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Abstract—Increasing parameter variations, caused by vari-
ations in process, temperature, power supply, and wear-out,
have emerged as one of the most important challenges in
semiconductor manufacturing and test. As a consequence for
gate delay testing, a single test vector pair is no longer sufficient
to provide the required low test escape probabilities for a single
delay fault. Recently proposed statistical test generation methods
are therefore guided by a metric, which defines the probability
of detecting a delay fault with a given test set. However, since
runtime and accuracy are dominated by the large number
of required metric evaluations, more efficient approximation
methods are mandatory for any practical application.

In this work, a new statistical dynamic timing analysis al-
gorithm is introduced to tackle this problem. The associated
approximation error is very small and predominantly caused by
the impact of delay variations on path sensitization and hazards.
The experimental results show a large speedup compared to
classical Monte Carlo simulations.

I. INTRODUCTION

In recent years, parameter variations have emerged as a

new challenge for manufacturing test methods [1]–[3]. The

detrimental impact of these variations on the delay test quality

may lead to many test escapes due to test invalidation [4]. A

delay test is called invalid, if the test fails to detect a target

fault due to delay variations, hazards or other reasons. More

stringent path sensitization conditions can reduce the risk of

test invalidation, but these conditions may not be satisfiable for

a large number of paths [5]. Hence, a single test vector pair

can no longer provide sufficiently low test escape probabilities

for a delay fault [6].

In order to keep test cost within an acceptable budget,

statistical delay test generation methods must be aware of the

diminishing returns in delay test quality by each additional

test vector pair. The most promising approach is to guide the

test generation procedure by a metric [7]–[10], which defines

the detection probability of a delay fault with a given test

set. However, this metric must be computed O(k2n) times

to evaluate k applicable test vector pairs for each gate delay

fault in a circuit with n gates [8]. Hence, the accuracy and the

computational complexity of any practical application strongly

depend upon the efficiency of the metric evaluations.

For the research and development of new statistical test

generation methods, the output deviation was proposed as a

low-cost surrogate metric [11]. However, the output deviation

tends to saturate, and equal values are obtained for long and

intermediate sensitized paths.

In [7], the detection probability is used to guide the selection

of the longest paths through every gate of the circuit, which are

subsequently targeted for test generation. However, in order to

reduce the runtime of the algorithm, the authors approximate

the path delays as independent random variables.

An alternative method is to create a superset of test vector

pairs for each fault site. Then, a minimal subset of these

test vector pairs with sufficiently high delay test quality is

selected. A pattern-selection algorithm following this principle

was proposed in [8]. However, the detection probability was

computed using Monte Carlo simulations of the entire circuit,

which is inefficient for practical applications. Instead, only

sufficiently long paths, which are also sensitized by the given

test set, can have a significant impact on the delay test result

and should therefore be considered.

In a related work [12], the authors proposed to utilize

statistical static timing analysis techniques to estimate the

process-induced variation in pattern delays. An event-driven

timing simulation was used to identify the portion of the

circuit, which is sensitized by a given test set. After removing

the remaining parts of the circuit, a block-based statistical

static timing analysis technique was applied to estimate the

pattern delay distribution. However, the block based approach

results in unnecessary error accumulation and requires all gate

and interconnect delays to have a normal distribution.

The approach presented here combines several efficient

block- and path-based statistical static timing analysis tech-

niques, to minimize the approximation error and the com-

putational complexity. In contrast to [12], only sensitized

paths with a significant probability of causing a timing failure

are considered. The algorithm is not restricted to normally

distributed gate and interconnect delays, which is particularly

important for the consideration of the exponential fault size

distribution of a gate delay fault. Furthermore, both structural

as well as spatial correlations are taken into account.

The contribution of this work is twofold: (1) based on [12],

a new advanced statistical dynamic timing analysis algorithm

is introduced, which can be used in test applications; (2) the

efficiency of the algorithm is demonstrated in the context of

delay variation aware pattern selection for small delay defects.

The remainder of the paper is organized as follows. Section

II describes the proposed approximation algorithm. The ex-

perimental results for NXP benchmark circuits are presented

in section III. Conclusions are drawn in section IV.



II. STATISTICAL TIMING ANALYSIS ALGORITHM

To detect a particular gate delay fault, a suitable set of test

vector pairs Θ is applied to the circuit. The proposed algorithm

approximates the probability, that an incorrect logic value will

be captured into at least one scan flip-flop. More precisely, the

algorithm computes the probability of a timing failure, which

occurs if at least one primary output of the combinational

network has not stabilized to its final logic value within the

system clock cycle time Tclk. It is assumed, that the whole

circuit is subject to delay variation, which may cause path

delay faults by itself or in combination with a gate delay fault.

A sensitization analysis similar to [12] is performed for

every test vector pair in the test set. But instead of the entire

sensitized portion of the circuit, only paths with a significant

probability of causing a timing failure are extracted. The delay

distribution of such a long path is approximately a normal

distribution, regardless of the distribution of the gate and

interconnect delays (central limit theorem). The circuit delay

for the considered test set is now given by the statistical

maximum of all path delays. The timing failure probability

is finally obtained by evaluating the cumulative distribution

function of the corresponding multivariate normal distribution.

The proposed algorithm approximates the probability of a

timing failure in four major steps, as depicted in Fig 1. The

first step identifies all paths, along which transitions travel

from the primary inputs to the primary outputs under a given

test set. Only those paths, whose probabilities of causing a

timing failure exceed a user defined threshold, are extracted

in the second step. The set of correlated random variables,

defined by all critical transition path delays, is reduced in

the third step with Clark’s maximum estimation method [13].

The probability of a timing failure is finally computed in the

last step, using an efficient numerical integration algorithm

proposed by Genz [14]. The following subsections present a

detailed description of all steps of the algorithm. A method to

enhance its accuracy is introduced in subsection II-E.

A. Identification of Complete Transition Paths

A complete transition path is a sensitized path, along which

a transition propagates from a primary input to a primary

output. The identification of complete transition paths is based

on a single pass event-driven timing simulation of each vector

pair in the test set. This simulation considers only nominal

delay values and may identify different complete transition

paths for different delays, due to dynamic path sensitization

and hazards. In rare cases, this dependency may have a large

impact on the circuit delay, leading to complete transition

paths, which are not representative for the vector pair.

Following the simulation of a vector pair, the complete

transition paths can easily be identified by tracing the events

backwards from the primary outputs to the primary inputs.

To avoid any ambiguities during event tracing, each event at

the output of a gate has a reference to its preceding event at

the gate input. A further reference to the applied delay value,

selected according to the conditions of the gate timing model,

is stored to improve the efficiency of the following step.

START

Read gate/interconnect delays

Read vector pair

1. Identification of Complete Transition Paths

2. Extraction of Critical Transition Paths

more
vector
pairs?

3. Dimension Reduction with MAX Operation

4. Computation of Timing Failure Probability

Output Timing Failure Probability

END

yes

no

Fig. 1. Flowchart of the statistical dynamic timing analysis algorithm

B. Extraction of Critical Transition Paths

A critical transition path is defined as a complete transition

path, for which the probability of the path delay exceeding the

system clock cycle time Tclk is above a user defined threshold.

If the probability is very large (e.g. greater 0.98), then a timing

violation is very likely and no further analysis is required.

For a complete transition path with correlated and normally

distributed gate and interconnect delays X1, . . . , Xk, the path

delay Y also has a normal distribution with mean µ(Y ) and

variance σ2(Y ) given by

µ(Y ) =
k

∑

i=1

µ(Xi) σ2(Y ) =
k

∑

i=1

k
∑

j=1

σ(Xi, Xj), (1)

where σ(Xi, Xj) denotes the covariance of Xi and Xj .

Assuming independent delays X1, . . . , Xk of arbitrary dis-

tributions, the path delay distribution is obtained from the

convolution of all probability density functions of X1, . . . , Xk.

The following steps of the algorithm require the delay of all

critical transition paths to have a normal distribution. However,

according to the central limit theorem, the distribution of a sum

of independent random variables with arbitrary distribution

converges to a normal distribution. In practice, this conver-

gence occurs rapidly for less than 10 variables, especially

if the distribution of these variables is close to a normal

distribution [15]. While the central limit theorem only holds

for independent random variables, for most practical models

of correlation, the distribution is also guaranteed to converge

to a normal distribution.



C. Dimension Reduction with Statistical Maximum Operation

The goal of the remaining two steps is to compute the

probability Ψ, that the delay of at least one critical transition

path exceeds the system clock cycle time Tclk. More formally,

this probability is defined as

Ψ , 1− Pr(max{X1, . . . , Xn} ≤ Tclk), (2)

where the critical transition path delays equal correlated ran-

dom variables X1, . . . , Xn of normal distribution.

The computation of the timing failure probability (2) re-

quires knowledge about possible structural and spatial correla-

tions between the critical transition path delays. For structural

correlations, the covariance of two paths equals the sum of

the variances of all gate and interconnect delays, which are

shared by both paths. However, depending on the particular

circuit model, the estimation of spatial correlations can be

significantly more difficult and is beyond the scope of this

paper. In this case, it is assumed that the covariance is obtained

using one of the well-known methods.

Using Clark’s approximation method [13], any two random

variables Xi and Xj with 1 ≤ i < j ≤ n can be replaced by

a new random variable Y = max{Xi, Xj}, representing the

statistical maximum of Xi and Xj . Following the definitions

φ(x) ,
1√
2π

e−
x
2

2 (3)

Φ(x) ,

x
∫

−∞

φ(t)dt (4)

a ,

√

σ2(Xi) + σ2(Xj)− 2σ(Xi, Xj) (5)

α ,
µ(Xi)− µ(Xj)

a
, (6)

the first two moments of Y are obtained by

µ(Y ) = µ(Xi)Φ(α) + µ(Xj)Φ(−α) + aφ(α) (7)

σ2(Y ) =
(

µ2(Xi) + σ2(Xi)
)

Φ(α)

+
(

µ2(Xj) + σ2(Xj)
)

Φ(−α)

+ (µ(Xi) + µ(Xj)) aφ(α)− µ2(Y ). (8)

Before removing Xi and Xj , it is necessary to compute all

covariances σ(Xk, Y ), where Xk denotes any of the remaining

random variables. The covariance of Xk and Y is given by

σ(Y,Xk) = σ(Xi, Xk)Φ(α) + σ(Xj , Xk)Φ(−α). (9)

This approximation disregards all higher-order moments of

Y , which introduces an approximation error. The accumulation

of this error can be minimized by carefully choosing the

order, in which the pairwise statistical maximum operations

are performed [16]. In this paper, Clark’s maximum estimation

method is iteratively applied to the pair of random variables

with maximum α. To avoid unnecessary error accumulation,

this process stops once the number of random variables has

dropped below a user defined threshold.

D. Computation of Timing Failure Probability

This step finally computes the timing failure probability Ψ
using an efficient numerical integration method. Replacing the

maximum in (2) yields

Ψ = 1− Pr(Y1 ≤ Tclk, . . . , Ym ≤ Tclk), (10)

where Y1, . . . , Ym denote the remaining random variables after

the previous step. Instead of computing the entire distribution

of the statistical maximum, only the cumulative distribution

function must be evaluated. Using the definition of the cumu-

lative distribution function this becomes

Ψ = 1−
Tclk
∫

−∞

· · ·
Tclk
∫

−∞

φ(x;µ,Σ)dx1...dxm, (11)

where φ denotes the multivariate normal density function,

defined by the mean vector µ = [µ(Y1), . . . , µ(Ym)] and the

covariance matrix Σ = [σ(Yi, Yj)] with i, j ∈ {1, . . . ,m}.

For this problem, the numerical integration algorithm pro-

posed by Genz in [14] has proven to be surprisingly effective.

It is applicable to very large dimensions and quickly converges

to the required accuracy of about 10−4. However, in some

cases the dependencies between path delays may lead to a

covariance matrix that is not positive-definite. To avoid severe

numerical instabilities, various techniques can be applied to

transform such a covariance matrix into a positive-definite

matrix [17]. In this paper, the diagonal elements of the matrix

are multiplied with a very small constant greater than unity.

E. Enhancement of Accuracy

Path sensitization and hazards can be very sensitive to delay

variation. However, the sensitization analysis in the first step

uses only nominal delay values, which is the main source of

approximation error of this algorithm.

To explore the impact of delay variations on the compo-

sition of the critical transition path set, the algorithm can

be executed N times using randomly chosen delays during

sensitization analysis. If the approximation results Ψ1, . . . ,ΨN

differ significantly, a classical Monte Carlo simulation of the

whole circuit could be performed. However, a more efficient

approach is to use the average approximation result Ψ̄

Ψ̄ =
1

N

N
∑

i=1

Ψi, (12)

where the calculation of the timing failure probability is only

required for the distinct sets of critical transition paths. To

focus on the most likely critical transition path sets, the stan-

dard deviation for the random number generation is reduced

to 0.3σ, which was chosen based on experimental results.

However, the relative frequency and the delays of the critical

transition paths are not necessarily independent as assumed

by (12), which may lead to a slight underestimation of the

timing failure probability. Indeed, the later a transition arrives

at a gate input, the more likely the off-path inputs have

already stabilized to their non-controlling values and allow

the transition to be propagated.



III. EXPERIMENTAL RESULTS

The experiments were performed on several NXP bench-

mark circuits. The circuits were first speed-optimized using a

commercial synthesis tool and then mapped to the NanGate

45nm Open Cell Library [18]. To avoid an unnecessary com-

plex experimental setup, chip layouts were not produced. As a

result, interconnect delays and spatial correlations have been

ignored. All experiments used the gate delay model defined

by the Verilog HDL [19] standard. However, instead of real

numbers, all delay values X were assumed to have a normal

distribution with σ(X) = cv|µ(X)| of the nominal value

µ(X). The nominal gate delay values were extracted from the

Standard Delay Format (SDF) description of the synthesized

netlists. A variation coefficient of cv = 0.25 was assumed,

based on predictions for the 12nm process technology [20].

The system clock cycle time Tclk was chosen, such that 5%
of the defect-free manufactured chips would fail due to timing

failures caused by delay variations.

For each circuit, a benchmark of 20000 randomly chosen

single gate delay faults was created. For every delay fault,

a set of test vector pairs, suitable for small delay defects,

was generated. Using only the nominal gate delay values,

the k longest paths through a fault site were found with a

commercial static timing analysis tool. The number of paths

was limited to 1000, of which at most 100 paths were allowed

to end at the same primary output. A commercial ATPG tool

was later used to sensitize the resulting set of paths. Only delay

faults, for which at least 20 vector pairs had been generated,

were considered. The fault size was set to the slack of the

complete transition path π̃ with the largest nominal delay,

passing through the fault site.

For every delay fault, four different test sets Θ1, . . . ,Θ4

were defined as follows. The first test set Θ1 contained only a

single vector pair which sensitizes π̃ for nominal delay values.

Then, Θi+1 was created from Θi, by adding several vector

pairs in decreasing order of the delay of the longest complete

transition path. Thereby gradually extending the test set to five,

ten and finally to twenty vector pairs.

The approximation results are compared to the fault de-

tection probability, which is computed using 105 classical full

circuit Monte Carlo simulations with a highly optimized event-

driven timing simulator. During one iteration, a fault is said

to be detected, if at least one primary output does not have

the expected value at the sampling time Tclk. The runtime

of the Monte Carlo simulations is dominated by the large

number of random values required for every iteration. This

is due to the detailed gate delay model defined by the Verilog

HDL [19] standard, which distinguishes between different pin-

to-pin, asymmetric rising/falling and conditional path delays.

Hence, a two-input gate may require up to eight different

delay values. The random number generation utilizes high-

performance implementations of the Box-Muller transform

and the Mersenne Twister pseudo-random number generator.

All programs were implemented in C++ and executed on Intel

Core i7-2600K processor workstations with 8 or 32GB RAM.

A. Proposed Approximation Algorithm

In this subsection, the effectiveness of the proposed approx-

imation algorithm is demonstrated. The results for a single

execution and for multiple executions are presented in Table I

and II, respectively. Column (1) gives the name of the circuit,

and column (2) shows the number of test vector pairs in the

individual test sets Θ. All values in columns (3)-(8) represent

average results over all delay faults. The average number of

critical transition paths |Π|, obtained for the individual test

sets, is shown in column (3). A complete transition path

with normally distributed delay Y was considered critical,

if µ(Y ) + 3σ(Y ) ≥ Tclk. The number of critical transition

paths slowly saturated, because the additional vector pairs

predominantly sensitized shorter paths and many paths may

have already been sensitized by previous vector pairs.

The runtime and the accuracy of the proposed approxima-

tion algorithm were compared to 105 Monte Carlo simulations,

which evaluated the fault detection probability as a golden

reference. The absolute approximation error is presented in

column (4) as the average absolute difference to the golden

reference. As explained in section II-E, a single test vector

pair might not sensitize a critical transition path for all

possible delay realizations, due to different arrival times of

the transitions at the off-path inputs. However, in this case, a

different vector pair might still be able to sensitize the path.

Hence, increasing the size of the test set leads to a reduction

of the approximation error.

Clark’s maximum estimation method was only applied in

rare cases of more that 1000 critical transition paths. Hence,

the impact on the average runtime and accuracy of the algo-

rithm was very small. The multivariate normal integral (11)

was computed using a FORTRAN routine named MVNDST,

which was developed by Genz [14]. The largest estimated

approximation error of the numerical integration algorithm was

always less than 10−2.

Column (5) shows the relative approximation error ǭ, de-

fined as the average mean difference to the golden reference. A

positive mean error ǭ indicates overestimation, while a negative

ǭ shows a tendency for underestimation of the fault detection

probability. A single execution of the proposed algorithm does

not consider the impact of delay variations on the composition

of the critical transition path set. Hence, the tendency shifts

from overestimation for small test set sizes to underestimation

for larger test set sizes.

As expected, the proposed extension of the algorithm im-

proves the accuracy by computing the average result of 10
executions. For any delay fault, the number of executions

was increased to 100 if the difference between the smallest

and greatest timing failure probability exceeded 0.1. The fault

detection probability was rarely overestimated, but contrary

to a single execution, the mean error ǭ for some circuits

was increasing with the test set size |Θ|. This is caused by

statistical dependencies between the relative frequency of a

critical transition path and its timing failure probability, as

described in subsection II-E.



circuit |Θ| |Π|
|ǫ| ǭ tPA tMC

S
10−2 10−2 [s] [s]

(1) (2) (3) (4) (5) (6) (7) (8)

p35k

1 9.01 6.43 0.27 0.0154 29.57 4347
5 33.20 3.99 -0.82 0.0615 60.17 1592

10 60.13 2.98 -0.66 0.1150 92.66 1176
20 111.33 2.14 -0.50 0.2230 156.86 1046

p45k

1 4.98 4.54 1.89 0.0088 30.30 6486
5 17.30 3.19 -0.36 0.0370 64.31 2666

10 29.83 2.82 -0.90 0.0676 100.92 2004
20 50.68 2.43 -1.13 0.1202 172.08 1853

p77k

1 6.81 2.81 1.42 0.0159 49.87 6320
5 21.54 2.16 0.26 0.0591 117.93 3102

10 35.08 2.09 0.03 0.1068 194.57 2501
20 55.36 2.23 -0.20 0.1894 345.27 2352

p78k

1 3.93 7.68 2.58 0.0232 174.45 7754
5 16.13 4.64 -0.30 0.1129 349.35 3158

10 29.62 3.43 -0.64 0.2179 557.12 2592
20 52.72 2.73 -0.90 0.4250 971.33 2313

p81k

1 2.90 4.21 0.89 0.0175 289.06 18307
5 11.27 3.05 -0.53 0.0691 404.64 6357

10 20.15 2.42 -0.62 0.1300 538.76 4404
20 35.31 1.97 -0.65 0.2452 805.82 3450

p100k

1 4.63 5.51 1.29 0.0169 90.59 6409
5 16.71 3.82 0.02 0.0712 193.44 3050

10 29.29 3.12 -0.27 0.1340 309.98 2536
20 49.74 2.75 -0.62 0.2502 540.13 2316

p267k

1 6.43 3.81 -0.67 0.0434 561.93 15055
5 21.18 2.93 -1.33 0.1654 770.52 5335

10 34.88 2.23 -0.96 0.3221 1001.76 3657
20 57.45 1.77 -0.74 0.6819 1476.70 2803

p330k

1 11.85 5.51 1.35 0.0715 774.28 13316
5 42.83 3.56 -0.40 0.2837 1109.19 5088

10 69.30 2.78 -0.47 0.5871 1503.43 3689
20 113.66 2.33 -0.50 2.0466 2299.52 2947

TABLE I
APPROXIMATION RESULTS FOR A SINGLE EXECUTION

Column (6) shows the average runtime for a single execution

of the proposed algorithm. The runtime is dominated by

the maximum estimation and numerical integration (41.8%),

followed by the critical transition path extraction (34.6%) and

event driven-simulation (23.6%). Clark’s maximum estimation

had only a minor impact on the average runtime.

The average runtime of the Monte Carlo simulation is

presented in column (7) and the corresponding speed-up is

given in column (8). The amount of time required for the

event-driven simulation and path selection increases linearly

with the test set size |Θ|. However, due to the increasing

number of critical transition paths, the relative contribution of

the numerical integration to the overall runtime of the approach

increases significantly. On the other hand, the Monte Carlo

algorithm becomes more efficient, because the high cost for

generating the large number of high quality random delay

values is shared among a greater number of vector pairs.

Hence, the speed-up decreases with the size of the test set.

The runtime for multiple executions depends on the number

of executions and distinct critical transition path sets.

The experimental results have shown an average speedup

of between four and five orders of magnitude, compared to

classical Monte Carlo simulations. The small approximation

error of the algorithm is predominantly caused by the impact

of delay variation on path sensitization and hazards. Multiple

executions can further enhance the accuracy of the results.

circuit |Θ| |Π|
|ǫ| ǭ tPA tMC

S
10−2 10−2 [s] [s]

(1) (2) (3) (4) (5) (6) (7) (8)

p35k

1 8.78 5.36 -1.84 0.1828 29.57 162
5 32.74 3.44 -1.78 0.9910 60.17 61

10 59.53 2.61 -1.29 1.7703 92.66 52
20 110.58 1.90 -0.90 2.9965 156.86 52

p45k

1 4.90 3.47 0.30 0.1188 30.30 255
5 17.06 2.78 -1.14 0.5864 64.31 110

10 29.35 2.56 -1.45 1.0509 100.92 96
20 49.95 2.27 -1.47 1.8789 172.08 92

p77k

1 6.70 2.09 0.56 0.1684 49.87 296
5 21.28 1.70 -0.16 0.7546 117.93 156

10 34.71 1.69 -0.27 1.6080 194.57 121
20 54.83 1.89 -0.34 3.3099 345.27 104

p78k

1 3.71 6.04 -1.50 0.9253 174.45 189
5 15.37 4.27 -2.60 5.2061 349.35 67

10 28.29 3.33 -2.27 8.9644 557.12 62
20 50.47 2.74 -2.05 14.4722 971.33 67

p81k

1 2.92 3.62 -0.25 0.3326 289.06 869
5 11.33 2.75 -1.04 1.3735 404.64 295

10 20.17 2.25 -0.98 2.2391 538.76 241
20 35.24 1.89 -0.91 3.6286 805.82 222

p100k

1 4.48 4.59 -0.97 0.4047 90.59 224
5 16.38 3.31 -1.25 1.9264 193.44 100

10 28.58 2.80 -1.26 3.2609 309.98 95
20 48.44 2.50 -1.33 5.5870 540.13 97

p267k

1 6.41 3.53 -1.64 0.7259 561.93 774
5 21.26 2.72 -1.65 3.0388 770.52 254

10 35.05 2.10 -1.23 5.0450 1001.76 199
20 57.63 1.69 -0.97 9.2235 1476.70 160

p330k

1 11.76 4.43 -0.60 1.3944 774.28 555
5 42.90 3.03 -1.22 6.1162 1109.19 181

10 69.51 2.46 -1.06 11.3596 1503.43 132
20 113.71 2.16 -0.93 30.9242 2299.52 74

TABLE II
APPROXIMATION RESULTS FOR MULTIPLE EXECUTIONS

B. Trade-Off Between Test Cost and Statistical Test Quality

In this subsection, the accuracy of the proposed approxima-

tion algorithm is demonstrated in the context of delay variation

aware pattern selection for small delay defects. The fault detec-

tion probability is used to find a suitable compromise between

the statistical test quality and the total number of vector pairs.

Based on the results of the previous subsection, which were

stored in a database, a suitable test set Θ ∈ {Θ1, . . . ,Θ4} is

selected for each delay fault.

At first, the fault detection probability P4 of the largest test

set Θ4 with 20 vector pairs was compared to the smaller

subsets Θ1, Θ2 and Θ3 with 1, 5 and 10 vector pairs,

respectively. To minimize test cost, the smallest test set Θi

with a fault detection probability Pi satisfying

Pi ≥ P4 − b (13)

was selected. A threshold value of b = 0.10 was chosen to

specify a trade-off between test quality and test cost. This

process was repeated for all delay faults and circuits.

The described pattern selection approach was first per-

formed using only the Monte Carlo simulation results. The

test set size distribution over all delay faults in each circuit is

presented in Fig. 2. For more than 50% of all delay faults in

this example, five vector pairs provide superior fault detection

probability, close to the four times larger test set Θ4.
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Fig. 2. Number of test vector pairs required for individual delay faults
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Fig. 3. Test set size differences compared to Monte Carlo based approach

The whole process was repeated using the proposed ap-

proximation algorithm, and both results were compared in

Fig. 3. The abscissa shows the difference in the test set size

|ΘMC |−|ΘPA| over all delay faults and circuits, where ΘMC

and ΘPA denote the test set chosen based on the results of

the Monte Carlo simulation and the proposed approximation

algorithm, respectively. The results match for more than 80%
of all delay faults, while only for a small fraction a slightly

smaller or larger test set was selected. By using the same

randomly chosen delay values for all test sets, the average

result of multiple executions provides even greater accuracy.

IV. CONCLUSION

Delay variations in recent technology nodes reduce the

quality and reliability of all delay tests. Statistical test gen-

eration methods are guided by the fault detection probability

to find a trade-off between statistical delay test quality and test

cost. An efficient statistical dynamic timing analysis algorithm

was proposed to reduce the high runtime complexity of these

methods. The approach was compared with results of extensive

Monte Carlo simulations and has shown a large speedup with

only a small loss of accuracy.
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