 10−6 7.93 · 10−4

6144 2.71 · 10−9 8.15 · 10−6 1.14 · 10−3

7168 3.16 · 10−9 1.04 · 10−5 1.55 · 10−3

8192 3.62 · 10−9 1.29 · 10−5 2.03 · 10−3

error bounds determined by the proposed A-ABFT scheme

are typically two orders of magnitude closer to the exact

rounding error, compared to the SEA-ABFT rounding error

bounds. This enables A-ABFT to detect more errors than

SEA-ABFT. For the A-ABFT approach, all experiments have

been performed with a very conservative setting of 3σ for

the rounding error determination. This parameter can also



Table IV
COMPARISON OF DETERMINED ROUNDING ERROR BOUNDS FOR THE

RANDOM INPUT VALUE RANGE α = 0, κ = 2.

MATRIX AVG. AVG. AVG.
[n× n] RND. ERROR A-ABFT SEA-ABFT

512 6.19 · 10−11 7.99 · 10−8 1.34 · 10−6

1024 2.44 · 10−10 5.12 · 10−7 1.02 · 10−5

2048 9.72 · 10−10 3.22 · 10−6 7.96 · 10−5

3072 2.20 · 10−9 9.51 · 10−6 2.69 · 10−4

4096 3.89 · 10−9 2.02 · 10−5 6.31 · 10−4

5120 6.04 · 10−9 3.61 · 10−5 1.22 · 10−3

6144 8.77 · 10−9 5.88 · 10−5 2.28 · 10−3

7168 1.20 · 10−8 8.82 · 10−5 4.08 · 10−3

8192 1.54 · 10−8 1.24 · 10−4 8.04 · 10−3

be set to 2σ and σ and hence lead to error bounds that

are even closer to the actual rounding error. However, these

rounding error bounds are typically within the same order of

magnitude, so we decided to report the ”worst case” numbers

in these tables.

C. Error Detection

The most important aspect of an ABFT scheme is the

ability to detect errors reliably. The runtime classification of

A-ABFT distinguishes therefore three classes of value errors

that can occur during the computation:

1) Inevitable rounding errors, which are not counted as

significant errors.

2) Tolerable compute errors in the magnitude of the

rounding errors, which actually differ slightly from the

correct result, but whose difference is insignificant for

the final result.

3) Intolerable critical compute errors that are larger than

the rounding error and which have to be detected and

corrected.

Control errors can be covered by ABFT schemes to a certain

extent, as long as they lead to value errors and as long as

they do not prevent the ABFT-protected operation to finish

execution, including checksum encoding and checking steps.

However, control errors that alter the execution path are not

in the scope of this work.

To evaluate the error detection capabilities of the A-ABFT

scheme, fault injection experiments have to be performed.

On GPUs with multiple streaming multiprocessors and large

numbers of processing cores, simple fault injections into

the global GPU device memory would potentially affect the

results of all the processors that access the erroneous data

word, and hence cause a rather significant error impact. Such

errors are typically easier to detect for ABFT schemes. To

generate local value errors within the streaming multipro-

cessors, which are harder to detect, the fault injection has

to target single floating-point operations like the addition

(fadd) or multiplication (fmul). Faults injected into such

operations can lead to erroneous outputs unless they are not

masked during the processing of the instruction. However,

this kind of fault injection requires detailed knowledge

about the algorithm and the kernel implementation. In case

of the block-based matrix multiplication (see Sections II

and V), the GPU kernel has been modified to support the

injection of faults into different floating-point operations.

Algorithm 3 gives a detailed overview of the steps performed

for the matrix multiplication and the fault injection. In this

algorithm, each thread calculates RX · RY elements of a

BN · BM block of the result matrix and reduces memory

latency issues by using shared memory blocks of size BK.

These parameters can be adjusted for specific architectures

to improve the performance of this kernel, but do not affect

our fault injection method. For further details we refer to

[19].

The addition of values is performed at two points: During

the accumulation within the inner loop (Inner Loop Addi-

tion) and at the end of the algorithm, where the final results

are summed up (Final Sum Addition). The multiplication

of values is only performed within the inner loop (Inner

Loop Multiplication). During the execution of the matrix

multiplication, the fault injection routine randomly selects

a streaming multiprocessor and one of the floating-point

operations to inject a single- or a multi-bit flip. The injection

targets all three critical parts of a floating-point number:

The sign bit, the mantissa bits and the exponent bits. Within

the mantissa and the exponent, the position of the bit flip

is chosen randomly. In case of the injection of a multi-

bit flip, a position is determined randomly for two bits

and the remaining bits are flipped randomly between these

two bits. This allows to create multi-bit flips with certain

neighborhood characteristics. The bit flips are generated

using bitwise XOR operations. An error vector errorV ec
is determined with the desired number of faulty bits. This

error vector is used as mask for the bitwise XOR with the

data word dataV ec.

dataV ec = 01111 . . . 01011000

⊕errorV ec = 01000 . . . 00000001

result = 00111 . . . 01011001

Algorithm 3 shows the performed steps in detail.

The following parameters are passed to the GPU kernel

for the fault injection:

• The processor-ID of the streaming multiprocessor.

• The fault type, which determines if an addition or

multiplication instruction is the target.

• The module-ID to determine which of the RX · RY
adders or multipliers shall be affected.

• The error vector errorV ec as a bit mask.

• The parameter kInjection, which determines the point

in time during the execution when the fault injection

takes place.

For the evaluation of the error detection capabilities, the

proposed A-ABFT scheme is compared against the simplified



Algorithm 3: Kernel for matrix multiplication with fault

injection infrastructure.

Input: matrix A, matrix B, parameters for fault injection
Output: matrix C

Data: local registers accum[RX ·RY ], rA[RX], rB[RY ]
Data: shared memory smA[BK][BM ], smB[BK][BN ]
Data: local registers errorV ecMul[RX][RY ],

errorV ecAdd1[RX][RY ], errorV ecAdd2[RX][RY ]

accum[0..RX][0..RY ]← 0;

load one BM ·BK block of A into smA[BK][BM ];
load one BK ·BN block of B into smB[BK][BN ];
sync

while K > 0 do
K = K − 1;
for ki← 1 to BK do

/* initialize local bit masks for inner

loop error injection */

init errorV ecMult[0..RX][0..RY ];
init errorV ecAdd1[0..RX][0..RY ];

load one column of A in smA into rA[0..RX];
load one row of B in smB into rB[0..RY ];

/* accumulation with inner loop error

injection */

accum[0..RX][0..RY ]+ = ((rA[0..RX] ∗
rB[0..RY ])⊕ errorV ecMult[0..RX][0..RY ]);
accum[0..RX][0..RY ] = (accum[0..RX][0..RY ]⊕
errorV ecAdd1[0..RX][0..RY ]);

end

load one BM ·BK block of A into smA[BK][BM ];
load one BK ·BN block of B into smB[BK][BN ];
sync

end

/* error injection for merging results */

init errorV ecAdd2[0..RX][0..RY ];
Merge accum[0..RX][0..RY ] with BM ∗BN block of C;
BM ∗BN block of C = BM ∗BN block of C ⊕
errorV ecAdd2[0..RX][0..RY ];

error analysis approach (SEA-ABFT) from [28]. A single

fault is injected per matrix multiplication. The injections

target the two additions and the multiplications. Separate

experiments are performed for single-bit-flips and multi-

bit-flips with 3 and 5 flipped bits, respectively. Since the

experimental evaluation for 1, 3 and 5 flipped bits did not

show significant differences in the behavior of A-ABFT and

SEA-ABFT – the trend in the results was consistent across

all experiments – only the results for single-bit-flips are

presented in the following. The experiments are performed

for matrix dimensions from 512×512 to 8192×8192 and for

homogenous input value ranges from −1.0 to 1.0, −100.0
to 100.0 and for the matrices with high value range dynamic

and parameters α = 0 and κ = 65536. To set the baseline

for the error classification, the expectation value and the

variance of the occurring rounding error for the affected

matrix element ci,j of the result matrix C are determined (in-

evitable rounding error). An error is classified as significant,

if the absolute error of the affected matrix element is smaller

than 3σ of the probabilistically determined rounding error

(intolerable critical compute error). Errors in the magnitude

of the expectation value of the rounding error are neglected

(tolerable compute errors).

The performed experiments showed that A-ABFT, as well

as SEA-ABFT detected all faults that have been injected

into the sign bit or the exponent. Figure 4 presents the

percentage of detected errors for injections of single-bit-

flips into the mantissa bits over the input value ranges −1.0
to 1.0, −100.0 to 100.0 and for the matrices with high

value range dynamic. The new A-ABFT scheme for matrix

multiplications on GPUs achieves a significantly better error

detection throughout all combinations of affected operation,

input values, matrix dimensions and number of flipped bits.

In many cases, the percentage of detected errors is well

over 90%. This applies also for the not depicted results of

multi-bit-flips with 3 and 5 flips. The weaker rounding error

bounds that are determined by the SEA-ABFT scheme lead

to significantly worse error detection rates. The figure also

shows that the error detection capability of A-ABFT does not

depend on the size of the input matrices, a drawback that

becomes evident for the SEA-ABFT approach, where the

percentage of detected errors tends to decrease for increasing

matrix dimensions.

VII. CONCLUSION

In this work, A-ABFT for matrix multiplications on graph-

ics processing units has been introduced. For the first time,

this new, parallel ABFT scheme autonomously determines

rounding error bounds for the ABFT runtime error classi-

fication without requiring any calibration runs or manually

set error bounds by the user. The determined rounding error

bounds are up to two orders of magnitude closer to the actual

rounding error, compared to other state of the art approaches.

This increases the error detection capabilities of A-ABFT

significantly and leads to error detection rates of well over

90%. Moreover, the error detection capability of A-ABFT

is not influenced by the size of the processed matrices.

A-ABFT integrates the computation of the rounding error

bounds tightly into the encoding and checking procedures,

which leads to low performance overheads and peak double-

precision floating-point performance values of over 900

GFLOPS. Therefore, A-ABFT is an important step towards

the goal of dependable scientific computing on GPUs.
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