
On Covering Structural Defects in NoCs by

Functional Tests

Dalirsani, Atefe; Hatami, Nadereh; Imhof, Michael E.; Eggenberger,

Marcus; Schley, Gert; Radetzki, Martin; Wunderlich, Hans-Joachim

Proceedings of the 23rd IEEE Asian Test Symposium (ATS’14) Hangzhou, China, 16-19

November 2014

doi: http://dx.doi.org/10.1109/ATS.2014.27

Abstract: Structural tests provide high defect coverage by considering the low-level circuit details. Functional

test provides a faster test with reduced test patterns and does not imply additional hardware overhead.

However, it lacks a quantitative measure of structural fault coverage. This paper fills this gap by presenting a

satisfiability based method to generate functional test patterns while considering structural faults. The method

targets NoC switches and links, and it is independent of the switch structure and the network topology. It

can be applied for any structural fault type as it relies on a generalized structural fault model.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic

reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form

to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

http://dx.doi.org/10.1109/ATS.2014.27


On Covering Structural Defects in NoCs by

Functional Tests

Atefe Dalirsani, Nadereh Hatami, Michael E. Imhof, Marcus Eggenberger, Gert Schley,

Martin Radetzki, Hans-Joachim Wunderlich

Institute of Computer Architecture and Computer Engineering, University of Stuttgart, Germany

{dalirsani, hatami, imhof, eggenbms, schley, radetzki, wu}@informatik.uni-stuttgart.de

Abstract—Structural tests provide high defect coverage by
considering the low-level circuit details. Functional test provides
a faster test with reduced test patterns and does not imply
additional hardware overhead. However, it lacks a quantitative
measure of structural fault coverage. This paper fills this gap by
presenting a satisfiability based method to generate functional
test patterns while considering structural faults. The method
targets NoC switches and links, and it is independent of the
switch structure and the network topology. It can be applied for
any structural fault type as it relies on a generalized structural
fault model.

Index Terms—Network-on-Chip (NoC), Functional Test, Func-
tional Failure Modeling, Fault Classification, Boolean Satisfiabil-
ity (SAT)

I. INTRODUCTION

Network-on-Chips (NoCs) constitute the interconnection

infrastructure of today’s massively parallel many-core archi-

tectures. As silicon technologies continuously shrink, NoCs

like other hardware devices become increasingly vulnerable

to process and runtime variations [1]. Variability results in

complex structural faults which can lead to unpredictable

errors. A single fault in the NoC may cause packets to be

dropped or become corrupted, resulting in incoherent and

erroneous traffic, ultimately causing the entire chip to fail [2].

While structural testing targets certain structural fault mod-

els and tries to prove the absence of these faults, functional

testing validates some specified functionalities. Due to com-

plexity reasons, this is inherently incomplete, and fault simu-

lation shows usually a rather limited fault coverage obtained

by functional test strategies [3, 4]. Yet functional testing has

still some benefits over a structural test as it does not need a

separate test mode, it can be applied in system speed and it

may even detect faults not covered otherwise [5–7].

The goal of the paper at hand is to combine the benefits of

structural and functional test of NoCs. It presents an automated

approach to generate functional test patterns with high struc-

tural fault coverage. Functional test patterns can be applied

during the normal operation of a switch interleaving the

normal traffic. The conditional line flip (CLF), as introduced

in [8], is used to specify any type of structural faults. A formal

satisfiability-based (SAT) approach classifies structural faults

into functional failure classes. Fault classification is specially

useful to extend the functional failure classes, so that the

structural fault coverage of the corresponding functional test

increases. It determines which structural faults cause a certain

functional failure. Besides, it provides a weighted functional

failure classification with respect to the number of structural

faults in each class. The method includes four tasks:

1) Definition of functionalities of an NoC switch, and

formalization of the corresponding failure modes.

2) Mapping the failure modes to the switch structure in the

form of clauses. This allows test generation by modern

satisfiability solvers (SAT).

3) Modeling structural faults (not just stuck-at faults) by

clauses and adding these clauses to the failure mode

description.

4) Solving the SAT problem allows now to generate data

input for the functional test and to quantify the structural

faults covered by each of the functional failure modes.

The outcome of this method is functional data packets for

the switches and links which can be applied in system mode

and form highly effective test sequences. The experimental

results show that functional tests generated this way achieve a

significantly higher fault coverage than the ones obtained by

commercial sequential ATPG tools.

The paper is organized as follows: The next section starts

with a brief outlook of state of the art in functional NoC

testing. It then explains how functional failures are modeled

and gives an overview of the classification and test generation

method. Section III discusses the structural fault injection

procedure while section IV provides a formal modeling for

functional failure modes. Section V describes the fault classi-

fication approach which is used in section VI to describe the

functional test pattern generation method. The experimental

results are discussed in section VII.

II. BASICS OF FUNCTIONAL NOC TESTING

A. State of the Art

So far, functional NoC test approaches [9–13] do not

explicitly consider structural faults, which results in a lower

fault coverage compared to structural tests. Aisopos et al.

[14] propose a modeling of variation-induced faults in NoCs

to study the impact of delay faults at the system level. In

[15], a software-based self-test approach generates test patterns

targeting structural faults where the switch under test still must

go to the test mode.



The correlation of structural faults to high level faults of

an NoC has a key role in the success of a functional test

methodology [16]. For this reason, functional failure modes

must be carefully defined. The next subsection describes the

failure modes analyzed in this paper.

B. Functional Failure Modes for NoC Switches

The specification of an NoC switch implies the following

functionalities:

• The received data is routed via the correct output port.

• The data is left intact.

• No data is lost.

• No new data is generated.

Accordingly, the functional failure modes of an NoC switch

are defined as:

• Misrouting: The received packet is routed to the wrong

output port. This fault may cause deadlock in the network.

• Data corruption: The data is corrupted for at least one flit

in the packet.

• Packet/flit loss: At least one flit of the received packet is

never delivered to the output port of the switch.

• Garbage packet/flit: A new packet/flit is generated and

routed to the output port. This includes routing a received

packet to more than one output port, or generating

spurious flits among the flits of a packet.

C. Method Overview

In order to classify and weight the failure modes and

additionally generate the corresponding functional test, models

have to be generated which include the fault free switch, the

faulty instance and the functional failure modes (Fig. 1).

Fault free switch 

instance

Faulty switch 

instance

Functional failure 

description

SAT instance

Functional 

inputs
Fault classification

Functional test pattern 

generation

Fig. 1: Overview of the fault classification and test generation method

Functional failures evolve over multiple cycles, and a se-

quential approach like bounded model checking [17] is a

promising option. However, for complexity reasons, it is more

attractive to unroll the switch for the number of cycles,

namely T , in which the functional failure may affect its

behavior. The maximum number of cycles is equal to the

sequential depth of the circuit [18]. The faulty instance is

a copy of the switch including the literals for the injected

structural fault. Modeling the circuit and its faulty instance is

the principle of many SAT-based ATPG approaches [19, 20].

According to the target functional failure, appropriate clauses

for checking the functional mismatch between the good and

faulty copy are added to the model. After obtaining the model,

the classification algorithm iteratively searches for a primary

input assignment such that the injected structural fault causes

the target functional failure. The satisfying assignment is used

as a functional test pattern as described in section VI. For

the unclassified faults, new functional failure classes may be

required.

Before discussing the functional failure models in detail, the

structural fault injection is summarized in the next section.

III. STRUCTURAL FAULT INJECTION MECHANISM

As the switch is a sequential circuit, the fault has to be

propagated through the internal states before it can eventually

be observed at primary outputs. Hence, the corresponding test

response to a functional test pattern must be considered in

multiple consecutive cycles.

Toward this, we apply the standard technique of time-

frame expansion [3] for switches. This technique transports

the circuit’s sequential behavior from the time to the space

domain. The combinational core of the structural switch is

extracted by removing the flipflops. Input and output signals

of the flipflops are then replaced by pseudo primary output

(PPO) and input (PPI) ports. The combinational core of the

switch, Φc, is transformed to a conjunctive normal form (CNF)

using the Tseitin transformation [21]. The sequential behavior

of the switch, ΦT
s , is modeled by time-frame expansion of Φc,

as in [15]. The literals of the PPIs of each copy are connected

to the literals of the PPOs of the previous copy in the SAT

instance, as shown in Fig. 2.

PI1

PPI1

PO1

PPO1

PI2

PPI2

PO2

PPO2

PIT

PPIT

POT

PPOT

...

1

c


2

c
 T

c


Fig. 2: The time-frame expansion model of an NoC switch [15]

As we do not want to restrict the methodology to a specific

structural fault model, the general calculus of conditional line

flips (CLF) is used as introduced in [8]. Accordingly, to inject

the fault at fault location lt, the faulty line, l
f
t , is defined by

a flip of signal lt in the good copy, if the condition holds:

l
f
t := lt ⊕ dt

where dt is the condition literal at cycle t. It has been

shown that the CLF calculus can describe any complex digital

fault model like delay faults, crosstalk and bridges [8]. The

condition is defined as a function over time to describe the

arbitrary nature of defects. In our model, dt is a variable that

can be freely assigned by the SAT-solver. Since the structural

fault exists in all cycles of the unrolled circuit, the CLF

clauses are defined for all the copies. With this modeling, the

SAT solver searches for all possible assignments for dt over

time (i.e. all possible structural defects) that cause a certain



functional failure:

T
∧

t=1

(lft ← lt ⊕ dt)

However, it is sufficient to detect a CLF in a single time-

frame. In addition, dt can be restricted with respect to a target

structural fault. For example, stuck-at-1 on literal l can be

modeled in CLF as lf := l ⊕ l̄, which is enforced by setting

dt := l̄t.

The faulty instance (Φf,T
SF ) for the structural fault f is built

from the output cone (also known as downstream logic) of the

faulty literals (Φf,T
s ) and the CLF clauses for all copies:

Φf,T
SF = Φf,T

s ∧

T
∧

t=1

(lft ← lt ⊕ dt)

As the effect of a fault may be latent through several cycles

before appearing at the primary outputs, Φf,T
SF should be able

to model fault propagation at different cycles. Therefore, the

fault appearance at PPOs (PPOs are in the output cone of the

faulty literal) is also considered. If the fault appears at PPOs

of the faulty output cone at cycle t, the equivalent input cone

at cycle t+ 1 is also added to Φf,T
SF .

IV. MODELING FUNCTIONAL FAILURE MODES

A. Modeling Approach

In this subsection, the functional failures introduced in

section II are defined in a more formal way. We set

• In: Set of possible input vectors of n bits,

• C(i): Functional circuit response for input vector i,

• Cf (i): Functional circuit response under fault f for input

vector i,

• fin(i): Boolean formula that defines functional input

constraints,

• fout(C(i), Cf (i)): Boolean formula that defines the func-

tional mismatch.

A fault f is functionally testable if and only if:

∃i ∈ In : fin(i) ∧ fout(C(i), Cf (i)).

In general, a functional failure is defined by an input

characteristic function (fin), an output characteristic function

(fout), and T , the number of cycles in which the functional

failure is active. The corresponding SAT instance, ΦT
FF , is a

conjunction of the clauses of the input and output characteristic

functions, represented in conjunctive normal form (CNF):

ΦT
FF = CNF (fin) ∧ CNF (fout).

Each NoC switch consists of a number of switch ports

(input/output) through which the switch communicates to its

neighboring switches or a network interface. The functional

failure can be individually defined for each switch port. In

the following, the input and output characteristic functions

dout

din

NoC Switch 

Douti

HSouti

HSini

send

buffer_full

...

Handshake 

signals

Handshake 

signals

Dini

Switch port i

Fig. 3: Switch interfaces

are discussed in detail. Fig. 3 illustrates the underlying switch

structure and the involved signals.

A functional test pattern must fulfill the circuit input speci-

fication in the functional mode, for instance the input must be

a well-formatted packet. The input characteristic function, fin,

is a function of the primary inputs of the switch and specifies

the input constraints for the duration of T . Input signals of

the switch ports include data lines and handshake controlling

signals. Hence, fin is defined over all switch ports as:

fin =
∧

j∈Ports

f(Dinj,t, HSinj,t)

where Dinj,t and HSinj,t are the data inputs and handshake

signals of the port j at cycle t. In the operational mode,

an NoC switch receives just inputs in the form of an NoC

packet. According to the packet specification, fin is defined as

a Boolean function over the data inputs to guarantee the valid

packet format. For example, if a packet starts with a head flit

and ends with a tail and the number of flits per packet is given

by parameter fpp, fin is defined as:

∧

j∈Ports

T−fpp+1
∧

t=1

(Dinj,t = head)⇔ (Dinj,t+fpp−1 = tail).

If the packet is protected with error detection/correction

codes, this constraint should also be defined here. For example,

if the first bit of the input data, Dinj,t[0], is the parity bit for

the Dinj,t[1..(k− 1)], where k is the number of data bits, the

following Boolean formula should also be added to fin:

Dinj,t[0] = Dinj,t[1]⊕Dinj,t[2]⊕ . . .⊕Dinj,t[k − 1].

Output signals of the switch port include data lines and

handshake signals (Fig. 3). The output characteristic function,

fout, describes a functional mismatch between the outputs in

the good and faulty switch. For the switch ports j ∈ Ports:

fout =
∨

j∈Ports

f(Doutj,t, Dout
f
j,t, HSoutj,t, HSout

f
j,t)

For t ∈ T , the data lines are denoted by Doutj,t and HSoutj,t
standing for the handshake signals of the switch port j in the

good copy of the switch. Throughout the paper, for any set

of signals X of the good copy, Xf denotes the corresponding

signals in the faulty copy.



For example, for a simple switch with a send signal for

handshake, considering data corruption as the target functional

failure, the output characteristic function is defined as:

fout =
∨

j∈Ports

T
∨

t=1

(Doutj,t 6= Dout
f
j,t) ∧ (sendj,t ∧ send

f
j,t)

where sendj,t is the send signal of the port j.

B. Example: Misrouting

Assume a simple switch with send as the handshake signal.

The send signal is set, whenever a valid flit is sent out from

the switch port. To model misrouting as the functional failure,

the output characteristic function is defined as:

1) The send signal in the good copy is not from the same

port as the send signal in the faulty copy. In other words,

the packet is sent via a wrong port:

∨

e,i∈Ports,

e6=i

T
∧

t=ch

(sende,t∧send
f
e,t)∧(sendi,t∧send

f

i,t) (1)

where ch = T − fpp + 1 enforces the condition to be

hold for the length of the packet.

2) The data is intact:

∨

e,i∈Ports,

e 6=i

T
∧

t=ch

(datai,t = data
f
e,t) (2)

where datai,t is the data sent by the good copy of the

switch.

The output characteristic function for misrouting will be:

fout = (1) ∧ (2)

C. Functional Failure Injection

Throughout this paper, we use the six functional failure

classes introduced in section II. For T being the number of

unrolled copies in the SAT instance, the output characteristic

functions (fout) are defined by the equations presented in

Table I. In the equations, sendi,t and datai,t respectively refer

to the send signal and data outputs corresponding to the port

i at the cycle t in the good copy of the switch.

Functional Failure fout

Misrouting As described in section IV-B

Data corruption

∨
i∈Ports

∨T
t=1

(datai,t 6= data
f
i,t)

∧(sendi,t ∧ send
f
i,t)

Flit loss
∨

i∈Ports

∨T
t=1

(sendi,t ∧ send
f
i,t)

Packet loss Flit loss holds for the packet length

Garbage flit
∨

i∈Ports

∨T
t=1

(sendi,t ∧ send
f
i,t)

Garbage packet Garbage flit holds for the packet length

TABLE I: Output characteristics of the Functional Failure Modes

So far, we have generated the CNFs of the sequential

switch ΦT
s , the faulty instance Φf,T

SF describing the structural

fault and ΦT
FF which describes the target functional failure

corresponding to Table I. The SAT-instance explaining the

relation between the target functional failure and the structural

faults, ΦR, is built using the definition of the functional failure

and the good and faulty copy of the switch:

ΦR = ΦT
FF ∧ ΦT

s ∧ Φf,T
SF . (3)

V. FAULT CLASSIFICATION

The SAT instance in Eq. (3) is used for fault classification.

By means of classification, the relation between structural

faults and the defined functional failure classes is extracted.

The fault classification algorithm is summarized in Alg. V.1.

Firstly, the CreateSAT function extracts the SAT instance for

the target functional failure mode, F . In addition, it builds ΦT
s ,

the good copy of the switch.

Algorithm V.1: CLASSIFICATION(F, {fl}, T )

F : functional failure mode
fl : structural fault list
T : cycles for the functional failure activation

ΦT
FF = CreateSAT(F );

ΦT
s = CreateSAT(ΦT

c );
while ({fl} <> null)


































pick fi from {fl}
{fl} = {fl} − fi
Φf,T

SF = CreateSAT(fi);

ΦR = ΦT
s ∧ ΦT

FF ∧ Φf,T
SF ;

Boolean S = Solve(ΦR);
if (S)
solution = solution ∪ {fi};

The algorithm iteratively picks a fault location from the fault

list. The faulty circuit (Φf,T
SF ) is then constructed according

to the selected fault location as explained in section III. The

complete SAT model, ΦR, is built as in Eq. (3).

The Solve routine searches for an assignment to the input

variables, so that ΦR is satisfiable. In other words, SAT

searches for a satisfying input pattern and any structural fault

fi ∈ fl, so that the functional failure occurs. It returns true

when a solution is found. In this case, the structural fault,

fi, is added to the set of solutions. Upon termination of the

algorithm, the solution includes a subset of structural faults

which cause F .

The classification results can be used to find the appropriate

fault tolerant technique for the NoC switch. For more probable

functional failure modes, a faster fault tolerant technique is

preferred, e.g., retransmission is commonly used to deal with

transient faults in NoCs. A check for detecting a functional

failure can be done either switch-to-switch or end-to-end.

Detecting a functional failure in a switch-to-switch manner

requires additional hardware and increases the component’s



latency. Nevertheless, an end-to-end retransmission introduces

a higher performance penalty in case of an error.

The classification does not only quantify the structural faults

in the functional failure classes, but also determines which

structural fault locations cause certain functional failures. This

information can be used to make a cost-aware fault tolerant

decision at multiple abstraction levels. For the functional

failures that are correctable at higher abstraction levels, no

fault tolerant feature is required to protect the corresponding

structural fault location at lower levels. For example, data

corruption can be detected and even corrected by adding an

error detection/correction code in the packet payload. But

misrouting is not easily detectable. The classification can

identify the structural fault locations which cause misrouting.

These structural fault locations should be protected by means

of a fault tolerant technique at low level.

VI. FUNCTIONAL TEST PATTERN GENERATION

The classification algorithm can also be used to generate

functional test patterns. Two conditions must be satisfied:

• The structural fault is activated: The CLF condition is true

in at least one time frame and leads to different values

of the faulty literals in the good and faulty circuit.

• The functional failure is activated: The functional failure

instance is satisfiable.

Fig. 4 shows the functional test generation flow. Primarily,

ΦFF is constructed from the functional failure library which

includes the functional failure modes. The library can be

extended in case of insufficient fault coverage.

The functional test patterns are produced using Alg. V.1.

Here, the solution includes not only the fault locations, but

also the satisfying input assignments which will be served as

the functional test pattern.

Synthesized 

Netlist

Functional 

Failure 

Library

Functional test generation

Sufficient coverage?

Save ATPG information
Functional 

Test Pattern

Yes

No

Update 

Library

Undetected 

Structural 

Faults

Fig. 4: Functional test generation

Since the functional failure library usually includes more

than one failure, a list of functional failures is given to

the classification algorithm to construct ΦT
FF . For FF =

{FF1, FF2, ..., FFm} being the set of m functional failures,

ΦT
FF is defined as:

ΦT
FF =

m
∨

i=1

ΦT
FFi

(4)

in which ΦT
FFi

is the SAT instance which describes the

functional failure FFi. The structural fault must be detectable

by at least one functional failure, therefore, a disjunction over

ΦT
FFi

is required. In fact, for test pattern generation, it is

sufficient that only one of the functional failures is activated.

If the structural fault coverage is not sufficient, the func-

tional failure library can be updated to improve the coverage,

which is beyond the scope of this paper. The classification

algorithm can identify the set of structural faults which does

not lead to any functional failure in the library.

VII. EXPERIMENTAL RESULTS

The efficiency of the presented fault classification approach

is evaluated using a typical switch of the mesh topology. It

consists of five input and output ports, crossbar multiplexers,

a router, and an additional control logic for handshake signals.

Handshake is performed by the send and receive signals which

indicate a valid output or input flit. The buffer_full signal

shows the state of input buffers as seen in Fig. 3. The switch

implements the wormhole XY routing and processes the input

channels in a round-robin fashion. The VHDL switch has

been synthesized with a commercial synthesis tool in the

lsi10k library, which is constrained to one- and two-input gate

primitives. The total cell area of the synthesized switch is

14940, where the cell area of a two input nand gate is 1

area unit. The memory elements are equipped with advanced

memory BIST, and hence are not considered in the fault

classification process. Although the experiments are performed

on a mesh switch, the methodology is design independent and

can be applied to other architectures as well.

The functional failure library consists of the six functional

failure classes of table I. For the experiments, the general CLF

fault modeling was restricted to stuck-at faults, but the method

can be easily extended to more complex structural faults.

The good and faulty switches and the output characteristic

functions of the functional failures were modeled as a SAT

instance. The sequential depth of the switch determines the

number of time frames, T , and the size of the SAT problem.

The defined input characteristic function guarantees functional

test patterns in the form of NoC packets.

A. Classification

The presented approach enables functional failure clas-

sification considering structural faults. Fig. 5 presents the

distribution of the structural faults among the functional failure

classes. According to the definition, any packet loss can be

categorized as flit loss as well. However in the experiments,

the faults which cause packet loss have not been counted for

flit loss. It is observed that packet loss, data corruption, and

garbage packet classes have the highest number of structural

faults. This implies that these faults are the most probable

functional failures that might be observed due to a structural



fault in the switch. Therefore, these functional failures should

be detected by a switch-to-switch fault tolerance technique.

The other three failure modes are less realistic and may be

detected end-to-end.

0

10

20

30

40

50

60

70

80

90

100

S
tr
u
ct
u
ra
l F
a
u
lt
s (
%
)

Stuck‐At 0

Stuck‐At 1

All

Fig. 5: Distribution of structural faults in functional failure classes

B. Structural Fault Coverage

The presented technique shows that among 27690 stuck-at

faults in the switch, 22101 faults are functionally testable; i.e.,

there exists an input assignment such that the fault causes one

of the specified functional failures. The fault coverage of the

functional test pattern generation is defined as:

Fault coverage(%) =
Functionally testable faults

Total number of faults
× 100 (5)

Table II summarizes the coverage results for the proposed

functional test pattern generation approach. The proposed

scheme achieves 79.82% structural fault coverage. Structural

tests like full-scan deliver full fault coverage. However, it

must be noted that some faults are functionally redundant and

therefore never become testable by a sequential test. As the

proposed method is sequential, the results are compared with a

sequential ATPG. Toward this, a commercial sequential ATPG

tool without any constraints is applied. In the same sequential

depth, it reports a fault coverage of 57.53%, while 2.79% of

the faults are untestable. The result reveals that there exists a

good correspondence between the introduced functional failure

modes and the structural faults in the switch. In addition, we

have achieved higher fault coverage compared to structural

sequential ATPG.

Fault Untestable
coverage (%) faults (%)

Proposed 79.82 20.18

Sequential ATPG 57.53 2.79

TABLE II: Functional test pattern generation results vs. ATPG

VIII. CONCLUSION

This paper presented an automated approach for functional

test pattern generation for NoC switches with high structural

fault coverage. The formal definition of functionalities of the

switch and the corresponding failure modes allow mapping of

failure modes to the switch structure in the form of clauses.

Thus, fault classification and test generation can be conducted

by modern SAT solvers.

In addition to the quantification of structural faults covered

by each functional failure mode, the experiments show an

effective classification resulting in high fault coverage of the

generated functional test. Moreover, the classification can be

used to select the appropriate fault tolerant technique while

trading off the area and timing constraints.

ACKNOWLEDGMENT

This work has been supported by the German Research

Foundation (DFG) under grant WU 245/12-1 (ROCK) and Ra

1889/4-1 (ROCK). The authors would like to thank Dr. Stefan

Holst for helpful discussions.

REFERENCES

[1] International Technology Roadmap, 2013.

[2] M. Radetzki, C. Feng, X. Zhao, and A. Jantsch, “Methods for Fault Tolerance in

Networks-on-Chip,” ACM Computing Surveys, vol. 46, no. 1, pp. 8:1–8:38, 2013.

[3] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for Digital, Memory,

and Mixed-signal VLSI Circuits. Kluwer Academic, 2002.

[4] L. Wang, C. Wu, and X. Wen, VLSI Test Principles and Architectures: Design for

Testability, ser. Systems on Silicon. Elsevier Science, 2006.

[5] P. Maxwell, I. Hartanto, and L. Bentz, “Comparing Functional and Structural Tests,”

in Proc. Intl. Test Conf. (ITC), 2000, pp. 400–407.

[6] J. Zeng, M. Abadir, G. Vandling, L. Wang, A. Kolhatkar, and J. Abraham, “On

Correlating Structural Tests with Functional Tests for Speed Binning of High

Performance Design,” in Intl. Test Conf. (ITC), 2004, pp. 31–37.

[7] H. Fang, K. Chakrabarty, and H. Fujiwara, “RTL DFT Techniques to Enhance

Defect Coverage for Functional Test Sequences,” Journal of Electronic Testing,

vol. 26, no. 2, pp. 151–164, 2010.

[8] H.-J. Wunderlich and S. Holst, “Generalized Fault Modeling for Logic Diagnosis,”

in Models in Hardware Testing. Springer Netherlands, 2010, pp. 133–155.

[9] N. Karimi, A. Alaghi, M. Sedghi, and Z. Navabi, “Online Network-on-Chip

Switch Fault Detection and Diagnosis Using Functional Switch Faults,” Journal

of Universal Computer Science, vol. 14, no. 22, pp. 3716–3736, 2008.

[10] A.-A. Ghofrani, R. Parikh, S. Shamshiri, A. DeOrio, K.-T. Cheng, and V. Bertacco,

“Comprehensive Online Defect Diagnosis in On-Chip Networks,” in Proc. VLSI

Test Symp. (VTS), 2012, pp. 44–49.

[11] A. Frantz, F. Kastensmidt, L. Carro, and E. Cota, “Dependable Network-on-Chip

Router Able to Simultaneously Tolerate Soft Errors and Crosstalk,” in Proc. Intl.

Test Conf. (ITC), 2006, pp. 1–9.

[12] J. Raik, V. Govind, and R. Ubar, “An External Test Approach for Network-on-a-

Chip Switches,” in Proc. Asian Test Symp. (ATS), 2006, pp. 437–442.

[13] M. Kakoee, V. Bertacco, and L. Benini, “A Distributed and Topology-Agnostic

Approach for On-line NoC Testing,” in Proc. intl. Symp. on Networks on Chip

(NoCS), 2011, pp. 113–120.

[14] K. Aisopos, C.-H. Chen, and P. Li-Shiuan, “Enabling System-Level Modeling

of Variation-Induced Faults in Networks-on-Chips,” Proc. Design Automation

Conference (DAC), pp. 930–935, 2011.

[15] A. Dalirsani, M. E. Imhof, and H.-J. Wunderlich, “Structural Software-Based Self-

Test of Network-on-Chip,” in Proc. VLSI Test Symposium (VTS), 2014.

[16] T. Bengtsson, S. Kumar, and Z. Peng, “Application Area Specific System Level

Fault Models: A case study with a simple NoC Switch,” Proc. Intl. Design and

Test Workshop (IDT), 2006.

[17] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded Model Checking Using

Satisfiability Solving,” Formal Methods in System Design, vol. 19, no. 1, pp. 7–34,

2001.

[18] A. Kunzmann and H.-J. Wunderlich, “An Analytical Approach to the Partial Scan

Problem,” Journal of Electronic Testing: Theory and Applications (JETTA), vol. 1,

no. 2, pp. 163–174, 1990.

[19] H. Konuk and T. Larrabee, “Explorations of Sequential ATPG using Boolean

Satisfiability,” in IEEE VLSI Test Symposium, 1993, pp. 85–90.

[20] P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli, “Combinational Test

Generation using Satisfiability,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 15, no. 9, pp. 1167–1176, 1996.

[21] G. Tseitin, “On the Complexity of Derivation in Propositional Calculus,” in

Automation of Reasoning. Springer Berlin Heidelberg, 1983, pp. 466–483.


