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ABSTRACT

Soft errors are a reliability threat for reconfigurable systems
implemented with SRAM-based FPGAs. They can be
handled through fault tolerance techniques like scrubbing
and modular redundancy. However, selecting these tech-
niques statically at design or compile time tends to be
pessimistic and prohibits optimal adaptation to changing
soft error rate at runtime.

We present the GUARD method which allows for auto-
nomous runtime reliability management in reconfigurable
architectures: Based on the error rate observed during run-
time, the runtime system dynamically determines whether
a computation should be executed by a hardened pro-
cessor, or whether it should be accelerated by inherently
less reliable reconfigurable hardware which can trade-off
performance and reliability. GUARD is the first runtime
system for reconfigurable architectures that guarantees a
target reliability while optimizing the performance. This
allows applications to dynamically chose the desired degree
of reliability. Compared to related work with statically
optimized fault tolerance techniques, GUARD provides up
to 68.3% higher performance at the same target reliability.

1. INTRODUCTION AND RELATED WORK
Reconfigurable architectures such as the Xilinx Zynq plat-

form allow to dynamically optimize application performance
and energy dissipation. Fine-grained reconfigurable archi-
tectures [1], the focus of this work, implement computation-
ally intensive parts as so-called Accelerated Functions (AFs)
by implementing them on dedicated hardware accelerators.
To optimally adapt to changing application performance
requirements and data-dependent execution flows, the accel-
erators instantiated in hardware are determined at runtime.

In SRAM-based FPGA platforms the reconfiguration
capabilities can not only be used to optimize performance
and energy dissipation, but also to increase availability [2]
by diagnosis and repair [3, 4], or to balance stress to mitigate
aging [5]. In contrast, in this work the adaptability of the
system is exploited to guarantee a given target reliability at
minimal cost.

Harsh environmental conditions (radiation, temperature,
power noise) may cause transient errors and failures which
are not acceptable in safety-critical applications (e.g. au-
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tomotive, industrial, medical or aviation), where stringent
reliability requirements such as ASIL [6] have to be met
under different environmental and operating conditions and
changing error rates in the system. Shrinking CMOS
technology further aggravates these threats [7].

In SRAM-based FPGAs, the dominant reliability threat
are soft errors in the configuration memory and functionally
used memory (e.g. block RAMs and flipflops), which may
alter the functionality of hardware accelerators and lead
to wrong results. To ensure reliable computation in the
reconfigurable fabric, accelerators must be protected by fault
tolerance methods such as modular redundancy (e.g. dupli-
cation with comparison (DWC), triple modular redundancy
(TMR)), or information redundancy (self-checking circuits,
ECC of memory). Errors in the configuration memory in
FPGAs can be effectively handled by periodic scrubbing
[8], i.e. reading out and checking the memory contents, and
periodic functional self tests [9], followed by correction.

These fault tolerance methods have different costs in
terms of hardware resources, performance, and energy.
Typically, the cost is dominated by error detection [10] which
must run concurrently to regular system operation. Error
correction by re-execution after an error has been detected
typically incurs only a small performance cost and happens
rarely.

Due to changing error rates, application requirements
(data dependencies, multi-threading) and system states
(available/used resources), it is not possible to statically
determine appropriate error detection methods for a given
target reliability at minimal cost. A static optimization
is pessimistic since it must consider the worst case and
when the error rate is low, the system is over-protected at
additional hardware or performance cost.

A static selection of fault tolerance methods as in [11] can
not adapt to changing soft error rates and thereby hinders
trading off performance and reliability. The runtime selec-
tion of DWC and TMR for accelerators according to static
soft error rate thresholds as in [12] increases performance
and availability, but does not guarantee a target reliability.

Contributions.
In contrast to the static and therefore pessimistic selection

of fault-tolerance methods in the state-of-the-art, we present
the GUARD method for reconfigurable architectures. This
fault tolerance method guarantees an application-specified
minimum level of reliability of the accelerated computation
at minimal cost. This is achieved by use of monitoring in-
formation to dynamically choose between different reliability
methods so that the error-detection overhead is minimized:
• At runtime, the soft error rate is monitored and the

reliability of future computations is estimated. Based
on statically or dynamically given target reliability con-
straints, runtime reliability management is performed.

• Based on the reliability estimation, the selection of ac-



celerators and the application of optimal fault tolerance
methods are performed at runtime. This allows for fast
adaptation to changing reliability threats and guarantees
the given reliability constraints while maximizing the
performance.
The next section introduces reconfigurable architectures

and gives a problem definition. Section 3 presents the
GUARD method. Section 4 presents experiment results,
followed by the conclusion.

2. SYSTEM OVERVIEW AND PROBLEM

DEFINITION

2.1 Reconfigurable Architectures
Fig. 1 shows the common structure of a reconfigurable

architecture. It consists of a processor core and an attached
reconfigurable fabric that is composed of so-called containers
that are implemented on an embedded SRAM-based FPGA.
A dedicated bus for the reconfigurable fabric manages the
communication among containers and the communication
with the system bus. We assume that the processor core
is a reliable computing base such as [13], i.e. it is hardened
by manufacturing technology or by redundancy [14]. Bus-
structures and memory are protected by ECC. Thus, they
are much less susceptible to soft errors than accelerators
implemented in the reconfigurable fabric. To be able to
apply modular redundancy methods to the containers, one
non-reconfigurable hardened voter is provided per container.
They allow to duplicate/triplicate any pair or triplet of
neighbored containers.
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Figure 1: Basic reconfigurable architecture.

Applications running on reconfigurable architectures may
use so-called Accelerated Functions (AFs) to implement
computationally intensive parts. Many applications execute
as a (repetitive) series of phases [15], e.g. tasks in a task
graph, that differ in required processing time, suitability
for acceleration, or susceptibility to soft errors. In recon-
figurable architectures, offline profiling and runtime moni-
toring is used to track these phases and to determine which
parts of the computation can be mapped to AFs. An AF
can be implemented by one or multiple so-called accelerators
that are reconfigured into containers (one accelerator per
container at any given time). Alternatively, AFs can be
executed in software on the processor, e.g. when the required
accelerators are not available.

AFs can be of different size, from a complex function down
to a short sequence of instructions. They are represented by
a data-flow graph (DFG) where each node corresponds to an
accelerator and the edges correspond to data-flow between
the accelerators. Fig. 2a) shows an example AF that consists
of three different accelerator types (A1, A2, A3) and requires
at least three different containers (one for each accelerator
type) to be implemented. The example in Fig. 2a) uses
exactly three containers and thus the two instances of A3 in
the DFG have to be executed in different steps.

An AF may have multiple hardware implementation
variants that trade-off performance and resource usage
(i.e. number of containers). The two variants shown in

A3A1

A2

A3A1

A2

A3 A3

Voter

a) Example for an Ac-

celerated Computation

c) Reliable variant with Tripli-

cated implementation of A3

A3A1

A2

b) Faster variant with two 

parallel instances of A3

A3

A3
A3 A3 A3

Voter

Step 

1

Step 

2

Step 

3

A1 A2
A3 Different accelerator typesLegend:

Figure 2: Different hardware implementation variants of an
Accelerated Function (AF).

Fig. 2a) and 2b) differ in latency and resource usage per
step. Variant a) uses only one instance A3 per step and
finishes in 3 steps while variant b) uses two instances
of A3 in parallel (demanding two separate containers) in
step 1 and thus finishes in 2 steps. Variants that use more
accelerators exploit more parallelism and can achieve higher
performance. It is also possible to provide a partially or
completely fault tolerant variant, e.g. by triplicating A3, as
shown in Fig. 2c). This variant has the same schedule as
variant a) but uses A3 in TMR mode to increase reliability
at higher resource usage. Variant a) is called the base variant
of the reliable variant c), which is derived from variant a)
by duplicating or triplicating a subset of its accelerators.

2.2 Problem Definition
The term reliability denotes the probability of error-free

operation for a specified period of time [2]. The reliability of
a system depends on the reliability of its components. We
assume the processor core to be a reliable computing base
(see Section 2.1) and focus on the reliability of the AFs: We
assume an AF to be error free if its execution is not affected
by soft errors. An AF that is executed as a software routine
on the reliable computing base is reliable. The reliability of
an AF that is executed on the reconfigurable fabric depends
on the current error rate, system state, and hardware usage:

Current error rate is determined by the environment.
System state corresponds to the reliability history of the

containers, i.e. the time since a container was last known
to be error free because it was tested, reconfigured, or
scrubbed (i.e. reconfiguring it with the configuration
data of the accelerator that was already configured
or reading back the configuration data and correcting
possible errors by an error correction code).

Hardware usage depends on the accelerators that im-
plement the AF. The configuration information of an
accelerator is stored in the SRAM configuration memory
of the FPGA, which is susceptible to soft errors. The
critical bits of an accelerator are those configuration
bits that define its functionality. Different accelerators
exhibit different susceptibility to soft errors in their
configuration memory depending on the number of
critical bits.

The variety in soft error vulnerability of accelerators also
extends to the hardware implementations of AFs: different
AFs and various implementation variants of an AF differ in
their soft error vulnerability. This variety can be exploited
by the runtime system of the reconfigurable architecture. In
order to guarantee a given target reliability while optimizing
the performance, the challenge is threefold:

1. Whenever an AF shall execute, ensure that it meets the
target reliability for the current error rate and system
state. If the reliability constraint cannot be satisfied at



the moment due to pending reconfigurations of redundant
accelerators or limited hardware resources, then the AF
needs to be executed on the reliable computing base.

2. For all AFs of the executed application phase, decide
which implementation variant shall be reconfigured and
find a good trade-off that ensures the target reliability
while maximizing performance for the monitored error
rate and system state.

3. Decide for each container when to perform scrubbing.
After scrubbing, an accelerator is known to be error free.
As no other container can be reconfigured until scrubbing
completes, scrubbing also reduces performance.
The runtime system needs to address all three challenges

at runtime. The optimization problem in Challenge 2
corresponds to a Knapsack problem where—in addition to
satisfying the reliability constraint—the number of acceler-
ators to implement the chosen AF variant must not exceed
the number of containers (capacity of the Knapsack) and the
performance of the AFs shall be maximized (optimization).

3. GUARD METHOD

3.1 Runtime Estimation of the Soft Error Rate
The current soft error rate in the system changes with its

environment and depends for instance on the radiation level,
temperature or voltage [7, 14]. We estimate the current
soft error rate λ per bit by computing the maximum of two
indicators available in the system:
1. The error rate per bit λscrub in the configuration bits

obtained from periodic scrubbing,
2. The error rate per bit λcache in the cache SRAM array of

the hardened processor. This error rate can be obtained
since in our architecture the cache is protected by a single-
error correcting code. λcache is derated by ρ according
to the cache size and technology parameters (critical
area/cross-section per bit).

The current soft error rate per bit in the system is then com-
puted conservatively and concurrently to system operation
as their maximum: λ := max(λscrub, ρ · λcache).

3.2 Reliability of Accelerated Functions
The reliability of an accelerated function depends on the

soft error rate, the type, structure and size of the used
hardware accelerators, and the resident time the accelerators
have been instantiated without errors in the reconfigurable
fabric, i.e. the time elapsed since the last reconfiguration or
scrubbing event of the container.

If the soft error rate λ per bit is constant, the probability
that a 1-bit memory element is not flipped due to a soft error
during time period t is e−λt [16]. In other words, if a bit is
correct at t0, the probability that the bit is still correct at
t0 + t is e−λt. The probability that n independent correct
bits remain correct throughout a time period t is then e−nλt

if all bits have the same error rate.
Since the soft error rate may change over time, we con-

servatively use the maximum observed error rate during the
resident time of an accelerator for the reliability estimation.

For an accelerator Ai with ni critical bits, the probability
that none of its critical bits are affected by soft errors from
t0 to t0 + t, i.e. Ai is able to compute the correct results, is
e−niλt, given that all critical bits are correct at t0. This is
the case if the accelerator is reconfigured at t0, or scrubbed
at t0 without errors. t is then the resident time of the
accelerator.

Functionally used memory in the FPGA, i.e. block RAMs
and flipflops, is not protected by scrubbing, but is implicitly
protected if modular or temporal redundancy is employed.
Furthermore, block RAMs are readily used with ECC in the

recent FPGA generations [17]. Compared to the number of
flipflops contained in an FPGA, the amount of configuration
bits is higher by two to three orders of magnitude (e.g. a logic
slice has 1184 configurations bits and 4 flipflops [17]). Also,
flipflops are not susceptible to upsets throughout the entire
clock cycle, and not every upset leads to an error observed by
the system or user. The time during which data in memory
are vulnerable is bound by the duration of the accelerator
execution (in the order of cycles), which is much smaller
than the resident time of configuration bits of accelerators
(in the order of million cycles). Therefore, soft errors in
block RAM and flipflops are not considered in the following.

For accelerators without any fault-tolerance methods, the
reliability of an accelerated function AF (probability that it
produces the correct result) is

R(AF, t, τ) :=

Ai∈AF
∏

i

e
−niλ(ti+τi), (1)

where ti is the resident time of accelerator Ai until the
accelerated function starts to execute, and τi denotes the
time period until accelerator Ai finishes all its executions.
Since τi ≪ ti, we ignore τ in the following calculation.

We assume conservatively that an accelerator computes
the correct results only if all its critical bits are correct,
i.e. logic and data-dependent masking of errors are ignored
here. Such error masking can be added to this computation
by derating factors derived for instance from fault injection
experiments.

The reliability constraint is the requirement that the
failure probability of each execution of the accelerated
function AFk, i.e. 1 − R(AFk, tk), is less than or equal to
a statically or dynamically given threshold, usually written
in powers of ten as 10−rk :

∀k : 1−R(AFk, tk) ≤ 10−rk . (2)

For instance, when rk = 5, the failure probability of each
execution of AFk must be less than 10−5. In Eq. (1)
and (2), the values of ni and τi are derived from the AF
implementations at design time. λ, ti, and the target
reliability rk are variables whose values may dynamically
change during runtime.

Implementation variants of accelerators may include par-
tially or completely protected accelerators based on duplica-
tion or triplication (cf. Section 2.1). For accelerators in TMR
mode with hardened voter, the probability that it delivers
the correct output is the probability that at most one of the
three replicated accelerators is affected by soft errors in their
critical bits, which is

R(ATMR
i ) := (1−R(Aa))R(Ab)R(Ac)+

(1−R(Ab))R(Aa)R(Ac)+

(1−R(Ac))R(Aa)R(Ab)+

R(Aa)R(Ab)R(Ac)

:= e
−nλ(ta+tb) + e

−nλ(ta+tc) + e
−nλ(tb+tc)

− 2e−nλ(ta+tb+tc), (3)

where R(Aa), R(Ab) and R(Ac) denote the reliability of
the three replicated accelerators. ta, tb and tc denote the
resident times of the three replicated accelerators.

For accelerators in DWC mode, the accelerated function
is re-executed on the hardened processor if an error is de-
tected. Thus the probability of correct results equals to the
probability that at most one of the replicated accelerators is
erroneous:

R(ADWC
i ) := e

−nλta + e
−nλtb − e

−nλ(ta+tb). (4)



3.3 Runtime Reliability Management

3.3.1 Maximum Resident Time
To satisfy the reliability constraint in Eq. (2), the runtime

system must ensure that unprotected accelerators used in
the next execution of AFk are still sufficiently reliable. This
requires that the resident times of non-redundant acceler-
ators in AFk satisfy the inequality:

∏Ai∈AFk

i e−niλti ≥

1 − 10−rk . After applying the logarithm on both sides, we
obtain

Ai∈AFk∑

i

niti ≤ −
1

λ
log

(
1− 10−rk

)
. (5)

By making ti small enough, e.g. by scrubbing accelerators
more frequently, the reliability constraint can be fulfilled.
However, there are many combinations of resident times
ti which satisfy Eq. (5). To find the optimal combination
which maximizes every ti so that the scrubbing overhead
is minimized, the runtime system has to solve a max-min
problem involving ‖AFk‖+2‖AFk‖ constraints, where ‖AFk‖
is the number of accelerators required by AFk. This is
too complex for the runtime system and would decrease its
responsiveness to other important tasks.

To simplify the problem, let tmax denote the maximum
resident time of all accelerators required by an accelerated
function AFk, i.e. tmax = maxi{ti}. Then,

Ai∈AFk∑

i

niti ≤

Ai∈AFk∑

i

nitmax, (6)

and Eq. (5) is automatically satisfied when

tmax ≤
1

∑Ai∈AFk

i ni

(

−
1

λ
log

(
1− 10−rk

)
)

︸ ︷︷ ︸

T
up
k

. (7)

We denote the right-hand side of Eq. (7) as T
up
k , the upper

bound of tmax for AFk. With the above tightening, the
runtime system only needs to schedule scrubbing for non-
redundant accelerators such that tmax satisfies Eq. (7),
which is stricter than required.

For an AFk consisting of only triplicated accelerators and
applying tightening by tmax = max{ta, tb, tc}, the reliability
constraint 1 − R(ATMR

i ) ≤ 10−rk becomes 3e−2nλtmax −
2e−3nλtmax ≥ 1 − 10−rk . This can be easily solved by
substitution to obtain the bound for tmax. But it becomes
difficult when we compute tmax for partially fault tolerant
variants as shown in Fig. 2c). However, we can always find
a suitable q (usually < 1) such that

3e−2nλtmax − 2e−3nλtmax ≥ e
−qnλtmax (8)

holds for all tmax where e−nλtmax , the reliability of a non-
redundant accelerator, is assumed to be larger than a very
conservative value such as 0.99. Therefore the reliability
constraint for an arbitrary accelerated function combining
non-redundant and triplicated accelerators is tightened to

Ai∈AFk,non-red.∏

i

e
−niλtmax

Aj∈AFk,TMR
∏

j

e
−qnjλtmax ≥ 1− 10−rk , (9)

where tmax is the maximum resident time of all accelerators.
After taking the logarithm on both sides, we obtain

tmax ≤
1

∑

i ni +
∑

j qnj

(

−
1

λ
log

(
1− 10−rk

)
)

︸ ︷︷ ︸

T
up
k

, (10)

where the right-hand side of Eq. (7) is denoted as T
up
k , the

upper bound of tmax for AFk. In a similar way, tightening
is also applied to accelerated functions with accelerators in
duplicated mode.

3.3.2 Acceleration Variants Selection
When the application requests to execute accelerated

functions in hardware, the runtime system has to select
from a large set of acceleration variants to configure, which
have distinct performance, reliability and resource usage
characteristics. The variants of an AF consists of a common
set of accelerators and the bitstream of these accelerators
are stored in the memory for online reconfiguration. As an
motivational example, Fig. 3 shows the selection space for
a complex H.264 encoder application, in which nine AFs
are implemented. Each data point in the figure denotes
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an acceleration variant of a specific AF (coded in color
and shape) including partially and completely fault tolerant
variants. Each variant is described by three metrics: mini-
mum failure probability (Y-axis), performance (X-axis) and
number of containers (size of the data point). The minimum
failure probability of a variant is its failure probability when
tmax equals the minimum scrubbing period of the system.
The minimum scrubbing period (MinScrubPeriod) is the
time required to scrub all containers once (i.e. scrubbing
the whole system at highest frequency). For the variants,
the failure probability differs by more than three orders of
magnitude.

The performance shows the speedup of each variant
compared to software execution, normalized for each AF.
The absolute speedup ranges from 6.3 to 70.2×.
The runtime system selects the accelerator variants upon

an application request. Thus, the selection must complete in
a short time period despite of the large selection space. This
makes it computationally inviable to obtain an exact solu-
tion to the underlying NP-complete Knapsack problem (see
Section 2.2). Alg. 1 shows our greedy algorithm that selects
the appropriate variants for requested accelerated functions
such that the target reliability and resource constraints are
satisfied and the performance of the whole application is
maximized. The worst-case complexity of Alg. 1 is O(n2),
where n is the number of variants to be selected.

The variant selection is guided by a performance score
which ensures that the selection is resource efficient and
the performance of the whole application increases: Line 1
collects those acceleration variants v for the requested accel-
erated functions (v.fct ∈ F) into set C which are able to meet
the reliability constraint, i.e. the upper bound of tmax for the



Algorithm 1 Acceleration variants selection

Input: The set of accelerated functions to be executed F .
Output: Selected variants for each accelerated function in F .
1. C := {all variants v for v.fct ∈ F | Tup(v) ≥ MinScrubPeriod}
2. C := {v | v ∈ C and ∀u ∈ C, u.base = v.base : ‖u‖ > ‖v‖}
3. N := NumberOfContainers // Total number of containers
4. R := ∅ // Result set
5. while C �= ∅ do
6. C := C \ {v | v ∈ C, ‖v‖ > N}
7. if C = ∅ then
8. break
9. end if
10. vbest := NULL ; BestScore := −∞
11. for all v ∈ C do
12. vsel := fastest variant w ∈ R with w.fct = v.fct
13. if vsel=NULL then
14. Score := fEX(v.fct) · (v.sw cycles-v.hw cycles)/‖v‖
15. else
16. Score := fEX(v.fct) · (vsel.hw cycles-v.hw cycles)/‖v‖
17. end if
18. if Score > BestScore then
19. vbest := v
20. BestScore := Score
21. end if
22. end for
23. vreplace := v ∈ R ∧ v.fct = vbest.fct ; C := C \ {vbest}
24. if vreplace = NULL then

25. R := R∪ {vbest} ; N := N− ‖vbest‖
26. else if vreplace.hw cycles > vbest.hw cycles then

27. R :=
(

R \ {vreplace}
)

∪ {vbest}
28. N := N + ‖vReplace‖ − ‖vbest‖
29. end if
30. end while
31. return R // Selected variants to be configured

variant is greater or equal to the minimum scrubbing period
of the system. As discussed in Section 3.3.1, the upper
bound of tmax depends on the used resources and applied
fault tolerance method of the variant. Line 2 keeps the
smallest derived variant per base variant (see Section 2.1) in
C, i.e. the variant using the fewest containers (‖v‖ denotes
the number of containers required by v). The loop from
Line 5 to Line 30 iteratively selects the variant with the
highest performance score among others in C, and which
still fits into the available containers. Line 16 calculates
the performance score of a variant as the weighted speedup
gain compared to a previously selected variant for the same
accelerated function: The weight is the history execution
frequency fEX of the accelerated function divided by the
number of containers required by the variant. If there is no
previously selected variant, the speedup gain is calculated
relative to the software execution (Line 14). The variant
vbest with highest score is added to the result set R if there
is no faster variant (fewer execution cycles) of the same
function already in R. The main loop continues until C
is empty, or no variant with the targeted reliability fits into
the remaining containers.

Before the actual execution of an accelerated function,
the runtime system checks if the hardware variant selected
by Alg. 1 is already configured, and if it still satisifies the
reliability constraint for the current error rate (both might
have changed since the last execution of Alg. 1). If that is
not the case, the AF is executed in software by the hardened
processor.

3.3.3 Non-uniform Accelerator Scrubbing
The scrubbing rate for each container is determined by

the accelerator implemented in it. If the accelerator belongs
to an accelerator variant which requires a short resident
time to satisfy the reliability constraint, the container must
be scrubbed more frequently. More precisely, if tmax of a

variant has to satisfy Eq. (10), then all the containers it uses
are scrubbed as soon as the resident time exceeds (Tup

k −
MinScrubPeriod). In this way, tmax of every implemented
variant is guaranteed to satisfy the tightened reliability
constraint and the scrubbing overhead is minimized.

4. EXPERIMENTAL EVALUATION
We evaluated the presented approach in a reconfigurable

architecture as described in Section 2.1, implemented on a
Xilinx Virtex-5 LX110T FPGA. The target application is an
H.264 video encoder which was selected because it contains
multiple accelerated functions with distinct performance
and reliability characteristics (cf. Fig. 3). The H.264
encoder contains nine accelerated functions whose hardware
implementations employ nine accelerator types in total. The
number of critical bits of the accelerators range from 19036
to 86796 bits and are obtained using the Xilinx bitgen tool.
A SystemC-based cycle-accurate simulator with parame-

ters extracted from the hardware implementation is used to
evaluate the GUARD method with respect to related work.
It simulates the execution of an application cycle-accurately
by modeling the reconfigurable architecture of Fig. 1 in-
cluding the reconfigurable FPGA-resources, implementation
constraints for the accelerated functions (e.g. bus accesses),
the duration of reconfigurations, access arbitration to the
ICAP-configuration-port, and the runtime system which
decides when and which reconfiguration to perform. This
is extended by the reliability model of section 3 and Alg. 1.

To evaluate the behavior of the system in response to
different environmental conditions, we need to change the
simulated soft error rates between 0 (no errors) and 10
errors Mb−1month−1 to comprise the realistic cases [18].
The variation speed is in the order of seconds to stress the
dynamic system adaptation. Therefore, we use a sinusoidal
soft error rate as input stimuli for our runtime system. The
period corresponds to 10 s in real time for a 100 MHz clock
frequency.

For the performance evaluation, we apply the GUARD
method with reliability constraints from r = 8 to r = 11
(cf. Section 3.2), i.e. the failure probability of each AF
execution must be less than 10−r. We compare it to a
threshold based approach similar to [12] which duplicates
(DWC) or triplicates (TMR) the accelerators when the error
rate exceeds 1.8 Mb−1month−1. This ensures that the AF
failure probability is always less than 10−10. In the threshold
based approach, scrubbing is performed at maximum rate.

The results are shown in Fig. 4. Depending on the error
rate, the system reacts and implements fault tolerance meth-
ods. These require hardware resources which are not any
longer available for acceleration and thus the performance
decreases. With more relaxed reliability constraints (i.e.
smaller values of r), it is less probable that fault tolerance
methods are required and therefore less performance impact
is observed. When the threshold-based methods switch
to duplicated or triplicated implementations, much more
resources are consumed. This causes a stark performance
drop. For a low error rate, the performance is still below
the GUARD approach since the high scrubbing frequency
blocks the configuration port.

Fig. 5 shows the average AF failure probability of the
approaches. In the unprotected system, the failure prob-
ability reaches 4.4 · 10−6. For the GUARD method, the
failure probability is effectively bound by the given reliability
constraint, even for higher error rates. The step-shaped
change in the curve for r = 11 is due to the large gap
in failure probability in the selection space (cf. Fig. 3). A
system which applies only scrubbing at maximal frequency
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Figure 4: Performance under varying soft error rate.
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Figure 5: Average AF failure probability for different fault
tolerance methods under varying soft error rate.

can obtain a minimum failure probability of approx. 10−9.
The threshold based modes over-protect the system when
scrubbing alone cannot ensure sufficient reliability and
accelerators are replicated. Then, the resource usage is
excessive with adverse performance impact (cf. Fig. 4).

Table 1 summarizes the results of the scenarios investi-
gated in Fig. 4 and Fig. 5. For r = 9, GUARD achieves a
reliability improvement factor of 2384 at only 5.3% average
performance reduction compared to the unprotected sys-
tem. Compared to the threshold based methods, GUARD
guarantees the same target reliability while providing 20.0%
(DWC) or 42.6% (TMR) higher performance in average. In
the best case, GUARD is up to 34.8% (DWC) or 68.3%
(TMR) faster.

Table 1: Performance and failure probability results

Mode
Perf. [Mil.AFs/s] Failure Probability

min avg max avg max

Unprotected 3.45 3.56 3.60 8.70×10−7 4.40×10−6

Thresh.DWC 1.81 2.34 3.30 8.28×10−12 9.12×10−11

Thresh.TMR 1.45 1.97 3.32 8.28×10−12 9.12×10−11

GUARD r=8 3.40 3.50 3.59 3.49×10−9 5.49×10−9

GUARD r=9 3.03 3.37 3.58 3.65×10−10 5.62×10−10

GUARD r=10 2.44 2.81 3.56 4.77×10−11 7.91×10−11

GUARD r=11 2.36 2.61 3.53 1.48×10−12 6.92×10−12

5. CONCLUSIONS
The presented GUARD runtime method allows auto-

nomous runtime reliability management in reconfigurable

architectures. Considering the monitored error rate and
derived reliability estimates of future computations, it dy-
namically selects appropriate acceleration variants and ap-
plies optimal fault tolerance methods such as scrubbing and
modular redundancy. Thereby it guarantees an application-
specific minimum level of reliability of the accelerated com-
putations. Since it is not over-protective, the performance of
the application is maximized for the given target reliability.

The experimental results show that GUARD dynami-
cally trades-off reliability and performance depending on
the application and environment and significantly increases
reliability at small cost. Compared to related work, GUARD
performs up to 68.3% faster.
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