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Abstract—Efficient access to on-chip instrumentation is
a key enabler for post-silicon validation, debug, bringup or
diagnosis. Reconfigurable scan networks, as proposed by e.g.
the IEEE Std. P1687, emerge as an effective and affordable
means to cope with the increasing complexity of on-chip
infrastructure.

To access an element in a reconfigurable scan network,
a scan-in bit sequence must be generated according to the
current state and structure of the network. Due to sequential
and combinational dependencies, the scan pattern generation
process (pattern retargeting) poses a complex decision and
optimization problem.

This work presents a method for scan pattern gener-
ation with reduced access time. We map the access time
reduction to a pseudo-Boolean optimization problem, which
enables the use of efficient solvers to exhaustively explore
the search space of valid scan-in sequences. This is the
first automated method for efficient pattern retargeting in
complex reconfigurable scan architectures such as P1687-
based networks. It supports the concurrent access to multiple
target scan registers (access merging) and generates reduced
(short) scan-in sequences, considering all sequential and
combinational dependencies. The proposed method achieves
an access time reduction by up to 88x or 2.4x in average
w.r.t. unoptimized satisfying solutions.
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I. INTRODUCTION

As the complexity of designs increases, more and

more instruments are integrated into on-chip infrastructure.

Examples include structures for post-silicon validation,

debug, bringup, or diagnosis. Embedded instrumentation

is also used during operation in the field for power-up

initialization, monitoring, error management, fault toler-

ance or repair [1], [2], [3]. Such tasks require flexible, fast

and cost-effective access to the on-chip instrumentation.

Reconfigurable Scan Networks (RSNs) emerge as a viable

and scalable option, offering highly flexible infrastructures

with distributed configuration in various topologies.

An example of a simple RSN is given in Fig. 1. The

one-bit scan registers S1 and S3 control the access to two

multi-bit registers S2 and S4, respectively. The scan-in

data is shifted through registers S2 and S4 only if the

previous access assured that S1 = S3 = 1.

The ongoing effort IEEE Std. P1687, also known as

IJTAG, aims to standardize the design and access to

RSNs, extending the widely adopted IEEE Std. 1149.1

(JTAG) [1]. Recently, the optimal construction of scan

hierarchies [4] and access scheduling [5] was proposed

for regular scan architectures compliant with P1687. These

and similar contributions are based on scan networks with

reconfigurability limited to scan bypasses (called Segment

Insertion Bit, or SIB). In this particular subclass of RSNs,

scan pattern generation is a simple decision problem. To

access a scan register, the required scan-in sequences (scan

patterns) are inferred directly from the structure of the

network.
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Figure 1. Example of a reconfigurable scan network and its terminology

In contrast, for general RSNs, scan pattern generation–

called pattern retargeting in P1687–poses a much more

difficult problem. Control signals for scan registers may

depend on other scan registers in the same or different

hierarchy levels. Not all scan registers may be accessible

at a time and multiple access operations are typically

required to reconfigure the network and access the target

register. Due to sequential dependencies, scan pattern gen-

eration is an NP-hard decision problem which is similar to

sequential stuck-at fault Automatic Test Pattern Generation

(ATPG) [6].

Due to reconfigurability, an access to a scan register

can be realized by many scan-in sequences. Possible

solutions greatly differ in the number of bits that need

to be shifted in. Table I shows an example of scan pattern

generation for the RSN from Fig. 1. In the initial state,

register S4 is inaccessible since S3 = 0. To access the

target S4, register S3 is set to 1 in operation no. 1, and

S4 is accessed in operation no. 2. The total access time

of operations 1 and 2, which is the number of bits that

are shifted in, amounts to 4 + 2·| S2 | + | S4 |. This is a

valid solution which could be obtained with the approach

in [6], but the access time and the corresponding scan data

volume is not optimal. It can be reduced if S2 is bypassed:

Operations 1* and 2* perform an optimized access with

minimal access time. If such minimization of total access

time for multiple accesses (access merging) is targeted,

the size of the search space increases drastically.

Table I: PATTERN GENERATION EXAMPLE FOR THE RSN FROM FIG. 1

initial state

operation 1

operation 2

2+|S2|

2+|S2|+|S4|

access timeS1 S2 S3

1 X 0

W1 ACCESS W1 BYPASS

W1 ACCESS W0 ACCESS

X

S4

operation 1*

operation 2*

2+|S2|
2+|S4|

W0 ACCESS W1 BYPASS

W1 BYPASS W0 ACCESS

u
n

o
p

t.
o

p
t.

initial state 1 X 0 X

This paper presents for the first time a method for

access time reduction in reconfigurable scan networks. Our

method enables efficient access to embedded instruments,

e.g. for post-silicon validation, debug, bringup, diagnosis,



or monitoring. Note that this method does not replace scan

test pattern generation or test scheduling.

We formalize RSNs and access mechanisms with a

compact model which is transformed into a set of clauses

and a cost function. We propose an affordable, parallelized

pattern generation procedure based on pseudo-Boolean

optimization. For a given bound on the number of access

operations, the proposed method guarantees that the gen-

erated patterns have the minimal length. Our experimental

results show that such an optimization method is crucial

for complex RSNs, reducing the access time by a factor

of up to 88x. Consequently, our method is robust and

more general than algorithms that are developed for only

specific reconfigurable architectures, such as [7] for scan

bypasses.

The following section introduces the terminology used

across the paper. Section III describes the modeling of the

network. Section IV presents the scan pattern generation

procedure, followed by experimental results in Section V.

II. TERMINOLOGY

Reconfigurable scan networks are usually accessed

through a JTAG-compliant Test Access Port (TAP). An

RSN can be viewed as a reconfigurable Test Data Register

(TDR in IEEE Std. 1149.1/JTAG) with variable length.

The logic state of the RSN determines which scan registers

in the network are currently accessible. The RSN state may

be changed by rewriting the content of accessible registers.

RSNs can be decomposed into basic building com-

ponents, such as scan registers, multiplexers, or combi-

national logic blocks. In this paper, we follow a general

definition of RSNs, as described below. Fig. 1 shows the

terminology at an exemplary RSN.

The basic building block of an RSN is a scan segment

(Fig. 2a). In the simplest case, a scan segment is a

shift register composed of one or more scan flip flops

sharing the select control input. When the select signal

of a segment is active (segment is selected) during a

capture operation, the shift register is loaded with data

from outside of the RSN, e.g. with output of an on-

chip instrument or combinational logic. If the segment

is selected during a shift operation, data is shifted from

the segment’s scan-input, through its register bits, to the

scan-output of the segment.

Optionally, a scan segment may include a shadow latch

which is stable during the shift operation (as in JTAG test

data registers). The optional elements of a scan segment

are dashed in Fig. 2a. When the scan segment is selected

during an update operation, the shadow latch is loaded

from the shift register. A scan segment with a shadow latch

may be used for bidirectional communication with an on-

chip instrument. Scan segments with shadow latches are

also used to drive internal control signals, such as select

inputs of other scan segments (e.g. S1 and S3 in Fig. 1).

An RSN may include scan multiplexers, i.e. multiplex-

ers which control the path through which the data is shifted

in the RSN. For instance, the two scan multiplexers in

Fig. 1 allow to bypass scan segments S2 and S4. The

control signal of a scan multiplexer is called address and

Scan Segment

Shift register

Shadow register

Instrument

scan

in

scan

out

select

to internal 

control signals

capture shift update

global control signals internal

capture

shift

update

S

TCK ...

...

...

...

C U

(a) (b)

Figure 2. (a) Scan segment; (b) Capture, Shift, Update (CSU) operation

specifies the selected scan input.

The state of both the select control inputs of scan

segments and address inputs of scan multiplexers depends

on the logic state of the RSN itself: These internal control

inputs may be driven by arbitrary combinational logic

blocks that take their input from shadow latches of scan

segments (cf. Fig. 2a). For instance, all control signals in

Fig. 1 are driven directly by the shadow latch of either

scan segment S1 or S3.

A reconfigurable scan network has a primary scan-

input and a primary scan-output, as well as global control

inputs that enable the capture, shift, and update operations

and are distributed to all scan segments. Optionally, an

RSN may have external control inputs that drive internal

control inputs (either directly or through combinational

logic).

Two scan segments are directly connected if their

scan-out and scan-in ports are connected either by a net

or through a multiplexer. A scan path is a non-circular

sequence of directly connected scan segments starting at

a primary scan-in port and ending at a primary scan-out

port. A scan path is active if and only if the select signals

for all on-path scan segments are asserted and all on-paths

multiplexers address the input that belongs to the active

scan path. In Fig. 1, if S1 = 1 and S3 = 0, the active scan

path goes through S1, S2, S3 (S4 is bypassed).

A scan configuration is the logic state of all sequential

elements and external control inputs. It is assumed that

after reset (or power-up) all sequential elements are in a

known state (either a ’0’ or a ’1’). A scan configuration is

valid if and only if: (i) at least one active scan path exists

and (ii) scan segments that do not belong to the active

scan path are deselected. This ensures that the shift-in

data is delivered to the target scan segments, the captured

data is shifted towards the primary scan-out, and all scan

segments that do not take part in the access (i.e., do not

belong to the active scan path) are stable.

The basic access to the scan network is an atomic (in-

separable) operation that consists of three phases: capture,

shift, and update (CSU), cf. Fig. 2b. During capture, the

shift registers on the active scan path may latch new data.

This data is shifted out during the shift phase, while new

scan data is shifted in. Finally, during the update phase,

the shifted-in data is latched in the shadow registers on

the active scan path.

A read or write access to a scan register in the network

requires that the accessed register is part of an active scan

path (cf. Fig. 1). A scan access is a sequence of CSU



operations required to reconfigure the scan network and

access the target registers. Access time is the number of

clock cycles that are required to perform the scan access,

including the update and capture cycles of each CSU.

For the sake of brevity, we assume that the input select

of a scan segment enables all the three phases of a CSU

operation: Whenever a segment is selected, its state is

both captured and updated by the CSU operation. An

extension with capture/update disable control signals is

straightforward [6].

III. CSU-ACCURATE RSN MODEL (CAM)

Our scan network model follows the modeling ap-

proach presented in [6]. It captures the structural and

functional characteristics of RSNs in a formal way. The

model can be easily derived from any structural description

of an RSN: either a gate- or RT-level netlist or high-level

representations, e.g. Instrument Connectivity Language

(ICL) defined by P1687. In the following, we present a

compact representation of this model.

Definition 3.1: The Capture-shift-update-Accurate

Model (CAM) of an RSN is a tuple

M = {S, I, C, Active} that consists of a set of

state elements S, a set of external control inputs

I , a set of scan configurations C, and a predicate

function Active. Each state element s ∈ S corresponds

uniquely to a 1-bit scan register in the network. A scan

configuration c ∈ C : C ⊆ (S ∪ I) × {0, 1} is the

state of all elements in S and control inputs in I . Let

c(s) : S 7→ {0, 1} be the function that denotes the state of

s ∈ S under configuration c ∈ C. The predicate function

Active : C × S 7→ {0, 1} assigns each state element

s ∈ S in scan configuration c ∈ C a Boolean predicate

Active(c, s). Predicate Active(c, s) is 1 iff the scan

segment corresponding to s belongs to the active scan

path in c and c is valid.

In the following, we describe the construction of pred-

icates (Sec. III-A) and we define a characteristic function

that captures the effect of a CSU operation (Sec. III-B).

A. Valid Scan Configuration

To construct the predicates, we need to distinguish

valid scan configurations from invalid ones (cf. Sec. II). To

this end, we construct a Boolean function V : C 7→ {0, 1}
that evaluates to 1 iff the scan configuration is valid, i.e.

when there exists a well formed scan path and all off-path

scan segments are deselected. We construct function V
piecewise as a conjunction of the form V =

∧
s∈S v(s),

where v(s) evaluates to true iff the local scan configuration

of the scan segment corresponding to s is valid, as

explained below.

For a scan segment s with a single predecessor

p ∈ pred(s) and a single successor n ∈ succ(s) (cf.

Fig. 3a), it is required that both p and n be selected if s
is selected, such that scan data is not lost. Thus:

v(s) := select(s) → [select(p) ∧ select(n)]

For a scan segment s with a single predecessor p and

multiple successors (cf. Fig. 3b), a valid scan configuration

requires that exactly one successor of s is selected if s is

selected. This is captured by the following formula v(s)
which combines formulas (1) and (2) below:

v(s) := [select(s) → select(p)] ∧ (1) ∧ (2)

select(s) →
∨

n∈succ(s)
select(n) (1)

∀nk,nl∈succ(s),nk 6=nl
: [select(nk) → ¬select(nl)] (2)

This assures that in case of a branching scan path

(fanout>1) only one branch is active, i.e. there are not

multiple selected successors.

For a scan segment s with a single successor n
and multiple predecessors selected by a multiplexer (cf.

Fig. 3c), a valid scan configuration requires that exactly

one predecessor of s is selected if s is selected. If a

predecessor of s is selected, the address of the multiplexer

must be correctly set:

v(s) := [select(s) → select(n)] ∧ (3) ∧ (4)

select(s) →
∨

p∈pred(s)
select(p) (3)

∀p∈pred(s) : [select(p) → address = addr(p)] (4)

This assures that in case of a multiplexed scan path the

active path is correctly routed.

In case of a node s with multiple predecessors

and multiple successors, the following formula cap-

tures the condition for a valid scan configuration:

v(s) := (1) ∧ (2) ∧ (3) ∧ (4).
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Figure 3. (a) Chained, (b) branching and (c) multiplexed scan substruc-
tures

With the function V , predicate Active(s) is defined

as:

Active(s) = select(s) ∧ V.

The Boolean select functions are obtained by traversing

the input cones of these control signals in the netlist.

B. Transition Relation of the CSU-Accurate Model (CAM)

The CAM transition relation models the effect of a

CSU operation which we consider atomic. A CSU opera-

tion may arbitrarily change the state of all scan segments

on the active scan path, since any data may be shifted into

those segments from the primary scan input. We capture

this behavior with a transition relation, as defined below.

Definition 3.2: The transition relation of a CAM

M = {S, I, C, Active} is defined as a set T ⊆ C × C
with the following characteristic function:

T (c1, c2) :=
∧

s∈S

[(c1(s) ⊕ c2(s)) → Active(c1, s)]

where c1, c2 ∈ C. The transition relation T includes all

pairs of scan configurations (c1, c2), such that c2 can be

reached from c1 within one CSU operation.



The characteristic function of the transition relation

defines the requirement for state changes: If the state of an

element s differs in two consecutive scan configurations

c1 and c2, the active scan path must be well formed and

the corresponding scan segment must be selected in scan

configuration c1, which is when Active(c1, s) = 1, i.e.

when s is selected in a valid scan configuration c1.

IV. PATTERN RETARGETING

An access to a scan segment may require several CSU

operations to put the target scan segment on the active

scan path. In the following, we formulate the problem

of computing the minimal (shortest) scan-in sequence

that implements an access. As the search for the global

minimum may be prohibitively expensive, we propose an

affordable pattern generation procedure which is based

on pseudo-Boolean optimization. The proposed method is

applicable to access merging, i.e. generation of efficient

scan-in sequences that access multiple scan elements dur-

ing one or multiple CSU operations.

A. Problem Formulation

We search for the scan pattern sequence that must

be shifted into the RSN during one or multiple CSU

operations to reach a certain target scan configuration with

minimal access time. We specify a scan access by its initial

scan configuration c0 ∈ C and target scan configuration

ct ∈ C. We denote the access by (c0, ct).
Given is the CAM of an RSN M = {S, I, C, Active}

with transition relation T , and a scan access (c0, ct). Scan

pattern generation is the computation of a valid sequence

of n ∈ N
+ consecutive scan configurations c1, c2, . . . , cn

such that the following conditions hold:

cn = ct ∧ ∀i=1...n ((ci−1, ci) ∈ T ) ; (5)

and the solution minimizes the scan access time (number

of required clock cycles) expressed with the following

pseudo-Boolean cost function:

Cycles(c0, c1, . . . , cn):=2n+

n−1∑

i=0

∑

s∈S

Active(ci, s). (6)

Note that n is the number of CSU operations required for

the optimal solution, which is a priori unknown.

Condition (5) is satisfied iff c0, c1, . . . , cn is a valid

sequence of consecutive scan configurations, such that

the last configuration equals the target scan configuration.

Scan access time Cycles(c0, c1, . . . , cn = ct) given by

formula (6) amounts to the number of capture and update

cycles (2n) plus the number of required shift cycles in each

scan configuration, except for the target scan configuration

ct. The number of required shift cycles, i.e. the scan-

in pattern length, equals the number of predicates that

evaluate to 1, since each predicate corresponds to a 1-bit

scan register, and the predicate is true iff the corresponding

scan register is part of the active scan path.

The search for the minimal access sequence with the

globally minimal access time is a hard problem. The

search space has two dimensions: the number of required

CSU operations n, and the Boolean state of all scan

segments in n+1 scan configurations. Note that the global

minimum is not necessarily found for the minimal number

nmin of CSU operations required to perform the access,

i.e. to satisfy formula (5). Often, the access time can be

reduced by allowing additional CSU operations (see Fig.

4).
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Figure 4. Example of a minimal access time curve

In principle, the global minimum can be found with an

iterative procedure: Let Cyclesn be the minimal access

time with n CSU operations. Compute the shortest access

sequences for n = 1, 2, . . . , nbound CSU operations. Note

that a CSU operation always incurs an access overhead of

2 cycles (cf. formula (6)). Thus, a solution with n CSU

operations is the global minimum if the access time of

all solutions with up to nbound CSU operations is not less

than Cyclesn, where:

nbound < ⌈Cyclesn/2⌉.

In this case, the solution with n CSU operations is

guaranteed to be the global minimum since the access time

of all solutions with at least nbound CSU operations is at

least Cyclesn due to the overhead of 2 cycles per CSU

operation (cf. Fig. 4).

In practice, due to high computational effort, the

search for the minimal solutions with up to nbound CSU

operations may be too expensive. Our experiments show,

however, that the access time is significantly reduced by

allowing just a few additional CSU operations.

The following Sec. IV-B explains merging of concur-

rent read and write accesses to multiple scan segments.

Sec. IV-C describes how we generate an access sequence

with the minimal access time for a given (fixed) number

of CSU operations. In Sec. IV-D we present an affordable

pattern generation procedure.

B. Access Merging

The challenge of access merging is to find the optimal

order of multiple accesses to scan segments that results in a

minimal scan-in sequence. The target scan segments must

have their target values in the final scan configuration ct,

but the order in which the merged accesses are performed

is not specified. It is therefore sufficient to specify the

concurrent access to multiple scan segments by its initial

and target scan configurations (c0, ct)
Specifying read accesses in this way restricts them to

the last CSU operation. To improve merging flexibility, a

read access may be specified by ensuring that during n
CSU operations the target segment s ∈ S belongs to the

active scan path in one of the intermediate scan configura-

tions, i.e.
∨

i=0...n−1 Active(ci, s) is true. Condition (5)

is extended with such disjunctions for read accesses.



C. Mapping to Pseudo-Boolean Optimization

A pseudo-Boolean optimization problem is to find an

assignment to the Boolean variables (x1, x2, . . . , xk) that

leads to the minimal value of a pseudo-Boolean cost

function A among all assignments that satisfy a Boolean

formula Ψ. The pseudo-Boolean cost function has the

form:

A(x1, x2, . . . , xk) = c0 +

k∑

i=1

ci · xi

where c0, c1, . . . , ck ∈ Z and xi ∈ {0, 1}. Pseudo-Boolean

optimization can be performed for instance by incremental

SAT solving techniques with pseudo-Boolean constraints

translation to SAT [8], or speculative model enumeration

techniques [9].

According to condition (5), an access (c0, ct) is imple-

mented by a sequence of scan configurations c0, c1, . . . , cn

iff the following Boolean formula is satisfied:

Access(c0, ct, n) :=
∧

s∈S

(cn(s) = ct(s)) ∧

∧

i=1...n

T (ci−1, ci) (7)

This formula is transformed into a conjunctive normal

form (CNF) or a set of clauses. ci(s) are considered free

variables for i = 1 . . . n − 1 and s ∈ S. If the formula is

satisfiable, there exists a sequence of scan configurations

c0, c1, . . . , cn that describes a valid scan access, such that

cn = ct. Otherwise, if the formula is unsatisfiable, no scan

access with n CSU operations exists.

The formula Access(c0, ct, n), given by (7), is subject

to pseudo-Boolean optimization with the cost function

Cycles(c0, c1, . . . , cn), given by (6). The satisfying as-

signment (optimization solution) provides the state of all

scan segments in scan configurations c1 . . . cn−1. The

scan-in sequence that implements the scan access is

derived from the satisfying assignment: The i-th CSU

operation is fully specified by a pair of scan configurations

ci−1 and ci. Configuration ci−1 specifies the active scan

path. An element s ∈ S belongs to the active scan path

iff Active(ci−1, s) = 1. Configuration ci specifies the

content of scan segments and so provides the scan-in

sequence for the i-th CSU operation. The scan-in sequence

is guaranteed to have the minimal access time in number

of clock cycles for the given number of n CSU operations.

D. Pattern Generation Procedure

Our pattern generation procedure is based on a heuris-

tic that finds a local access time minimum (cf. Fig. 4):

We search for access sequences with increasing number of

CSU operations as long as allowing more CSU operations

provides a reduction of access time.

Let Cyclesn be the value of the cost function (6)

after optimization with n CSU operations. Potentially, a

solution with lower access time can be found if more CSU

operations are allowed. The SAT instance is extended to

n+1 CSU operations to find the value of the cost function

Cyclesn+1. If the cost of the new solution is higher than

the previous one, i.e. when Cyclesn+1 > Cyclesn, the

pattern generation procedure terminates. Otherwise, the

number of CSU operations is increased and the procedure

is repeated until the user specified bound nmax is reached.

Let nt be the number of CSU operations at which the

pattern generation procedure terminates. The procedure

guarantees that the final solution has the minimal access

time among all solutions with n ≤ nt +1 CSU operations.

There may exist a global minimum with lower access time

that requires nopt > nt + 1 CSU operations. However,

experimental results show that increasing the number of

CSU operations beyond nt+1 rarely provides better results

and leads to high solve times.

E. Implementation

The pattern generation procedure is implemented using

the clasp toolkit [10], which includes a Boolean SAT

solver and a pseudo-Boolean optimization engine. As the

SAT solver is generally faster than the pseudo-Boolean

optimizer, we use it to initially find the minimal number

of CSU operations nmin that is required to implement the

access. After nmin is found, pseudo-Boolean optimization

is performed for increasing number of CSU operations, as

described in Sec. IV-D. Incremental solving techniques are

employed: The Boolean formula (SAT instance) generated

for n CSU operations is extended with additional clauses

for the characteristic function of the transition relation and

reused in iteration n + 1.

Our framework exploits parallelism in the pattern

generation procedure: After the minimal number of CSU

operations is found, the optimization of SAT instances

with increasing number of CSU operations is processed

in parallel. Each optimization job is performed in a child

process. Fig. 5 illustrates the parallel execution of the

pattern generation procedure.

V. EVALUATION

The proposed method is evaluated on several RSN

designs based on ITC’02 benchmarks [11]. We analyze

the access time obtained with the pattern generation pro-

cedure w.r.t. a solution with the minimal number of CSU

operations, as in [6]. The experiments are run on an Intel

Xeon CPU with 12 cores operating at 3.33 GHz.

A. Benchmark Circuits

We evaluate our approach on two RSN architectures,

as described in [6]: hierarchical structures implemented

with multiplexers and Segment Insertion Bits (SIBs).

The MUX-based architecture supports two access

modes: configuration access and data access. Configura-

tion access allows to reconfigure the scan chain by attach-

ing or detaching internal scan segments or submodules.

Fig. 6 shows the MUX-based architecture for the top-level

part of the p34392 benchmark. The scan chain of each

module starts with a 1-bit configuration register AM that

sets the configuration mode (AM = 0), in which only the

configuration registers (C) can be accessed, or data access

mode (AM = 1). Once configured, this architecture is

faster compared to the SIB-based scheme, as less control

registers are present on the active scan path in the data

access mode.
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Figure 5. Parallel execution of the pattern generation procedure

The SIB-based scan architecture implements hierarchi-

cal scan bypasses with SIBs. A SIB consists of a 1-bit

configuration register and a scan multiplexer that either

bypasses or connects the lower-level scan segment (or a

scan network) to the higher-level scan chain, depending on

the content of the configuration register. The scan chain

encompassing a single module is composed of several

SIBs, as proposed in [4]. The SIBs provide configurable

access to the scan segments of the core, its submodules,

as well as its inputs and outputs. Fig. 7 shows such a

scan architecture for the top-level part of the p34392

benchmark.

Table II presents the properties of MUX-based archi-

tectures: the number of multiplexers in the second column,

the total number of scan segments (including configuration

segments) in the third column, and the total number of

scan register bits in the fourth column. The characteristics

of the SIB-based architectures are listed in the first four

columns of Table III.

B. Validation of Results

The results presented in the following section are

validated by cycle-accurate simulation in a commercial

logic simulator. For this purpose, the RSN models are

automatically translated to hardware Verilog models. The

generated patterns are used as stimuli for the primary scan

input of a network. During simulation, assertions verify

that the scan access is performed correctly.

C. Results

For each design, we perform 1000 pattern generation

experiments. In each experiment, we search for the short-

est scan-in sequence that merges read or write accesses to

10 randomly chosen scan segments. Optimization is per-

formed with up to 6 additional CSU operations, executed

in 6 parallel jobs (cf. Fig. 5).

Column “No optimization” in Table II and III presents

the results of pattern generation without optimization. A

SAT solver is used to iteratively check the satisfiability of

instances with increasing number of CSU operations until

a solution is found, as in [6]. For the 1000 experiments,

column nmin gives the average and maximal number of

CSU operations that are required to implement an access.

Column tavg gives the average pattern generation time

per access. The average access time of the unoptimized

patterns is given in column cycles in clock cycles.

The proposed method is evaluated in two series of

experiments, limiting the maximal effort of the pattern

generation procedure to 2 and 20 s per access. Table II and

III give the average and maximal access time reduction

(column reduction) w.r.t. to the unoptimized solution.

The average and maximal number of additional CSU

operations that are required to obtain the best solution is

given in column nt − nmin.

The proposed method significantly reduces the access

time for the MUX-based architectures (Table II): For

almost all circuits, a maximal access time reduction of

over 10x is achieved. For the t512505 benchmark, the

access time is reduced by up to 88x. Compared to our

previous results obtained with the MiniSat SAT solver [6],

the proposed method achieves up to 230x access time

reduction (not presented in the table). This shows that

access optimization is crucial to prevent solutions with

prohibitive access time. The proposed method also reduces

unnecessary access overhead: For most of the benchmarks,

the average access time over the 1000 experiments is

nearly halved within 2 s of computational time.

For SIB-based architectures, efficient scheduling tech-

niques exist for access time minimization [5]. Such archi-

tectures do not require a formal approach since optimal

pattern generation reduces to a simple decision problem.

Nevertheless, our method can also be applied for such

regular structures. The results show that our pattern gen-

eration procedure reduces the access time for SIB-based

architectures by a factor of up to 1.8x (Table III). In

contrast to MUX-based architectures, the local minimum

is always found for the minimal number of CSU operations

that is required to implement the access (nmin). The local

minimum is usually found within 2 s of optimization.

Extending the effort to 20 s achieves only a marginal

access time reduction for larger benchmarks (italic in

Table III).
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Table II: ACCESS TIME REDUCTION (reduction) FOR THE MUX-BASED SCAN ARCHITECTURE W.R.T. UNOPTIMIZED SOLUTION (cycles)

Num. Total Total No optimization Optimization effort 2s Optimization effort 20s

Design MUX scan scan nmin tavg cycles nt − nmin reduction nt − nmin reduction

segm. bits avg / max [s] [cycles] avg / max avg / max avg / max avg / max

u226 59 99 1 475 5.6 / 7 0.03 705 0.4 / 3 1.54 / 6.8x 0.4 / 2 1.54 / 6.8x
d281 67 117 3 880 5.7 / 7 0.03 1718 0.8 / 2 1.90 / 13.4x 0.8 / 3 1.91 / 13.7x
d695 178 335 8 407 6.0 / 7 0.09 3569 0.5 / 4 1.78 / 11.2x 0.7 / 4 1.84 / 11.2x

h953 63 109 5 649 5.7 / 7 0.03 2776 0.9 / 3 1.91 / 16.1x 0.9 / 3 1.91 / 16.1x
g1023 94 159 5 400 5.9 / 7 0.04 2482 0.5 / 2 1.89 / 10.7x 0.6 / 2 1.93 / 10.7x
f2126 45 81 15 834 5.6 / 7 0.02 9327 0.8 / 3 1.78 / 12.1x 0.9 / 3 1.79 / 12.1x

q12710 30 51 26 188 5.7 / 7 0.01 17769 0.8 / 3 1.78 / 12.3x 0.8 / 3 1.78 / 12.3x
p22810 311 565 30 139 6.0 / 10 0.17 12335 0.5 / 4 1.65 / 33.3x 0.5 / 3 1.75 / 33.7x
p34392 142 245 23 261 6.9 / 10 0.09 14633 0.7 / 3 2.02 / 49.2x 0.8 / 4 2.16 / 49.2x

p93791 653 1241 98 637 6.0 / 9 0.38 21073 0.8 / 4 1.84 / 28.2x 0.9 / 4 1.99 / 28.2x
t512505 191 319 77 037 5.7 / 7 0.09 22146 0.5 / 3 2.31 / 87.8x 0.5 / 3 2.39 / 87.8x
a586710 47 79 41 682 6.3 / 10 0.02 36417 1.2 / 6 2.19 / 74.1x 1.3 / 5 2.26 / 74.1x

Table III: ACCESS TIME REDUCTION (reduction) FOR THE SIB-BASED SCAN ARCHITECTURE W.R.T. UNOPTIMIZED SOLUTION (cycles)

Num. Total Total No optimization Optim. effort 2s Optim. effort 20s

Design SIB scan scan nmin tavg cycles reduction reduction

segm. bits avg / max [s] [cycles] avg / max avg / max

u226 50 90 1 466 2.6 / 3 0.01 879 1.09 / 1.81x 1.09 / 1.81x
d281 59 109 3 872 2.7 / 3 0.02 2039 1.13 / 1.81x 1.13 / 1.81x
d695 168 325 8 397 2.7 / 3 0.04 4294 1.14 / 1.61x 1.15 / 1.61x

h953 55 101 5 641 2.7 / 3 0.01 3110 1.16 / 1.69x 1.16 / 1.69x
g1023 80 145 5 386 2.7 / 3 0.02 2507 1.17 / 1.62x 1.17 / 1.62x
f2126 41 77 15 830 2.5 / 3 0.01 9662 1.11 / 1.72x 1.11 / 1.72x

q12710 25 47 26 183 2.5 / 3 0.01 16550 1.09 / 1.68x 1.09 / 1.68x
p22810 283 537 30 111 2.8 / 4 0.08 12009 1.06 / 1.25x 1.12 / 1.50x
p34392 123 226 23 242 3.1 / 4 0.04 13122 1.16 / 1.45x 1.17 / 1.66x

p93791 621 1209 98 605 2.9 / 4 0.19 36278 1.09 / 1.24x 1.14 / 1.48x
t512505 160 288 77 006 2.7 / 3 0.04 35275 1.13 / 1.57x 1.18 / 1.74x
a586710 40 72 41 675 2.8 / 4 0.01 24618 1.13 / 1.85x 1.13 / 1.85x

The results presented in Table II and III are obtained

with the pattern generation procedure of Section IV that

terminates as soon as a local minimum is found. In addi-

tional experiments we computed shortest access sequences

with 6 additional CSU operations over nt. Despite the

additional effort, the resulting access times are exactly the

same as those obtained in the proposed algorithm. For all

the examined circuits, the proposed algorithm provides the

best achievable solution among all solutions with at most

6 additional CSU operations.

VI. CONCLUSION

Reconfigurable scan networks allow scalable access

to on-chip infrastructure. The design complexity due to

hierarchies and IP reuse requires novel EDA tools for op-

timal scan pattern generation. In this work, we present the

mapping of this problem to a pseudo-Boolean optimization

problem. This novel method is applicable to a wide range

of reconfigurable architectures and to merging of multiple

concurrent scan accesses. It provides the optimal access

time for a given bound on the number of access operations.

The experiments demonstrate that, contrary to common

sense, it is often necessary to allow more access operations

to reduce the overall access time. The results show that

even for complex reconfigurable scan architectures the

proposed method leads to significant reduction of access

time by up to 88x with low computational effort.
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