
SAT-based Code Synthesis for Fault-Secure

Circuits

Dalirsani, Atefe; Kochte, Michael A.; Wunderlich, Hans-Joachim

Proceedings of the 16th IEEE Symp. Defect and Fault Tolerance in VLSI and

Nanotechnology Systems (DFT’13) New York City, NY, USA, 2-4 October 2013

doi: http://dx.doi.org/10.1109/DFT.2013.6653580

Abstract: This paper presents a novel method for synthesizing fault-secure circuits based on parity codes over
groups of circuit outputs. The fault-secure circuit is able to detect all errors resulting from combinational and
transition faults at a single node. The original circuit is not modified. If the original circuit is non-redundant,
the result is a totally self-checking circuit. At first, the method creates the minimum number of parity groups
such that the effect of each fault is not masked in at least one parity group. To ensure fault-secureness, the
obtained groups are split such that no fault leads to silent data corruption. This is performed by a formal
Boolean satisfiability (SAT) based analysis. Since the proposed method reduces the number of required parity
groups, the number of two-rail checkers and the complexity of the prediction logic required for fault-secureness
decreases as well. Experimental results show that the area overhead is much less compared to duplication and
less in comparison to previous methods for synthesis of totally self-checking circuits. Since the original circuit
is not modified, the method can be applied for fixed hard macros and IP cores.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic
reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form
to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

http://dx.doi.org/10.1109/DFT.2013.6653580

SAT-based Code Synthesis for Fault-Secure Circuits

Atefe Dalirsani, Michael A. Kochte, Hans-Joachim Wunderlich

ITI, Universität Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany

Email: {dalirsani, kochte}@iti.uni-stuttgart.de, wu@informatik.uni-stuttgart.de

Abstract—This paper presents a novel method for synthesizing
fault-secure circuits based on parity codes over groups of circuit
outputs. The fault-secure circuit is able to detect all errors
resulting from combinational and transition faults at a single
node. The original circuit is not modified. If the original circuit
is non-redundant, the result is a totally self-checking circuit.

At first, the method creates the minimum number of parity
groups such that the effect of each fault is not masked in at
least one parity group. To ensure fault-secureness, the obtained
groups are split such that no fault leads to silent data corruption.
This is performed by a formal Boolean satisfiability (SAT)
based analysis. Since the proposed method reduces the number
of required parity groups, the number of two-rail checkers
and the complexity of the prediction logic required for fault-
secureness decreases as well. Experimental results show that the
area overhead is much less compared to duplication and less
in comparison to previous methods for synthesis of totally self-
checking circuits. Since the original circuit is not modified, the
method can be applied for fixed hard macros and IP cores.

Index Terms—Concurrent error detection (CED), error con-
trol coding, self-checking circuit, totally self-checking (TSC)

I. INTRODUCTION

In safety critical applications, reliability and data integrity

are of high importance, but may be compromised by latent

defects, wear-out or transient faults such as crosstalk, power

supply noise or radiation effects [1–3]. Concurrent error

detection (CED) techniques are widely used to detect errors

that appear during the operation of the circuit, irrespective of

their permanent or transient nature [4].
One way to implement CED is to encode the outputs of

a circuit with an error detecting code as presented in Fig. 1.

The circuit (functional logic) generates the functional output

bits. In the checker, check bits are computed from the output

bits and a codeword is constructed. The checker compares

the codeword to the one generated by the prediction logic

and indicates an error in case of a mismatch.

Checker

Output

bits

Code

check

bits

Error

Input

bits

Functional logic

Prediction logic

Fig. 1. General structure of CED with error detecting code

Duplication-with-comparison (DWC) is a conventional ap-

proach for CED of single- and multi-bit errors in which

the duplicated circuit is considered as prediction logic. The

outputs of the original and duplicated circuit (not necessarily

the same implementation) are compared in the checker to

signal an error when the outputs disagree. DWC incurs a

relatively high area overhead of typically around 120% [5].
The theory of self-checking design classifies CED tech-

niques [6] as follows: A circuit is fault-secure if for every

fault of the target fault model the circuit never produces an

incorrect codeword output for the code input. A circuit is self-

testing, if for every fault it generates a non-codeword output

for at least one code input. It is Totally Self-Checking (TSC)

if it is self-testing and fault-secure. A non-redundant fault-

secure circuit which receives all possible input patterns during

operation is also TSC.

In self-checking design based on error detecting parity

codes, the circuit outputs are distributed among one or more

parity groups. A parity code (parity tree) computes the parity

over the outputs of each group. Fault-secureness for all single

stuck-at faults can be achieved by avoiding logic sharing

between any two outputs in the same parity group, i.e. the

outputs in one parity group are structurally independent [4].

One synthesis method is to use a single parity bit and prohibit

logic sharing among the circuit outputs by replicating the

shared logic [7, 8]. This solution causes a high area overhead.

Therefore, many schemes distribute the outputs among multi-

ple parity groups and the outputs of each group are encoded

individually. Touba et al. [9] introduce a greedy algorithm

which employs a cost function to find a parity code with

potentially low area cost. The prediction logic is synthesized

together with the original circuit under structural constraints

so that outputs in the same parity group are structurally

independent. In [10], the circuit is modified so that each fault

is observable at an odd number of outputs for each input

configuration.

Mitra et al. [5] provide a quantitative comparison of

the overhead of various CED schemes and the protection

against common-mode failures. Their investigation shows that

duplicated systems sometimes have marginally higher area

overhead compared to parity-based schemes while providing

higher protection against common-mode failures. This altered

the research direction of CED schemes based on error de-

tecting codes to include extra functionalities: In [11], parity

check codes have been used to extend CED to perform fault

diagnosis and error correction. In [12], a 2-phase non-greedy

algorithm of k-partitioning and local search is used to reduce

the power consumption of a self-checking structure. In [13],

the parity code search is guided by an entropy-based metrics

to find low-power implementations. This technique requires

the explicit computation of a large error detection table with

entries for each fault and detecting input pattern.

Some techniques try to detect just as many errors as

possible at lower overhead: In [14] and [15], only critical soft

errors are targeted. The method in [16] is effective only at

target faults with high sensitization probability. In [17], split-

parity codes are investigated which detect all odd multibit

errors with certainty and all even errors with a probability of

50%. When the circuit structure and functionality is known,

one may choose a function-inherent code checking method

like [18] which exploits internal redundancies of the circuit.

In this paper, we present a novel approach for synthesizing

parity prediction and checker logic for arbitrary logic circuits

to ensure fault-secureness. The generated, extended circuit is

even totally self-checking if the original one is non-redundant.

The resulting self-checking structure uses multiple parity

bits over the circuit outputs and is able to detect all errors

resulting from single combinational and transition faults. It

distributes the outputs among the parity groups such that for

all testable faults in the circuit, the fault effect is not masked

in at least one parity group. A Boolean satisfiability (SAT)

based formal analysis assures the fault-secureness property.

Since the proposed method reduces the number of required

parity groups, the complexity of the parity prediction and

checker logic decreases. The overall hardware overhead is

less compared to previous self-checking approaches and for

the first time, efficient fault-secureness is achieved for circuits

with up to 15k gates.

The paper is organized as follows: Section II gives an

overview of the proposed algorithm. Section III and IV

explain the algorithm in detail. Section V discusses the results,

followed by the conclusion.

II. OVERVIEW

The goal of this work is to synthesize checker and predic-

tion logic to obtain a fault-secure circuit from a given circuit.

With respect to a fault set F , a circuit is fault-secure [6] if

and only if

∀f ∈ F : ∀i ∈ In : C(i) = Cf (i) ∨ P (C(i)) 6= P (Cf (i)). (1)

In is the set of possible input vectors of n bits. C(i) is the

circuit response for input vector i in the fault free case, while

Cf (i) is the response under fault f . P computes the check

bits over the circuit response C(i) or Cf (i).
Statement (1) declares that for any input vector, the fault ei-

ther is not propagated to any circuit response (C(i) = Cf (i)),
or it is detected by the check bits (P (C(i)) 6= P (Cf (i))). If

a circuit is not fault-secure, there is at least one fault which

causes Silent Data Corruption (SDC), i.e. an undetected error

in the circuit response. In parity codes, SDC occurs when

all fault effects are masked in the parity trees. This happens

if logic is shared in the transitive fanin of the inputs of a

parity group and a multibit error of even magnitude occurs.

Thus, the problem is to find an output partitioning such that

the resulting parity group code ensures a fault-secure circuit

according to statement (1).

To reduce the area overhead of a parity based fault-secure

circuit, the number of parity groups should be minimized, and

the parity group size should be increased as much as possible.

This reduces the number of parity check bits as well as the size

of the parity prediction and checker logic. If the maximum

parity group size equals one, the resulting fault-secure circuit

implements DWC.

Two circuit outputs are dependent if logic is shared in their

input cones, and independent otherwise. Graph G = (V,E)
is constructed over the outputs V of the circuit. The edges

E are the pairs of outputs which are dependent. The set of

outputs which can belong to the same parity group without

any risk of masking are independent and share no logic. They

form an edgeless subgraph or independent set (the dual to a

clique) in graph G.

A partitioning Pk = {Gi = (Vi, Ei) | 1 ≤ i ≤ k}
with edgeless subgraphs Gi and

⋃

i Vi = V corresponds to

k parity groups over the outputs without logic sharing. Yet

even logic sharing of outputs within a single group could

be allowed as long as the fault effects are propagated to an

odd number of outputs covered by another parity group. This

relaxation increases the search space for an output partitioning

and reduces the area overhead.

We propose a two step synthesis approach as shown in

Fig. 2. Firstly we conduct a primary partition of the circuit

outputs based on a topological analysis of the shared logic in

the input cones of circuit outputs. The result is a minimum

number of partitions k such that each fault effect is not

masked in at least one parity group. This topological analysis

cannot guarantee fault-secureness, but reduces the probability

of silent data corruption and serves as starting point for the

fault-secure synthesis step.

P
ri
m

a
ry

 p
a

rt
it
io

n
in

g A) Pre-partitioning using independent sets

Primary output partition Pk

B) Distribution among existing groups, or

creation of new parity group

G
e

n
e

ra
ti
n

g
 t
h

e

fa
u

lt
-s

e
c
u
re

 c
ir
c
u

it C) SAT based analysis to find faults causing SDC

Updated partition Pk

Non-partitioned
outputs left?

D) Compute best parity group splitting

SDC faults

left?

Done

Yes

Yes
No

No

Fig. 2. Fault-secure circuit synthesis flow.

The second phase of the algorithm achieves fault-

secureness by a SAT-based formal analysis to find the faults

which may cause silent data corruption. Parity groups are split

up such that the fault effect is observable in the resulting

parity groups for all input patterns. This scheme is conducted

iteratively until the circuit is fault-secure.

III. PRIMARY PARTITIONING

The primary partitioning is achieved by a topological anal-

ysis of logic sharing in the input cones of the circuit outputs:

When a gate g is in the input cone of only one output in group

Gi, any combinational fault at g is propagated to at most one

output and is not masked in parity group Gi. In this case, we

say g is covered by group or subgraph Gi:

Cov(g) =

{

0 g is not covered in any group

1 g is covered in at least one group Gi

In a circuit with l logic gates, the coverage of a partitioning Pk

is defined as the number of covered gates: Coverage(Pk) =

2

∑l

i=1 Cov(gi). Primary partitioning searches for a partition

Pk such that Coverage(Pk) = l with minimized k. As shown

in Fig. 2, it consists of: (A) Computing a pre-partitioning

constructed from independent sets of outputs in G, and

(B) iteratively creating additional groups and distributing yet

unpartitioned vertices among them.

A. Pre-Partitioning of Circuit Outputs

If some outputs are dependent, the partitioning needs at

least two groups of outputs: P2 = {G1, G2}. G1 and G2

are two independent sets of outputs in G which maximize

Coverage(P2).
At first, the maximal independent sets for every pair of

independent outputs are computed. Compared to the problem

of listing all maximal independent sets [19], this constraint

limits the runtime complexity to O(|V |3).
For each independent set of outputs Gi, we compute the

set of gates in the input cones (fanin) of all outputs in group

Gi as: Cone(Gi) =
⋃

v∈Vi
Cone(v), with Cone(v) as the set

of gates in the input cone of output v. As the outputs in Gi

are independent, the number of covered gates in Gi equals

|Cone(Gi)|. The independent set with maximum |Cone(Gi)|
is assigned to the first group of outputs G1 = (V1, ∅).

The second group G2 is similarly chosen from the list of

independent sets of outputs, excluding the outputs in G1. This

increases the flexibility for adding the remaining unpartitioned

vertices to the available groups.

B. Distribution of Unpartitioned Outputs

The yet unpartitioned outputs are assigned either to the

groups so far established (two groups right after pre-

partitioning), or to new groups if it is not possible to cover a

gate in one of the existing groups: First, we assign as many

outputs as possible to the available groups. All unpartitioned

outputs share logic with the already partitioned ones in the

groups Gi. However, we assign output v to group Gi, if all

gates in the shared logic between Cone(v) and Cone(Gi) are

covered in another group. In Fig. 3, for instance, v5 shares

logic with the input cone of v3 in the striped area ’S’. v5 is

still assigned to group G1 because the shared logic is also

part of the input cone of v2 and covered by G2.

v1 v2v3 v4

. . .Inputs

Outputs v5

G1 G2

S

C
ir
c
u

it Cone(v1)

Shared

logic

Fig. 3. Distribution of unpartitioned outputs

If an output v sharing gate g with group Gi is assigned

to Gi, faults on gate g might be masked in Gi. This must

be avoided when g is covered only by Gi. Thus, before each

output assignment, we check the logic sharing of gates in

Cone(v) and Cone(Gi) and allow the assignment of v to Gi

only if no gates become uncovered. For instance, in Fig. 3,

v5 is not allowed to be added to G2 because it shares logic

with v2 which is not covered in any other group.

To determine the order in which the outputs are assigned to

the groups, we compute for each unassigned output its weight

as:

w(v) = max
Gi∈Pk

∆Coverage(v,Gi),

where ∆Coverage(v,Gi) is the number of additionally cov-

ered gates when adding v to Gi. The output with highest

weight is assigned first.

The distribution of outputs among established groups con-

tinues until no further assignment to the groups is possible.

Then a new group is created. The new group is chosen among

the independent sets of outputs excluding already partitioned

outputs.

IV. GENERATING THE FAULT-SECURE CIRCUIT

Primary partitioning creates a small number of parity

groups as starting point for the fault-secure synthesis. Primary

partitioning cannot guarantee fault-secureness yet, since it

only ensures that a fault effect is not masked in one parity

group. There may be input vectors which propagate the fault

effect only to different groups where error masking is not

inhibited. However, primary partitioning reduces the runtime

of the formal analysis by decreasing the probability of such

silent data corruption (SDC).

Further splitting of parity groups until no logic is shared

any more between outputs in the same group would lead to

a solution similar to [20]. In our scheme, as shown in Fig. 2,

we perform (C) a formal analysis to check which faults cause

SDC and (D) selectively split the parity groups only to prevent

SDC. For a non-redundant circuit, the resulting circuit is even

totally self-checking, since the proposed algorithm does not

modify the original circuit and all errors are detected.

Computing whether fault f causes silent data corruption

(SDC) is an NP-complete problem. Exhaustive fault sim-

ulation of all faults and all input vectors (like the error

detectability table in [13]) can be conducted only for small

circuits with very few inputs. For larger circuits, this approach

becomes infeasible.

The directed search for one input vector that causes silent

data corruption under fault f , or the proof that such a vector

doesn’t exist, can be mapped to a test pattern generation

(ATPG) problem [21]. In [22], it is shown that such a check

can also be conducted using Boolean satisfiability (SAT). We

map the problem to a SAT instance as explained below.

A. SAT-based Analysis of Fault-Secureness

Fig. 4 illustrates the principle idea to check if a fault causes

silent data corruption (SDC). When functional outputs of the

circuit C and its faulty copy Cf disagree 1 and the generated

parity bits are equal 2 , SDC occurs. A SAT instance is

constructed which is satisfiable if and only if there is an input

vector such that for a fault f the following formula is true:

∃ i ∈ In : C(i) 6= Cf (i) ∧ P (C(i)) = P (Cf (i)).

3

Circuit C

Functional

outputs
Parity

check

bits P(C)

Faulty copy of

the circuit Cf

Silent data

corruption�Not

equal?
Equal?

m

m Parity

Check

Parity

Check

k

k

In
p

u
ts

Parity check

bits P(Cf)

k parity groups

2
1

Fig. 4. Structure of the SAT instance to analyze fault-secureness.

A SAT instance is constructed for each fault. The instance

models the gates in the original circuit C and the faulty copy

Cf . The functional outputs of C and Cf are compared bitwise

1 . The parity check structure computes the parity bits P (C).
P (C) is compared with the check bits of the faulty circuit

P (Cf) in 2 .

The SAT instance Φ is a Boolean formula represented as a

union of clauses. The characteristic equations of the gates in

the fault-free and faulty circuit CCNF , CCNF
f are obtained

from the circuit netlist using the Tseitin transformation [23].

PCNF and PCNF
f are the clauses which are extracted from

the parity check structure. The instance Φ is the conjunction

or union of these clauses and the clauses required for com-

parison:

Φ = CCNF ∧ CCNF
f ∧

∨

1≤j≤m

(oj 6= o
j
f) ∧

PCNF ∧ PCNF
f ∧

∧

1≤j≤k

(pj = p
j
f)

Φ is only satisfiable if the functional outputs (oj) differ and

the parity check bits (pj) are equal. In this case, the satisfying

model is an input vector which causes SDC.

B. Parity Group Splitting

After primary partitioning, the circuit outputs have been

partitioned into k groups. The faults FSDC which cause silent

data corruption (SDC) have been determined by the presented

formal analysis. For each fault f ∈ FSDC , the SAT solver

computed one input vector if causing SDC (although if may

not be the only vector causing SDC under f). We simulate

all faults f ∈ FSDC with input vector if to find the outputs

and parity groups to which the fault effect is propagated.

Group splitting then refines the partitioning iteratively to

achieve fault-secureness as shown in Fig. 5. The parity

groups in which fault effects are masked and SDC occurs

are analyzed as explained below.

Let V Gi
f be the subset of outputs in group Gi to which the

fault effect of f is propagated under input vector if . To avoid

SDC of fault f under if in this group, the group must be

split into at least two groups such that the fault effect is not

masked any more.

There are 2(|V
Gi
f |−1) − 1 possibilities of splitting Gi. For

each possibility, we compute by SAT analysis the number

of faults for which SDC is avoided by the splitting. After

computing the number of avoidable SDCs for all groups and

all splittings, the group and splitting with highest reduction in

Primary output partition Pk

C) SAT based analysis to find faults causing SDC

Fault simulation to compute parity groups

where fault effects are masked / SDC occurs

SDC faults

left?

Updated parition Pk+1

Done

Yes
No

Find splitting of Gi with

maximum SDC reduction

(based on SAT analysis)

Split group with maximum SDC reduction

Next group Gi?

Yes No

D
)

P
a

ri
ty

 g
ro

u
p

s
p

lit
ti
n

g

Check for output addition to existing groups

Fig. 5. Generating the fault-secure circuit.

SDC faults is constructed. The result is one additional parity

group. Since new groups are created, a topological analysis

is performed after each splitting to investigate the possibility

of adding some outputs to available groups and avoid SDC

that way. By this analysis, one output may be included in an

additional group if it doesn’t share any logic with the outputs

in that group.

For large |V Gi
f |, the explicit analysis of each splitting

possibility is computationally too expensive. In this case, a

topological analysis is used to divide Gi into two groups, one

of them is the independent set of Gi, and the other has the

minimum logic sharing in its input cones.

The process of SDC analysis and parity group splitting

proceeds until no more faults cause silent data corruption. The

parity prediction and checker logic are synthesized separately

from the functional circuit. As the checker must be self-

checking, we use cascadable two-rail checkers consisting

of six logic gates [24] to construct a totally self-checking

checker with k input pairs (for k parity groups). The checkers

compare the check bits of the parity groups with the check

bits computed by the prediction logic. The resulting circuit is

fault-secure.
V. EXPERIMENTAL RESULTS

We evaluate the area cost of the proposed method for

benchmark circuits and compare the cost with previous work.

In the circuits, output hold registers and prediction hold

registers must be added [25] for the self-checking structure

(Fig. 6) to avoid a longer critical path due to the checker

logic.

A. Area Cost of Fault-Secure Synthesis

The area overhead of the fault-secure circuit consists of

the parity prediction logic, the two-rail totally self-checking

checker [24], the parity trees to generate the parity bits from

functional outputs, and the hold registers as shown in Fig. 6.

The prediction logic and the checker are synthesized using

Synopsys Design Compiler, optimized for area. The target

library lsi10k is constrained to two-input gate primitives. The

cell area of a two input NAND gate is 1 area unit.

4

Functional

logic

Parity

prediction logic

Output

bits

Code

Error

Input

bits

SCC area

overhead

..
.

..
.

..
.

..
.

TSC

Checker

Parity trees

HR

HR

SR

State

bits

HR: Hold Register SR: State Register

Fig. 6. Area overhead of the self-checking circuit (SCC).

Table I shows the results for the ISCAS’85 and ISCAS’89

circuits with more than 1000 gates (excluding multiplier

c6288 for which efficient arithmetic coding techniques exist).

Table II shows the results for the ITC’99 circuits. The first

five columns list the circuit name, the number of inputs and

outputs (primary and pseudo primary), the size in cell area

units, and the number of collapsed faults.
Column ’DWC’ reports the cell area overhead of the

duplicated system, consisting of the copy of the circuit as

predictor, hold registers and the checker.
The remainder of the tables reports the results of the

proposed method. The number of parity groups after primary

partitioning is given in column ’P.P. grps’. Column ’P.P. SDC’

shows the number (percentage) of faults which cause silent

data corruption after primary partitioning. Our investigation

shows that after primary partitioning, for every testable fault

in the circuit there exists at least one input pattern for

which the functional outputs differ and a wrong parity bit is

generated. Furthermore, we observe that typically only a low

percentage of faults still cause SDC. This result emphasizes

the importance of primary partitioning to reduce the effort of

the formal fault-secureness analysis and group splitting.
The results of the final fault-secure circuits are given in

columns 9 to 12: Column ’Parity bits’ shows the number of

groups that the outputs are distributed to. The next column

gives the cell area overhead of the fault-secure circuit. For

comparison with the duplication method, we list the relative

area cost κ of the proposed method with respect to DWC:

κ =
Self-checking circuit area overhead

Duplication-with-comparison (DWC) area overhead
(2)

For κ < 1, the proposed parity-based synthesis method incurs

less area overhead than DWC, which is the case for all

circuits. The area saving depends on the circuit size and

structure. The weighted average of κ with regard to the circuit

size over all ISCAS’89 benchmark circuits (up to 15K gates)

is 0.56, i.e. only 56% of the area of DWC is required. To the

best of our knowledge, this is the first method able to generate

area-efficient fault-secure circuits for medium size circuits

(up to 15K gates) in reasonable time. For most circuits, the

runtime is less than a few minutes. For large circuits the

runtime increases due to a higher number and more complex

SAT checks. For s15850, the number of SAT checks increases

by a factor of 3 compared to s13207 which causes higher

runtime.

B. Comparison to Related Work

Most of the previous parity-based methods were applied

to small size circuits only. We compare the area cost of

the proposed method with the reported results of the parity-

based self-checking methods in [5, 9]. In [5, 9], totally self-

checking circuits are synthesized using multiple parity codes

over groups of outputs, and replication of shared logic when

required. The original circuit is modified. The experiments use

the MCNC benchmark circuits which are relatively small with

few outputs. For such circuits, parity based fault-secureness

does not save much area compared to DWC [5], and DWC

itself is not very expensive. Our method in average imposes

a slightly lower overhead compared to [5, 9] even without

requiring circuit modification (Due to space limit, the detailed

result is omitted).

In [13], results for an error detection table and entropy

based method are reported for MCNC and smaller ITC’99

circuits. We compare our results with the results for ITC’99

circuits with more than 100 gates. The relative cost κ′ is

computed according to eq. (2) using the area overhead of

the self-checking circuit and the area overhead of duplication

as reported in [13]. The last two columns of Table II list the

number of parity bits and κ′ of the method in [13]. The table

also shows our results for much larger ITC’99 circuits which

were not investigated in [13].

The weighted average of κ over the five circuits in the

comparison with [13] is 0.51, i.e. 17% less than [13]. In

addition, our method is also applicable to much larger circuits

with an average value of κ of 0.58.

In average, our method outperforms the previous parity-

based self-checking methods, without the need to modify the

original circuit. The experiments demonstrate its applicability

to circuits with up to 15k gates because of the combination

of topological and formal techniques.

The proposed method incurs significantly less area over-

head compared to DWC. For some circuits only half of

the DWC area is required for fault-secureness with respect

to all combinational and transition faults on a single node

(including all stuck-at faults). This area saving needs to be

traded off against the potentially higher coverage of multiple

faults offered by DWC.

VI. CONCLUSION

This paper presented a novel synthesis method for fault-

secure circuits without modification of the original circuit.

It constructs the parity groups required to detect all errors

resulting from single combinational and transition faults.

During primary partitioning, a topological analysis distributes

the outputs among as few parity groups as possible. A formal

SAT-based analysis then assures fault-secureness by group

splitting. Since the proposed method reduces the number

of required parity groups, the number of two-rail checkers

and the complexity of the prediction logic decreases as well.

The results show that fault-secureness can be achieved with

in average only 60% of the area overhead of duplication

with comparison. The method also outperforms previous self-

checking approaches regarding the area overhead.

ACKNOWLEDGEMENT

Parts of this work were supported by the DFG under grants

WU 245/10-2 (OTERA) and WU 245/12-1 (ROCK).

5

TABLE I. Results for ISCAS benchmark circuits.

Circuit DWC Proposed Method

Name
PIs +
PPIs

POs +
PPOs

Cell
area

Faults
Cell area
overhead

P.P.
grps.

P.P. SDC
Parity
bits

Cell area
overhead

Relative
cost κ

Time (s)

c1908 33 25 1193 2100 1906 3 152 (19%) 10 1591 0.83 895
c2670 233 140 1819 3226 5867 4 248 (9%) 10 3173 0.54 538
c3540 50 22 2788 3332 3414 4 1395 (41%) 17 3309 0.97 14736
c5315 178 123 4274 6246 7829 8 685 (12%) 22 5708 0.73 9895
c7552 207 108 5078 8284 8198 6 842 (11%) 9 6119 0.75 3987

s953 45 52 786 1208 1818 6 127 (10%) 14 1020 0.56 154
s1196 32 32 1076 1386 1704 6 297 (21%) 22 1494 0.88 412
s1238 32 32 1108 1514 1736 5 263 (17%) 19 1463 0.84 494
s1423 91 79 1617 1680 2712 5 535 (31%) 21 1494 0.55 2881
s1488 14 25 1619 1710 2236 5 73 (4%) 13 1984 0.89 74
s1494 14 25 1629 1734 2246 5 73 (4%) 14 2015 0.90 79
s5378 214 228 5249 5474 8949 7 901 (16%) 41 5062 0.57 5342
s9234 247 250 9473 7760 13063 8 1622 (20%) 27 8380 0.64 4451
s13207 700 790 16179 12024 28368 6 1012 (8%) 21 12204 0.43 6394
s15850 611 684 17646 14016 27898 9 2957 (21%) 35 14289 0.51 122609

TABLE II. Results for ITC’99 benchmark circuits.

Circuit DWC Proposed Method [13]

Name
PIs +
PPIs

POs +
PPOs

Cell
area

Faults
Cell area
overhead

P.P.
grps.

P.P. SDC
Parity
bits

Cell area
overhead

Relative
cost κ

Time (s)
Parity
bits

Relative
cost κ′

b03 34 34 418 478 912 5 80 (16%) 10 408 0.45 95 4 0.83
b04 77 74 1381 1888 1803 4 256 (13%) 23 1140 0.63 636 - -
b05 35 60 1708 2748 2892 5 966 (35%) 29 2241 0.77 6152 - -
b06 11 15 140 176 419 3 11 (6%) 5 209 0.50 1 - -
b07 50 57 893 1238 1750 5 347 (26%) 11 784 0.45 1144 6 0.58
b08 30 25 395 528 772 4 66 (12%) 12 499 0.65 12 5 0.60
b09 29 29 424 476 805 4 169 (35%) 6 322 0.40 56 7 0.40
b10 28 23 399 596 782 4 88 (14%) 12 551 0.70 12 7 0.67
b11 38 37 1180 1876 1745 6 223 (11%) 18 1346 0.77 355 - -
b12 126 127 2394 3310 4129 7 449 (13%) 19 1861 0.45 457 - -
b13 63 63 796 1002 1763 4 111 (11%) 14 734 0.42 94 - -

REFERENCES

[1] S. Borkar, T. Karnik, and V. De, “Design and reliability challenges
in nanometer technologies,” in Proc. ACM/IEEE Design Automation
Conference, 2004, pp. 75–75.

[2] S. Nassif, “Modeling and analysis of manufacturing variations,” in IEEE
Conf. on Custom Integrated Circuits, 2001, pp. 223–228.

[3] R. Baumann, “Soft errors in advanced computer systems,” IEEE Design
& Test of Computers, vol. 22, no. 3, pp. 258–266, may-june 2005.

[4] M. Goessel, V. Ocheretny et al., New Methods of Concurrent Checking.
Springer, 2008.

[5] S. Mitra and E. McCluskey, “Which concurrent error detection scheme
to choose?” in Proc. IEEE Int’l Test Conference, 2000, pp. 985–994.

[6] M. Nicolaidis and Y. Zorian, “On-line testing for VLSI, a compendium
of approaches,” Journal of Electronic Testing (JETTA), vol. 12, no. 1-2,
pp. 7–20, Feb. 1998.

[7] K. De, C. Natarajan et al., “Rsyn: a system for automated synthesis of
reliable multilevel circuits,” IEEE Trans. VLSI Systems, vol. 2, no. 2,
pp. 186–195, june 1994.

[8] N. A. Touba and E. J. McCluskey, “Logic synthesis for concurrent error
detection,” Stanford, CA, USA, Tech. Rep., 1993.

[9] N. Touba and E. McCluskey, “Logic synthesis of multilevel circuits with
concurrent error detection,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 16, no. 7, pp. 783–789, jul 1997.

[10] C. Bolchini, F. Salice, and D. Sciuto, “Parity bit code: achieving a
complete fault coverage in the design of TSC combinational networks,”
in Proc. Seventh Great Lakes Symposium on VLSI, 1997, pp. 32–37.

[11] S. Almukhaizim and Y. Makris, “Fault tolerant design of combinational
and sequential logic based on a parity check code,” in Proc. IEEE Int’l
Symp. on Defect and Fault Tolerance (DFT), 2003, pp. 563–570.

[12] S. Ghosh, N. Touba, and S. Basu, “Synthesis of low power CED circuits
based on parity codes,” in Proc. IEEE VLSI Test Symposium, 2005, pp.
315–320.

[13] S. Almukhaizim, P. Drineas, and Y. Makris, “Entropy-driven parity-
tree selection for low-overhead concurrent error detection in finite state
machines,” IEEE Trans. CAD, vol. 25, no. 8, pp. 1547–1554, 2006.

[14] R. Vemu, A. Jas et al., “A low-cost concurrent error detection technique
for processor control logic,” in Proc. Design, Automation and Test in
Europe (DATE), 2008, pp. 897–902.

[15] K. Mohanram and N. Touba, “Cost-effective approach for reducing soft
error failure rate in logic circuits,” in Proc. IEEE International Test
Conference, 2003, pp. 893–901.

[16] K. Mohanram, E. Sogomonyan et al., “Synthesis of low-cost parity-
based partially self-checking circuits,” in Proc. 9th IEEE On-Line
Testing Symposium (IOLTS), july 2003, pp. 35–40.

[17] M. Richter and M. Goessel, “Concurrent checking with split-parity
codes,” in Proc. IEEE International On-Line Testing Symposium
(IOLTS), 2009, pp. 159–163.

[18] C. Metra, D. Rossi et al., “Function-inherent code checking: A new
low cost on-line testing approach for high performance microprocessor
control logic,” in IEEE Europ. Test Symposium, 2008, pp. 171–176.

[19] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case time complex-
ity for generating all maximal cliques and computational experiments,”
Journal of Theoretical Computer Science, vol. 363, no. 1, pp. 28–42,
Oct. 2006.

[20] E. S. Sogomonyan and M. Goessel, “Design of self-testing and on-line
fault detection combinational circuits with weakly independent outputs,”
Journal of Electronic Testing (JETTA), vol. 4, pp. 267–281, 1993.

[21] M. Hunger and S. Hellebrand, “Verification and analysis of self-
checking properties through ATPG,” in Proc. IEEE International On-
Line Testing Symposium (IOLTS), 2008, pp. 25–30.

[22] G. Fey and R. Drechsler, “A basis for formal robustness checking,”
in Proc. Int’l Symp. on Quality Electronic Design (ISQED), 2008, pp.
784–789.

[23] G. Tseitin, “On the complexity of derivation in propositional calculus,”
Studies in constructive mathematics and mathematical logic, vol. 2, no.
115-125, pp. 10–13, 1968.

[24] P. K. Lala, Self-Checking and Fault-Tolerant Digital Design. Morgan
Kaufmann, 2001.

[25] C. Zeng, N. Saxena, and E. J. McCluskey, “Finite state machine
synthesis with concurrent error detection,” in Proc. IEEE Int’l Test
Conference, 1999, pp. 672–679.

6

	2013_DFTS_DalirKW2013

