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cations in computational biology are highly compute-intensive
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problems of interest are often not treatable with traditional
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This interdisciplinary work introduces a new multi-timescale
simulation model for apoptotic receptor-clustering and a new
parallel evaluation algorithm that exploits the computational
performance of heterogeneous CPU-GPU computing systems.
For this purpose, the different dynamics involved in receptor-
clustering are separated and simulated on two timescales.
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significantly and reduces computing times from months to
hours for observation times of several seconds.
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I. INTRODUCTION

Within the last decades, computational biology evolved to

a dynamic and very important research area. It provides

indispensable tools that enable solutions for major biological

challenges. Unfortunately, most applications in computa-

tional biology, such as complex Monte Carlo methods [1]–

[8], are highly compute-intensive and associated with exten-

sive computing times.

The simulation of ligand-receptor aggregation is a very good

example for the application of a spatial stochastic Monte

Carlo method in computational biology, which is associated

with an extraordinary high computational effort. Different

particle models with directional interactions between the

involved particles have been proposed, for instance for

ligand-receptor systems in [9] or for patchy particles in [10].

In [11], a model of a ligand-receptor system motivated

by apoptotic receptor-clustering has been introduced, which

considers both the deterministic motion caused by directed

interactions between particles and the stochastic Brownian

motion of particles. Based on [12], this two-component

particle model has been further extended by a third particle

type (receptor homodimer) in [13]. However, since the

model is based on a stochastic process, a significant number

of simulation runs with various particle configurations is

required to draw reliable conclusions, which causes exten-

sive computing times. Conventional computing systems with

multi-core CPUs are no longer sufficient to cope with the

complexity and computational demand of such sophisticated

models.

Heterogeneous computing systems comprise of latency-

optimized multi-core CPU architectures and dedicated ac-

celerator architectures like throughput-optimized graphics

processing units (GPU). They provide the required flexibility

and performance to enable the practical use of complex

mathematical simulation models in computational biology.

However, the fundamentally different characteristics of the

involved processor architectures pose major challenges for

the design of such models, as well as the partitioning and

mapping of their evaluation algorithms.

In this work, a new particle model and a parallel evalua-

tion algorithm are introduced which utilize heterogeneous

computing systems and in particular the parallel nature

of graphics processing units. For the first time, this new

approach allows to tackle the simulative investigation of

ligand-receptor systems at relevant timescales with high

performance.

II. EXTRINSIC PRO-APOPTOTIC SIGNALING PATHWAY

The extrinsic pro-apoptotic signaling pathway is initiated by

signaling-competent ligand-receptor aggregates on the cell

membrane. According to [12], the receptor under consider-

ation is a molecule designed for highly efficient apoptosis

induction, which consists of the extracellular domains of

the TNF receptor type 1 (TNFR1) and the cytoplasmic part

of the Fas receptor [14], a so-called TNFR1-Fas chimera.

The membrane distal cysteine rich domain of TNFR1-Fas

receptors enables their homodimerization [15]. The ligand

under consideration is the soluble TNF which exists as

a homotrimer being able to bind up to three TNFR1-Fas

receptors. TNFR1-Fas receptors move randomly on the cell

membrane, and the soluble form of TNF perform a diffusive



motion through the extracellular space.

In the following, we introduce a particle model describing

the stochastic and deterministic translation and rotation of

the molecules. Together with appropriate binding conditions,

the simulation of the particle model then allows for the in-

vestigation of ligand-receptor aggregates comprising several

receptors cross-linked by ligands.

III. TWO-TIMESCALE PARTICLE MODEL OF

RECEPTOR-CLUSTERING

In this section, we present four significant extensions to the

particle model originally introduced in [11] which has been

extended by a third particle type in [13]. Thus, the par-

ticle model comprises TNFR1-Fas monomers, TNFR1-Fas

dimers and TNF ligands, shortly denoted with monomers,

dimers and ligands, respectively, see Figure 1. Besides the

(a) (b) (c)

Figure 1: Different particle types - monomer (a), dimer (b) and
ligand (c) - involved in the particle model. The trivalent ligand
provides three indistinguishable binding sites for monomers or
dimers, the bivalent dimer possesses two indistinguishable binding
sites for ligands while the bivalent monomer has two binding sites
- one for ligands and the other for the self-association with another
monomer.

location of the particles, we also take the orientation of

their binding sites into account and introduce equations of

motion for both the translation and rotation of the particles.

The numerical simulation of the three-component particle

model especially the computation of the particles’ interaction

requires a very small step size of the temporal discretization

of the model equations which causes an enormous com-

putational cost. In order to achieve numerical simulations

on biological relevant timescales comprising several minutes

we establish an adaptive Euler-Maruyama time scheme for

the two-timescale particle model. Starting point of our

extensions is the system of stochastic differential equations

introduced in [13].

• First, we assume that ligands primarily diffuse through

the three-dimensional extracellular space and randomly

impact on the cell membrane. For simplicity, we intro-

duce an artificial two-dimensional simulation domain

in close vicinity to the cell membrane, see Figure 2,

instead of considering the complete three-dimensional

extracellular space since we are solely interested in

the ligand-receptor aggregation on the cell membrane.

From this artificial simulation domain, a random num-

ber of ligands move towards the cell membrane where

they interact with or bind to monomers or dimers.

• Secondly, we separate the particle dynamics into a

pure diffusion of the particles and a deterministic

motion caused by the interaction between the parti-

cles. Therefore, we split the set of particles into three

Cell Membrane

extracellular
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TNFR1-Fas

Monomer

TNF Ligand
2D Simulation Domain Cell Membrane

TNFR1-Fas
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Figure 2: Sketch of the particle model with two simulation domains.
The lower two-dimensional domain models the cell membrane
while the upper domain displays the diffusive motion of the ligands
in the three-dimensional extracellular space. Due to the diffusion,
ligands can move from the upper simulation domain towards the
lower one where they can associate with receptors and thereby
form ligand-receptor aggregates.

classes: the free diffusing particles Mf , Df , Lf , the

interacting particles Mi, Di, Li,temp, and the bound

particles Mb, Db, Lb, while the total number of ligands

in the system remains constant. In this connection,

particles are bound if the distance between them is

smaller than a certain threshold value R CUT and the

orientation of their binding sites is appropriate. Particles

are interacting if their distance is smaller than R CUT
but the orientation of the binding sites is unsuitable.

• Thirdly, we introduce different timescales for the dif-

fusion and interaction of the particles. Since the in-

teraction is strong and short-ranged, the simulation of

the interaction process requires a very small timescale

while the diffusion process can be simulated on a larger

timescale.

• Fourthly, we assume that two bound receptor monomers

form a dimer, i.e., the binding of two monomers is

irreversible.

System of stochastic and ordinary differential equations

Following the first three extensions to simplify the particle

model, we have a system of ordinary differential equations

(ODEs) for the coordinates of interacting particles

dxMi/Dj/Ll;τ = 6µ2
M/D/LFMi/Dj/Ll

(ξ
P
t
i
;τ ,ϕP

t
i
;τ )dτ, (1)

i ∈ M
t
i, j ∈ D

t
i, l ∈ L

t
b ∪ L

t
i,temp, where the matrix ξ

P
t
i
;τ

contains the coordinates of all interacting particles and ϕ
P
t
i
;τ

the angles describing the orientation of the binding sites, and

a system of stochastic differential equations (SDEs)

dxMi/Dj/Ll;t =
√
2µM/D/LdW̃trans,t,Mi/Dj/Ll

, (2)

i ∈ M
t
f , j ∈ D

t
f , l ∈ L

t
f , for the coordinates of the free

diffusing particles. For the particle rotation, we obtain for

the bound particles a system of ODEs

dϕMi/Dj/Ll;τ =µ2
M/D/Lζ

2
M/D/L× (3)

gMi/Dj/Ll
(ξ

P
t
b
;τ ,ϕP

t
b
;τ )dτ,

i ∈ M
t
b, j ∈ D

t
b, l ∈ L

t
b, where ξ

P
t
b
;τ contains the

coordinates of all bound particles and ϕ
P
t
b
;τ the angles of the



corresponding particles. The particles which are not bound

perform a random rotation described by a system of SDEs

dϕMi/Dj/Ll;t =
√
2µM/D/LζM/D/LdW̃rot,t,Mi/Dj/Ll

, (4)

i ∈ M
t
f ∪ (Mt

i\Mt
b), j ∈ D

t
f ∪ (Dt

i\Dt
b), l ∈ L

t
f . In (2) and

(4), the terms dW̃trans,t,Mi/Dj/Ll
and dW̃rot,t,Mi/Dj/Ll

de-

note increments of Wiener processes modeling the Brownian

motion of the particles. The interaction forces FMi/Dj/Ll
are

given by a superposition of gradients of a truncated (12,6)-

Lennard-Jones potential or the sole repulsive part of this

potential dependent on the mutual orientation of the interact-

ing particles. The interaction torsional moments gMi/Dj/Ll

are defined by a cubic function with point symmetry to

the origin and zeros at ±π in case of monomers, ±π/2
in case of dimers, and ±π/3 in case of ligands according to

the number of indistinguishable binding sites, cf. [13] and

Figure 1. Moreover, the parameters µM/D/L and ζM/D/L in

(1)-(4) are given by

µ2
M/D =

kBT t̄

L2βM/D
with βM/D = 6πηcmRM/D, (5)

µ2
L =

kBT t̄

L2βL

with βL = 6πηesRL, (6)

ζ2M/D =
βM/DL

2

γrot,M/D
with γrot,M/D = 8πηcmR

2
M/Ddcm, (7)

ζ2L =
βLL

2

γrot,L
with γrot,L = 8πηesR

3
L, (8)

where L denotes the length scale and t̄ the timescale

for eliminating the dimensions of the magnitudes, ηcm the

viscosity of the cell membrane, ηes the viscosity of the

extracellular space, RM/D/L the radius of the corresponding

particles, dcm the thickness of the cell membrane, and

kBT the thermal energy of the system composed of the

Boltzmann’s constant kB and the temperature T . Finally, the

motion of the particles is completely described by the equa-

tions (1)-(4). In the following section, we shortly describe

the Euler-Maruyama approximation for the introduced SDEs

and the explicit Euler scheme for the ODEs.

Numerical Approximation of the ODEs and SDEs

In order to simulate the formation of ligand-receptor ag-

gregates, the systems of stochastic and ordinary differential

equations are solved numerically. For this purpose, we

introduce the discretization 0 = t0 < t1 < t2 < · · · <
tn < tn+1 < · · · < tN = T of the large scaled time interval

[0, T ] with an initially equidistant step size ∆t = tn+1− tn.

Since the interaction between the particles occurs on a

smaller timescale, we introduce the discretization of each

time interval [tn, tn+1], namely tn = τn,0 < τn,1 < · · · <
τn,η < τn,η+1 < · · · < τn,H = tn+1 with an initially

equidistant step size ∆τn = τn,η+1 − τn,η . Then, the

approximation of the solution to the equations (1)-(4) at

time tn is summarized in the matrices ξn
P
n
f

and ϕn
P
n
f

on

the large timescale, and ξ
n,η
P
n
i

, ξ
n,η
P
n
b

, ϕ
n,η
P
n
i

, and ϕ
n,η
P
n
b

on the

small timescale. In the latter terms, the sets Pi/b are though

superscribed with an index n which indicates that the sets

are updated on the large timescale. Finally, the explicit Euler

method for the system of ODEs (1) reads

∆x
n,η
Mi/Dj/Ll

= 6µ2
M/D/LFMi/Dj/Ll

(ξn,η
P
n
i
,ϕn,η

P
n
i
)∆τn, (9)

i ∈ M
n
i , j ∈ D

n
i , l ∈ L

n
b ∪ L

n
i,temp. The Euler-Maruyama

approximation of the system of SDEs (2) is given by

∆x
n
Mi/Dj/Ll

=
√
2µM/D/L∆W̃trans,n,Mi/Dj/Ll

, (10)

i ∈ M
n
f , j ∈ D

n
f , l ∈ L

n
f , where the increments

[∆W̃trans,n,·]dim=1,2 (11)

= [W̃trans,n+1,·]dim=1,2 − [W̃trans,n,·]dim=1,2

are N (0,∆t) distributed random variables and can be writ-

ten as [∆W̃trans,n,·]dim=1,2 = [Ztrans,n,·]dim=1,2 ·
√
∆t

with [Ztrans,n,·]dim=1,2 ∼ N (0, 1). The index dim indicates

the two components of the two-dimensional Wiener process

W̃trans. For the approximation of (3), we obtain

∆ϕn,η
Mi/Dj/Ll

=µ2
M/D/Lζ

2
M/D/L× (12)

gMi/Dj/Ll
(ξn,η

P
n
b
,ϕn,η

P
n
b
)∆τn,

i ∈ M
n
b , j ∈ D

n
b , l ∈ L

n
b , and the approximating equations

of (4) are given by

∆ϕn
Mi/Dj/Ll

=
√
2µM/D/LζM/D/L× (13)

∆W̃rot,n,Mi/Dj/Ll
,

i ∈ M
n
f ∪ (Mn

i \Mn
b ), j ∈ D

n
f ∪ (Dn

i \Dn
b ), l ∈ L

n
f . Again,

∆W̃rot,n,· = W̃rot,n+1,· − W̃rot,n,· ∼ N (0,∆t) (14)

can be written as ∆W̃rot,n,· = Zrot,n,· ·
√
∆t. Evaluating

the right-hand side of equations (9), (10), (12), and (13)

yields the variations in the coordinates ∆xMi/Dj/Ll
and

the angles ∆ϕMi/Dj/Ll
on the different timescales. Starting

with x
0
Mi/Dj/Ll

, x
0,0
Mi/Dj/Ll

, ϕ0
Mi/Dj/Ll

, and ϕ0,0
Mi/Dj/Ll

for

the initially free and interacting particles, respectively, we

iteratively obtain the coordinates x
n+1
Mi/Dj/Ll

and the an-

gles ϕn+1
Mi/Dj/Ll

, n = 0, 1, 2, . . . , on the large timescale,

and the coordinates x
n,η+1

Mi/Dj/Ll
and the angles ϕn,η+1

Mi/Dj/Ll
,

n = 0, 1, 2, . . . , η = 0, 1, 2, . . . , on the small timescale.

A. Adaptive Euler-Maruyama Scheme

In unfavorable cases, particles may diffuse in a way such that

the particles almost lie upon each other or the interacting

particles run through each other if the time step of the

discretization is too large. To avoid these cases we refine the

time steps of the discretization adaptively. For this purpose,

we choose different criteria for the refinement of the time

steps of the diffusion and the interaction. In the following,

we give the main ideas of the adaptive Euler-Maruyama

scheme, originally introduced in [16] and now adapted to

our two-timescale particle model comprising ordinary and



stochastic differential equations which are merged on the

large timescale. For a mathematically rigorous description,

we refer the interested reader to [16].

i) Adaptive time scheme for interacting particles.

In order to avoid the crossing of two particles due to

their interaction for a given step size ∆τn, we refine

the step size adaptively. For this purpose, we com-

pute virtual coordinates of the particles for step sizes

∆ki
τn := 2−ki(1−Σi)∆τn, ki = 0, 1, 2, . . . , such that

two conditions are fulfilled, where the term (1 − Σi)
denotes the part of the time interval [τn,η, τn,η+1]
which is not yet simulated:

I) First, the distance between the particles for the new

virtual coordinates must be larger than a certain

threshold R CUT MIN, hence, |xn,η+∆ki
τn

Pi
−

x
n,η+∆ki

τn

Pj
| > R CUT MIN, Pi,Pj ∈ P

n
i .

II) Secondly, the distance between the new virtual

coordinates of one particle and its original coor-

dinates must be smaller than the distance between

the new coordinates of the other interacting par-

ticle and the original coordinates of the former

particle, shortly written as |xn,η+∆ki
τn

Pi
− x

n,η
Pi

| <
|xn,η+∆ki

τn

Pj
− x

n,η
Pi

|, Pi,Pj ∈ P
n
i .

Finally, ki is chosen as the smallest value such that

both criteria are fulfilled for all interacting particles.

ii) Adaptive time scheme for diffusing particles.

Considering the diffusing particles, we similarly formu-

late two criteria for the adaptive refinement of the time

step. Again, we compute virtual coordinates according

to the discretized SDEs for the particle coordinates

with the step sizes ∆kf
t := 2−kf (1 − Σf )∆t, kf =

0, 1, 2, . . . , such that the following two conditions are

fulfilled, where (1 − Σf ) is the part of the interval

[tn, tn+1] which is not yet simulated:

I) First, the distance between the diffusing particles

after the diffusion step must be larger than a cer-

tain threshold R CUT MIN, hence, |xn+∆kf
t

Pi
−

x
n+∆kf

t

Pj
| > R CUT MIN, Pi,Pj ∈ P

n
f .

II) Secondly, the distance between the new virtual co-

ordinates of a diffusing particle and an interacting

particle after the performed interaction time steps

must be larger than the threshold R CUT MIN,

i.e. |xn+∆kf
t

Pi
− x

n,H
Pj

| > R CUT MIN, Pi ∈ P
n
f ,

Pj ∈ P
n
i .

In summary, we introduced in this section four extensions of

the particle model, and additionally established an adaptive

Euler-Maruyama time scheme for the two-timescale particle

model.

IV. PARALLEL MODEL EVALUATION ALGORITHM

A. Heterogeneous CPU-GPU Computing Systems

Heterogeneous computing systems comprising of multi-core

CPU architectures and many-core GPU architectures deliver

tremendous performance. However, they also require careful

partitioning and mapping of algorithms. Latency-optimized

CPUs are well-suited for performing small numbers of indi-

vidual and independent tasks as fast as possible. Throughput-

optimized GPUs excel on data-parallel workloads where

a single stream of instructions is applied in parallel to a

very large number of different data elements [17], [18].

Such GPU architectures exhibit rich memory systems with

large register sets, shared memories and different levels of

caches. All of these memories are associated with differ-

ent capacities and access latencies which force a skillful

management by the software developer. In addition, program

execution on GPUs is often not as flexible as on CPUs since

high performance can only be achieved if large numbers of

threads follow the same control flow. This makes branches

and thread divergence expensive and poses a challenge to

the developer.

The parallel evaluation algorithm described in the following

section exploits the special characteristics of heterogeneous

computing systems. It executes setup, control and analysis

steps on the CPU, while it utilizes the data-parallel GPU

for the computation of particle interactions. The interplay

of both architectures leads to substantial performance im-

provements as will be shown in Section V.

B. Parallel Evaluation Algorithm

The developed mathematical model has been mapped to a

grid-based, stochastic particle simulation, tailored to modern

heterogeneous computing systems. A simulation comprises

three different kinds of particles (monomers, dimers, lig-

ands) in different numbers, which reside in separate lists.

Each particle is assigned to one of the three particle classes

(free diffusing, interacting and bound), which is indicated

with a flag. The spatial simulation domain is organized in

grids. Each grid is composed of equally-sized grid cells.

The computation of forces, torsional moments and positions

of particles is independent and can be computed in parallel.

Each particle is therefore processed by its own thread.

Since a biological relevant simulation comprises thousands

of particles, these threads are executed on the GPU.

A large number of simulations has to be performed with

different realizations in order to draw reliable statistical

conclusions. Since modern GPUs comprise a tremendous

number of simple arithmetic processing units which exceed

the number of particles in a single simulation, multiple

different simulation instances are simulated on a single GPU

device in parallel. The execution of each simulation instance

is controlled by parallel threads on the multi-core CPU.

Therefore, it is ensured that diverging execution flows of

the parallel executed simulation instances are not serialized

on the GPU.

Simulation Algorithm Overview

The simulation algorithm, which is shown in Figure 3,

comprises eight steps which are executed on the CPU and

the GPU in parallel. In the first step, the setup of the

simulation environment is executed on the CPU. Here, the

available GPU devices are allocated and initialized, and



simulation parameters are transferred to the GPU. For each

simulation instance, a CPU thread is created which controls

the execution of the main simulation loop on the GPU.

In the second step, the random impact of ligands on the cell

membrane is simulated on the GPU. To determine the subset

L
n
i,temp of the available ligand particles in parallel, |Ln

i,temp|
threads generate uniformly distributed random values in the

range of the ligand indexes [0,Ln
f [. Afterwards, each thread

puts one chosen ligand particle on the cell membrane in

parallel.

The evaluations for free diffusing particles are performed

in the third step (Adaptive diffusion). The evaluations for

interacting and bound particles are performed in the fourth

step (Adaptive interaction). The diffusion and interaction

steps are evaluated adaptively with respect to the timescales

of the different particle classes. The progress on the different

timescales is continuously synchronized at the time points

tn. During the evaluations in the third and fourth step, each

thread iteratively traverses the particles of the current grid

cell and in special cases, the particles from neighboring

cells. In these steps, spatial coherence within the memory

hierarchy of the GPU is exploited to improve the overall

performance. For this purpose, the particle data of each grid

cell is explicitly shared among the threads which perform

evaluations in a common cell. Due to the utilization of

fast shared memory for the particle data of each grid cell,

the number of slow memory accesses to the off-chip GPU

memory is significantly reduced.

In the fifth step, the randomly impacted ligands are evalu-

ated. Ligands which are then neither interacting nor bound

to surrounding particles leave the cell membrane and are

therefore assigned to the free diffusing particle class.

In the sixth step, pairs of monomers which are appropriately

located and oriented to each other to form aggregates are

deleted from the particle lists. The resulting dimers are

located at the center between monomers with respect to

their positions and orientations. The emerging particle data

for the resulting dimers is put in the respective particle list.

Therefore, the capacity of the particle list which contains

the dimers has to be increased during the execution on

the GPU. Dynamic memory management generally has to

be performed in sequential steps to avoid race conditions.

For example, race conditions may occur if multiple parallel

threads increase the particle list at the same time and

overwrite the recently added particle data mutually. There-

fore, a large number of simultaneously emerging dimers

decreases performance significantly if memory management

is performed in sequential steps. To allow a concurrently

performed dynamic memory management on the GPU de-

vice, the particle lists are extended by dummy particles

which are inactive during simulation. If an additional dimer

is required, a dummy particle is activated to represent the

emerging dimer particle. For each monomer, one specific

dummy particle in the dimer particle list is available. In this

way, it is ensured, that pairs of monomers can be merged to

dimers concurrently while avoiding race conditions and per-

formance overhead due to serialized memory management.

The main simulation loop is repeated until the total simu-

lation time has been reached. The dashed boxes sampling

and aggregate detection in Figure 3 are additional steps,

which are performed at user-defined intervals. During a

sampling step, the location and orientation of the particles

is transferred to the CPU. While the main simulation loop is

continued on the GPU, additional threads are created on the

CPU to perform the aggregate detection in parallel. In this

step, the particle information is evaluated to find potential

ligand-receptor aggregates and their size. The results of the

sampling and aggregate detection steps are then stored.
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simulation data transfer to GPU
1
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Figure 3: Overview of the model evaluation algorithm with the
main simulation loop.

Grid-Based Mapping

In [13], we presented mapping strategies for grid-based

particle simulations to achieve high performance on GPUs.

Now, the adaptive refinement scheme induces additional

requirements, which impels the development of further op-

timization strategies. As explained before, the spatial sim-

ulation domain is subdivided into equally-sized grid cells.

According to the model, the interactions between particles

decrease with increasing distance. Beyond the appropriately

chosen distance threshold value R CUT, interactions are

numerically neglectable. In [13], we showed that the size

of the grid cells has a direct influence on the achievable

simulation performance. The number of sorting steps can

be reduced by choosing large grid cells, since particles

stay longer within the same cell. Too large grid cells

induce a computational overhead, because the number of

unnecessarily interacting particles per cell increases. Small

grid cells reduce the number of unnecessary interactions but

induce additional sorting overhead. Compared to equidistant

time steps, the adaptive refinement scheme leverages particle

translations on larger time steps. Large translations increase

the tendency of particles to leave grid cells, which results

in additional grid update steps. To exploit the achievable

simulation performance, the size of the grid cells must be

increased. Larger grid cells increase the number of particles



which do not interact with particles from neighboring cells.

The reason is that their distance to the grid cell borders is

greater than R CUT. Additionally, these particles will only

interact with particles in neighboring grid cells, which are

also located in their respective R CUT border region (see

Figure 4).
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Figure 4: Scenarios for different particle interactions within and
between cells.

Without further optimization, the algorithm would have to

access the complete particle data from neighboring grid

cells, even if there are no possible interactions. Since mem-

ory bandwidth is a scarce resource, the overall performance

is decreased significantly. To ensure that only particle data

of the neighboring R CUT border region is accessed, the

grid cells are subdivided. Therefore, each cell contains two

areas, which comprise the R CUT border region and the

center of the grid cell. After the following sorting step, the

particles which are located in the R CUT border region are

therefore aligned with each other (see Figure 5).

RCUT RCUT

Particle from current grid cell

Interaction between particles from neighboring grid cells

Particle from neighboring grid cell

0 1

2 30
1

2
3

4

5 2 5 3 1 4 0

0|0 0|1 2|0 2|1 3|0 3|1

0 1 2 3

0 1 2 30 1 2 3

start of cell

end of cellend of cell border

particles

grid cell index

Figure 5: Extended grid cell and particle list organization using
border regions.

The resulting alignment allows the algorithm to identify the

portion of particles which are able to interact with particles

from neighboring grid cells without accessing the particle

data from neighboring cells in every single evaluation step.

This reduces the overall number of memory accesses, since

only particle data from neighboring cells are accessed which

are actually required for evaluation.

Adaptive Evaluation Algorithm

Figure 6 shows the steps of the algorithm that generates

refined time step sizes to find particle translations on the

GPU that do not violate the rules formulated in Section

III-A. This algorithm is executed in the third and fourth step

of the main simulation loop (Figure 3). The algorithm ad-

ditionally ensures that every adaptively refined timescale is

synchronized at the time points tn. Therefore, the algorithm

continues to evaluate the particle classes using refined time

steps until the time point tn is reached. In the following, k
represents the parameter ki and kf (see Section III-A) and

describes the level of refinement. The simulation time step

is calculated from k, which results in a fraction of ∆t and

∆τn, respectively. In the first step, the refinement parameter

k is initialized to zero, which induces no refinement. In the

second step, a set of normally distributed random numbers

is generated in parallel for each particle.
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Figure 6: Overview of the algorithm, which chooses optimistic time
steps and refines them adaptively.

In the third step, the evaluations for the different particle

classes are performed. For free diffusing particles, transla-

tions of position and rotations are computed using the gen-

erated random numbers. For interacting and bound particles,

the forces between all pairs of particles are determined to

calculate the translations. Additionally, the rotation of the

particles is evaluated: The rotation of interacting particles is

calculated by using the generated random numbers whereas

the rotation of bound particles is derived from the torsional

moments which are calculated between all pairs of parti-

cles. The adaption loop is entered in the fourth step. The

virtual coordinates and orientations are calculated using the

respective translations and rotations. Here, the translations

and rotations are refined with regard to the current level of

refinement k and the remaining part of the time step ∆t and

∆τn, respectively.



In the fifth step, all particles are reassigned to the grid

cells, according to their virtual coordinates in the simulation

domain. The resulting virtual coordinates are checked for

violations in the sixth step, as described in Section III-A.

If violations occurred, then the level of refinement k is

increased in the seventh step.

With every iteration of the adaption loop, the translation

and rotation of the particles are refined until all violations

are resolved. In the eighth step, all particles are reassigned

to their corresponding particle classes. The progress with

respect to the common time step ∆t and ∆τn, respectively,

is registered in the ninth step. The algorithm is repeated,

until the complete time step ∆t and ∆τn, respectively, has

been fully evaluated.

V. EXPERIMENTAL RESULTS

The implementation of the adaptive multi-timescale eval-

uation algorithm has been evaluated with respect to com-

putational performance and the biological indications of

the apoptotic receptor-clustering. The hardware platform

consists of an Intel X5680 with 3.33 GHz and 64 GB RAM.

The system hosts four Nvidia Tesla C2070 GPUs with 448

processing cores at 1.15GHz and 6 GB GDDR5 RAM per

device. The machine runs a linux operating system with

CUDA version 5.0 and a GNU GCC 4.6.2 compiler tool

chain.

A. Evaluation of Computational Performance

For the evaluation of computational performance, suitable

simulation setups were chosen. The simulation runs were

then validated against the previously published results [13]

with respect to computation time.

In order to evaluate the influence of refinements on computa-

tion times, multiple simulation runs with different numbers

of particles were executed. To ensure comparability, each

of these simulation runs consisted of 1 ms simulation time.

Table I shows the computation times compared to our

previous results.

Total particles 4608 9216 18432 36864 64512

Prev. work (s) 1105 1824 3250 6847 13638

This work (s) 1 9 50 598 2437

Avg. ref. 1.93 10.56 64.0 445.72 1024.0

Table I: Computation time and average refinement over different
numbers of particles.

The results show that increasing numbers of particles lead

to increasing average refinement levels (avg. ref.) and to

longer computation times. This can be explained by the fact

that an increasing number of particles leads to a higher

probability that particles almost lie upon each other or

interacting particles run through each other. The utilization

of particle classes reduces the number of evaluations, since

free diffusing particles are neglected during expensive com-

putations for interacting particles.

As discussed before, a significant number of simulation

runs is required to draw reliable conclusions, since the

model is based on stochastic differential equations. A typical

simulation setup of biological relevance comprising 2496

monomers, 2496 dimers and 1344 ligands has been cho-

sen. Up to 8 parallel simulation instances per device were

performed. The execution of the simulation instances was

equally distributed to 4 GPU devices. Table II shows the

achieved reduction in computation time for simulation runs

over 1 ms simulation time.

Par. Instances 4 8 16 24 32

Prev. work (s) 2082 3045 5203 7591 9778

This work (s) 12 17 30 43 57

Avg. ref. 8.11 7.41 7.67 7.52 8.22

Table II: Computation time and average refinement with different
numbers of parallel instances on multiple GPUs.

The results show a significant reduction of computation time

by an approximate factor of 175 compared to the previously

published results [13]. The adaptive timescale approach re-

duces the computational effort in every simulation instance,

since it chooses the largest time step sizes which do not

result in violations. During the simulations, the average

refinement ranges between 7.41 and 8.22, which corresponds

to dividing almost every time step size into 8 steps.

B. Evaluation of Biological Indication

The results in Section V-A indicate that the extensions of the

particle model and the tailoring of the algorithms to the GPU

allow for the simulation of ligand-receptor aggregation on

biological relevant timescales. In the following, we consider

a particle configuration with 2496 monomers and 2496

dimers initially uniformly distributed on the cell membrane

and a constant total number of 1344 ligands initially dif-

fusing through the extracellular space. In each time step on

the diffusion timescale, an N (192, 64) distributed random

number of ligands impact on the cell membrane.

The simulation of T = 10 s with a maximal step size of

the diffusion timescale ∆t = 10−6 and a maximal step

size of the interaction timescale ∆τn = 10−7 took about

32 hours. Figure 7 shows the evolution of ligand-receptor

aggregates on a section of the simulation time corresponding

to 0.5 s. We observe that the temporal evolution of ligand-

receptor aggregates occurs on a very short timescale of less

than 0.5 s, and afterwards, the number of ligand-receptor

aggregates remains constant. This simulation was purely for

testing and shows the expected behavior.

The evolution of ligand-receptor aggregates significantly

depends on the total amount of initially diffusing ligands

and the mean values of ligands that impact on the cell mem-

brane. Additionally, the influence of the amount of receptor

monomers and dimers on the formation of ligand-receptor

aggregates has to be studied. In particular, the occurrence

of large ligand-receptor aggregates and their most stable

structure are interesting points to investigate. However, a



Figure 7: Evolution of ligand-receptor aggregates on the cell
membrane: single particles (blue graph), aggregates of size two
(green graph), aggregates of size three (red graph), and aggregates
of size four (orange graph).

systematic study of the model for varying ligand numbers

on biological relevant timescales, which is now possible due

to the introduced model extensions and optimizations of the

algorithms, is subject of current research and beyond the

scope of this work.

VI. CONCLUSION

In this paper, the outcomes of an interdisciplinary col-

laboration for the extensive parallel simulation of apop-

totic receptor-clustering have been presented. Timescales

of biological relevance motivated the extension of a pre-

viously introduced model and the development of a new

evaluation algorithm, tailored to heterogeneous CPU-GPU

computing systems, in order to reduce the computational

effort significantly. For this purpose, the particle dynamics

were separated into a pure diffusion and the particles’

interaction, allowing the simulation on different timescales.

Moreover, an adaptive refinement of the time steps was

independently implemented for both processes. The three-

dimensional diffusion of the ligands in the extracellular

space was represented by a second simulation domain while

only a random subset of the ligands interact with or bind

to the receptors on the cell membrane. Along with several

algorithmic optimizations, the model extensions lead to

significant performance enhancement, i.e., compared to our

previous approach, the simulation of several seconds is now

possible in a few hours instead of several months.
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