
Efficacy and Efficiency of Algorithm-Based

Fault Tolerance on GPUs

Wunderlich, Hans-Joachim; Braun, Claus; Halder, Sebastian

Proceedings of the IEEE International On-Line Testing Symposium (IOLTS’13) Crete,

Greece, 8-10 July 2013

doi: http://dx.doi.org/10.1109/IOLTS.2013.6604090

Abstract: Computer simulations drive innovations in science and industry, and they are gaining more and

more importance. However, their high computational demand generates extraordinary challenges for com-

puting systems. Typical highperformance computing systems, which provide sufficient performance and high

reliability, are extremly expensive. Modern GPUs offer high performance at very low costs, and they enable

simulation applications on the desktop. However, they are increasingly prone to transient effects and other re-

liability threats. To fulfill the strict reliability requirements in scientific computing and simulation technology,

appropriate fault tolerance measures have to be integrated into simulation applications for GPUs. Algorithm-

Based Fault Tolerance on GPUs has the potential to meet these requirements. In this work we investigate

the efficiency and the efficacy of ABFT for matrix operations on GPUs. We compare ABFT against fault

tolerance schemes that are based on redundant computations and we evaluate its error detection capabilities

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic

reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form

to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

http://dx.doi.org/10.1109/IOLTS.2013.6604090


Efficacy and Efficiency of Algorithm-Based Fault-Tolerance on GPUs

Hans-Joachim Wunderlich, Claus Braun, Sebastian Halder

Institute of Computer Architecture and Computer Engineering, University of Stuttgart

Pfaffenwaldring 47, D-70569, Germany, Email: {wu,braun}@informatik.uni-stuttgart.de

Abstract—Computer simulations drive innovations in science
and industry, and they are gaining more and more impor-
tance. However, their high computational demand generates
extraordinary challenges for computing systems. Typical high-
performance computing systems, which provide sufficient per-
formance and high reliability, are extremly expensive.

Modern GPUs offer high performance at very low costs, and
they enable simulation applications on the desktop. However,
they are increasingly prone to transient effects and other
reliability threats. To fulfill the strict reliability requirements
in scientific computing and simulation technology, appropriate
fault tolerance measures have to be integrated into simulation
applications for GPUs. Algorithm-Based Fault Tolerance on
GPUs has the potential to meet these requirements.

In this work we investigate the efficiency and the efficacy of
ABFT for matrix operations on GPUs. We compare ABFT
against fault tolerance schemes that are based on redundant
computations and we evaluate its error detection capabilities

Keywords-Scientific Computing, GPGPU, Soft Errors, Fault
Simulation, Algorithm-based Fault Tolerance

I. INTRODUCTION

Simulation technology and scientific computing are two of

the key forces that drive innovation in science and industry.

International research efforts, like the Stuttgart Research

Center for Simulation Technology1 (SimTech) or Caltech’s

Center for Advanced Computing Research2 (CACR), reflect

the growing importance of these research areas. Sophisti-

cated simulation applications, which are often dominated

by compute-intensive mathematical tasks, like linear alge-

bra matrix operations, generate extraordinary challenges for

contemporary computing systems. Typical high-performance

computing systems, which deliver sufficient performance

and high hardware reliability, are extremely expensive. How-

ever, the extensive architectural development of graphics

processing units (GPUs) within the last decade brought far-

reaching changes and the opportunity to solve many of these

challenges on the desktop. Modern GPUs left the niche of

visual data processing and emerged to fully programmable

many-core processor architectures. They exploit massive

on-chip parallelism and throughput optimization to deliver

tremendous floating-point computing performance at very

low costs. This enables simulations from very different do-

mains like EDA [1, 2], biology [3], or thermodynamics [4],

with significant speedups in the order of several magnitudes.

1http://www.simtech.uni-stuttgart.de/
2http://http://www.cacr.caltech.edu

The acronym GPGPU (General-Purpose Computations on

Graphics Processing Units) [5] has been coined for the use of

GPUs in such compute-intensive, non-graphical applications.

However, being manufactured in latest generation semicon-

ductor technology nodes of 28 nm and below, GPUs are

increasingly prone to transient effects, latent defects, and

different aging mechanisms. Although the impacts of these

reliability threats might be tolerable to a certain extent in

graphical applications, they may present a serious problem

for applications in scientific computing and simulation tech-

nology. Here, the reliability requirements are very high and

must be strictly adhered to.

• Extensive simulation runtimes and the associated costs

prohibit partial or even complete recomputations in case

of errors.

• Scientific applications mainly rely on floating-point

arithmetic and they demand stable and highly accurate

results.

• Scientific simulations are typically tuned for high ef-

ficiency and maximum performance. Hence, there is

only small room for the integration of fault tolerance

schemes.

• Potentially long chains of operations that are per-

formed on the data sets favor spreading of errors. Such

spreading errors and also silent data corruptions are

absolutely intolerable and demand early error detection

and correction.

Obviously, these requirements have strong implications on

potential fault tolerance measures.

Algorithm-Based Fault Tolerance (ABFT) is a software

fault tolerance technique that has the potential to meet the

high reliability requirements in scientific computing and

simulation technology. The basic idea of ABFT is to utilize

information redundancy by modifying algorithms to work

on encoded input data and to produce encoded results. In

[6] the ABFT approach is introduced for matrix operations

like multiplications, additions and LU decompositions. Here,

the rows and columns of input matrices are summed up

to form row- and column-checksums that are attached to

the matrices as additional columns or rows, respectively.

After the target operation has been performed, the result is a

so-called full-checksum matrix, whose checksum rows and

columns are used to detect errors. The moderate performance

overhead and the good error detection capabilities make

ABFT schemes particularly interesting for integration into



simulation applications on GPU many-core architectures.

In this work we investigate the efficacy and efficiency of

Algorithm-Based Fault Tolerance for GPU architectures and

floating-point arithmetic. We compare the performance of

ABFT for matrix multiplications against established ap-

proaches that are based on redundant computations. Fur-

thermore, we evaluate the error detection efficacy and the

inherent fault tolerance potential of floating-point arithmetic

for optimal error threshold determination.

II. RELATED WORK

Over the years, several approaches for ABFT schemes on

GPUs have been introduced, including [7–10]. Other works

propose the integration of duplication with comparison

(DWC) or triple modular redundancy (TMR). Both schemes

can be realized at different levels of granularity, from single

instructions that are executed multiple times up to threads

or complete kernel calls that are duplicated or triplicated.

Although DWC is able to detect errors, it halves the payload

throughput and it requires a full repetition of the performed

operation in case of an error. TMR has the advantage of

providing a correct result in case of a successful majority

vote. However, it effectively reduces the payload through-

put by 66%, and hence causes a significant performance

penalty, especially for large data sets. In [11] the authors

proposed the execution of redundant instructions by utilizing

unused instruction level parallelism on GPUs. Inspired by

Simultaneous Redundant Multithreading, the authors in [12]

proposed the execution of redundant threads to detect errors.

Both approaches work well for older generations of GPU

architectures, where only one kernel could be executed at a

time and the GPU was allocated by a single user. For modern

GPUs, which allow the parallel execution of multiple differ-

ent kernels and which comprise much more advanced hard-

ware thread schedulers, the number of ”free slots” for redun-

dant instructions or threads is significantly reduced. Hence,

the benefit of theses schemes diminishes. Checkpointing and

restart is also a well established technique to improve the

reliability in scientific computing, typically targeting large-

scale clusters or workstation grids. In [13] checkpointing

protocols for GPU/CPU systems are introduced, which use

GPU virtualization and overlapping memory copy and kernel

execution (Nvidia Streams). Compared to DWC, TMR and

ABFT, such checkpointing approaches are rather coarse-

grained and involve significant data transfer between the

GPU and the CPU.

III. GPU PROGRAMMING CHALLENGES

Although modern GPUs provide a very impressive computa-

tional performance, their architectures often demand careful

and insightful programming. Some of the points that have to

be kept in mind represent major challenges, especially with

respect to the integration of software-based fault tolerance.

• Whenever possible, parallel threads on GPUs should

follow a common control flow, since diverging threads

typically result in a serialized execution.

• The register files of GPUs comprise several thousands

of registers and all of these registers have to be shared

among all active threads. Hence, excessive per-thread

register usage reduces the number of concurrently ex-

ecuted threads significantly and should be avoided.

• Memory bandwidth on GPUs is a scarce ressource and

typical access times to the device memories are in the

range of several hundreds of clock cycles. This forces

bundled and well coalesced memory access patterns.

• Wherever possible, the small shared memories of GPUs

have to be utilized for caching and data re-use among

the threads.

• Inter-thread communication across the GPU and global

barrier synchronization are very expensive and should

be avoided.

Even more than for standard GPU application development,

these aspects have to be kept in mind when software-

or algorithm-based fault tolerance mechanisms have to be

integrated with minimized performance impact.

IV. EFFICIENCY OF ABFT ON GPUS

To achieve maximum performance for ABFT-protected ma-

trix multiplications on GPUs, the multiplication itself has

to be very efficient, since it will dominate the runtime.

Moreover, the required steps for encoding and checking of

the produced results have to be designed in a way, that they

utilize the hardware characteristics of modern GPUs.

The realized ABFT matrix multiplication uses a partitioned

encoding similar to [14], and a flexible matrix data structure,

which allows the handling of matrices in different encoded

and non-encoded states. The partitioned encoding matches

the block-based computation approach of GPUs perfectly

and it improves the error detection capabilities, since the

checksums are computed over smaller submatrices and not

over the possibly very large input matrices.

The required computational steps are separated into three

different kernels:

• Kernel #1 handles the encoding of the input matrices

and the computation of the reference checksums for the

check of the final result. Given a n × n matrix and a

block size of b, the kernel executes n ·b parallel threads

to compute the row checksums and n ·b parallel threads

to compute the column checksums. Since every matrix

element is read only once during this step, additional

caching in the shared memories gives no advantage.

• Kernel #2 performs a block-based matrix multiplica-

tion and utilizes the shared memories to achieve high

performance. The block size b is chosen to match the

thread block size. Before the actual computation starts,

the elements of the input matrices are loaded into



the shared memories to reduce the number of global

memory accesses.

• Kernel #3 handles the check of the final result and

marks erroneous results for subsequent correction. The

computation of the required reference checksums for

the comparison is performed analogous to Kernel #1. In

case of detected errors, the corresponding blocks (sub-

matrices) are marked for subsequent error correction.

The separation of the computational steps into different GPU

kernels has several advantages. First, each kernel can be

optimally parametrized for the task it performs. This means

that we can utilize a maximum number of threads for the

checksum encoding, the multiplication and the checking.

Second, the encoding and checking kernels can be called

outside of the actual multiplication to verify the matrix data

in memory. This can be very useful on GPUs without ECC-

protected memory. Third, the encoding and checking kernels

can be used for other ABFT-protected matrix operations on

the GPU, like matrix additions or LU decompositions.

The realized ABFT matrix multiplication has been evaluated

over different matrix dimensions and the runtimes have

been compared to the unprotected version of the matrix

multiplication and to a TMR approach. The TMR version

computes the matrix multiplication three times and compares

the results. As baseline, the same computations have been

performed on a single core of the host CPU.

Matrix CPU GPU unprot. GPU TMR GPU ABFT
Dim. time in s time in s time in s time in s

32
2 8.5 0.04 0.06 0.09

64
2 29.5 0.04 0.06 0.09

128
2 102.5 0.04 0.09 0.18

256
2 131.5 0.15 0.44 0.45

512
2 1232 1.1 4.3 1.6

1024
2 9731.5 8.4 25.2 11.3

2048
2 75287.5 70.9 200.9 78.9

3072
2 328839 229.9 684.5 258.6

4096
2 2184289.5 554.6 1633.8 619.9

Table I
PERFORMANCE COMPARISON BETWEEN THE UNPROTECTED GPU

MATRIX MULTIPLICATION, THE TMR VARIANT, AND ABFT.

The results in Table I show that the runtime overhead for

small matrices is comparable between the TMR approach

and the ABFT matrix multiplication. This is mainly due to

the kernel invocation overhead. However, for more interest-

ing matrix dimensions beginning with 512 × 512, the low

performance overhead of the ABFT kernels becomes visible.

Besides the computational overhead of the TMR scheme, its

memory requirements are much worse, compared to ABFT,

since all matrices have to be kept in memory three times.

V. EFFICACY OF ABFT ON GPUS

The efficacy of ABFT strongly depends on the successful

distinction between critical soft errors that affect the final

result, and those soft errors, whose erroneous values reside

within the roundoff margin. The first group has to be

detected and corrected in any case to provide reliable results.

The second group does not harm the result, but it affects

the performance negatively. Since we assume that the error

detection thresholds are defined by the target application’s

accuracy level, ABFT is able to deliver full error coverage,

with respect to these requirements. However, to provide

effective and efficient ABFT schemes, the fraction of false

positives has to be reduced.

The assessment and optimization of ABFT schemes requires

detailed information on the soft error vulnerability of the

underlying hardware. One option for obtaining such data

are radiation experiments like those that have been success-

fully performed for GPUs in [10]. However, such statisti-

cal experiments and functional evaluations are not able to

exhaustively characterize the impact of single event effects

with respect to the structure of the underlying hardware.

To solve this problem, we developed a general structural

hardware model and an integrated multi-level simulation

environment. The hardware model is independent of vendor-

specific hardware information, it provides transferable soft

error data, and it offers large flexibility for the adaption

to new hardware structures. The simulation environment

utilizes gate-level logic simulation and fault injections to

gain detailed soft error data, and it combines this data

with the native execution of ABFT schemes. The hardware

basis for the model is a synthesized netlist of an industry-

grade floating-point unit (FPU), which fully complies with

the IEEE-754 standard. The fault injections are performed

exhaustively, which means that we inject line flips into each

gate of the FPU and not only into the state elements. Given

that the structural model of the FPU consists of ca. 22.000

logic gates, 22.000 fault injections are performed for the

characterization of a single operation. Since the simulation

environment is highly optimized and parallelized, such a full

characterization takes only a few seconds. The injection time

and the duration can be arbitrarily chosen. The simulation

framework allows the tracking of single clock cycles during

the execution of a floating-point operation, and it delivers

detailed data on the quantitative and qualitative outcomes of

the injected faults.

We distinguish between the following errors:

• Masked errors are injected faults that do not cause any

change in the circuits state or the result value.

• Visible errors are injected faults that cause either the

state of the circuit, the computed result or both to be

faulty.

• Value errors are those visible errors that cause the final

result to be erroneous. These are the errors that are

targeted by the ABFT scheme.



Table II shows the results of a soft error characterization of

the basic floating-point operations FADD, FSUB, FMUL,

and FDIV. The fraction of masked errors and visible errors

are given, as well as the fraction of total value errors.

FP Masked Visible Total Value
Op. Errors (%) Errors (%) Errors (%)

FADD 67.8 32.2 14.5

FSUB 67.8 32.2 14.5

FMUL 63.2 36.8 24.3

FDIV 72.5 27.5 24.5

Table II
SOFT ERROR CHARACTERIZATION OF FLOATING-POINT OPERATIONS.

DWC and TMR have the advantage of fast result checking

at bit-level. Since the same computations are performed

with the same input data on the same hardware, the results

have to match exactly in the error free case. However,

in a further experiment we were able to show, that there

exist non-negligible fractions of visible soft errors, which

do not affect the final result of a computation, but which

would cause DWC and TMR to trigger a recomputation.

Here, the ABFT scheme is able to classify these soft errors

correctly and hence to ignore them. To determine the exact

fractions, we performed 78126 evaluations of the ABFT

matrix multiplication, where a floating-point operation was

randomly chosen for fault injection. Table III shows the

results of this campaign. The error detection thresholds have

been determined beforehand.

Matrix Error Det. Visible Soft Errors
Dim. Threshold below Err. Det. Threshold(%)

4x4 1.78e-15 6.64

6x6 3.60e-15 7.88

8x8 7.50e-15 8.97

16x16 4.30e-14 10.56

24x24 1.15e-13 11.40

32x32 2.30e-13 11.86

Table III
SOFT ERRORS BELOW THE ERROR DETECTION THRESHOLD THAT

WOULD CAUSE DWC/TMR TO TRIGGER RECOMPUTATION.

Given the results of the performance evaluation, fractions

of 6.64% to 11.86% soft errors that would cause DWC or

TMR to replay, render these techniques highly unattractive

and demonstrate the efficiency of ABFT.

VI. CONCLUSION

In this work we investigated the efficiency and the efficacy

of Algorithm-Based Fault Tolerance on modern GPUs. We

evaluated an ABFT matrix multiplication with respect to

the performance overhead and we compared it to TMR.

For the evaluation of the ABFT error detection efficacy,

we presented an integrated simulation environment and a

structural hardware model, which allows the exhaustive soft

error characterization of floating-point arithmetic operations.

The obtained soft error data has been used to evaluate the

ABFT matrix multiplication.

The results show, that ABFT can be integrated into scientific

computations on GPUs with low performance overhead, and

that it provides very good error detection capabilities. In

contrast to schemes like DWC and TMR, ABFT is also

able to utilize roundoff effects, to avoid unnecessary error

corrections.

VII. ACKNOWLEDGMENT

The authors would like to thank the German Research

Foundation (DFG) for financial support of the project within

the Cluster of Excellence in Simulation Technology (EXC

310/1) at the University of Stuttgart

REFERENCES

[1] M. A. Kochte et al., “Efficient Fault Simulation on Many-core Processors”, in
Proceedings of the 47th ACM/IEEE Design Automation Conference (DAC’10).
ACM, 2010, pp. 380–385.

[2] S. Holst, E. Schneider, and H.-J. Wunderlich, “Scan Test Power Simulation on
GPGPUs”, in Proceedings of the 21st IEEE Asian Test Symposium (ATS12).
IEEE Computer Society, 2012, pp. 155–160.

[3] C. Braun et al., “Parallel Simulation of Apoptotic Receptor-Clustering on
GPGPU Many-Core Architectures”, in IEEE International Conference on Bioin-
formatics and Biomedicine (BIBM), 2012, oct. 2012, pp. 1–6.

[4] C. Braun et al., “Acceleration of Monte-Carlo Molecular Simulations on Hybrid
Computing Architectures”, in IEEE 30th International Conference on Computer
Design (ICCD), 2012, 30 2012-oct. 3 2012, pp. 207–212.

[5] J. Nickolls and W. Dally, “The GPU Computing Era”, IEEE Micro, vol. 30,
no. 2, pp. 56–69, march-april 2010.

[6] K.-H. Huang and J. A. Abraham, “Algorithm-Based Fault Tolerance for Matrix
Operations”, IEEE Transactions on Computers, vol. C-33, no. 6, pp. 518 –528,
June 1984.

[7] C. Braun and H.-J. Wunderlich, “Algorithm-Based Fault Tolerance for Many-
Core Architectures”, in Proceedings of the 15th IEEE European Test Symposium
(ETS’10). IEEE Computer Society, 2010, pp. 253–253.

[8] C. Braun and H.-J. Wunderlich, “Algorithmen-basierte fehlertoleranz für many-
core-architekturen; algorithm-based fault-tolerance on many-core architectures”,
it - Information Technology, vol. 52, no. 4, pp. 209–215, 2010. [Online].
Available: http://www.it-information-technology.de/

[9] C. Ding et al., “Matrix multiplication on gpus with on-line fault tolerance”, in
9th IEEE International Symposium on Parallel and Distributed Processing with
Applications (ISPA’11), 2011, pp. 311–317.

[10] P. Rech et al., “An Efficient and Experimentally Tuned Software-Based Harden-
ing Strategy for Matrix Multiplication on GPUs”, IEEE Transactions on Nuclear
Science, vol. XX, no. 99, p. Accepted for publication, 2013.

[11] M. Dimitrov, M. Mantor, and H. Zhou, “Understanding Software Approaches
for GPGPU Reliability”, in Proceedings of 2nd Workshop on General
Purpose Processing on Graphics Processing Units, ser. GPGPU-2.
New York, NY, USA: ACM, 2009, pp. 94–104. [Online]. Available:
http://doi.acm.org/10.1145/1513895.1513907

[12] J. Backer and R. Karri, “Balancing Performance and Fault Detection for
GPGPU Workloads”, in 30th IEEE International Conference on Computer
Design (ICCD’12), 2012, pp. 518–519.

[13] S. Laosooksathit, N. Naksinehaboon, and C. Leangsuksan, “Two-level check-
point/restart modeling for gpgpu”, in Computer Systems and Applications
(AICCSA), 2011 9th IEEE/ACS International Conference on, 2011, pp. 276–
283.

[14] J. Rexford and N. Jha, “Algorithm-Based Fault Tolerance for Floating-Point Op-
erations in Massively Parallel Systems”, in Proc. IEEE International Symposium
on Circuits and Systems (ISCAS ’92), vol. 2, 1992, pp. 649–652.


	IOLTS2013_Wunderlich.pdf

