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Abstract—Unknown or X-values during test application may

originate from uncontrolled sequential cells or macros, from clock

or A/D boundaries or from tri-state logic. The exact identification

of X-value propagation paths in logic circuits is crucial in logic

simulation and fault simulation. In the first case, it enables the

proper assessment of expected responses and the effective and

efficient handling of X-values during test response compaction.

In the second case, it is important for a proper assessment of

fault coverage of a given test set and consequently influences the

efficiency of test pattern generation. The commonly employed

n-valued logic simulation evaluates the propagation of X-values

only pessimistically, i.e. the X-propagation paths found by n-

valued logic simulation are a superset of the actual propagation

paths.

This paper presents an efficient method to overcome this

pessimism and to determine accurately the set of signals which

carry an X-value for an input pattern. As examples, it investigates

the influence of this pessimism on the two applications X-masking

and stuck-at fault coverage assessment.

The experimental results on benchmark and industrial circuits

assess the pessimism of classic algorithms and show that these

algorithms significantly overestimate the signals with X-values.

The experiments show that overmasking of test data during test

compression can be reduced by an accurate analysis. In stuck-at

fault simulation, the coverage of the test set is increased by the

proposed algorithm without incurring any overhead.

Index Terms—Unknown values, stuck-at fault coverage, accu-

rate fault simulation, simulation pessimism

I. INTRODUCTION

During test application, unknown values (Xs) can emerge

from either external or internal sources of a circuit. Their

sources may be uninitialized or uncontrollable sequential el-

ements, clock domain crossings or tri-state circuitry. Signals

with an X-value are useless for test purposes. They do not pro-

vide information on faults and may even cancel out informative

values if fed into compaction logic. In consequence, they have

a negative influence on test set size and test response size.

For an accurate computation of the set of X-valued signals

and primary/pseudo primary outputs (PO/PPO), n-valued logic

simulation is insufficient due to its pessimistic evaluation of

reconvergences. An example is given in Fig. 1 where a 3-

valued simulation computes the state of the output signal as

X, while the signal actually takes the value 1 as two correlated

Xs are fed into the XOR gate and cause X-canceling.
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Fig. 1. Pessimism in 3-valued logic simulation and fault simulation

Clearly, the pessimism of n-valued logic simulation in-

creases the amount of alleged useless signals and thereby

unnecessarily increases test data volume as detailed in the

following paragraphs.

A. X-Cancelation and Pessimistic Logic Simulation

If an X occurs at a PO or PPO and is fed into compaction

hardware, it may cancel out defined (non-X) values and

thereby corrupt the signature produced by the compactor. To

prevent this, different counter measures (so called X-handling

measures) can be taken. State of the art X-handling measures

either control Xs to known (non-X) values by extra logic

and extra control signals, or they tolerate a certain amount

of Xs while sacrificing the compaction ratio of the employed

compactor. In both cases, Xs result in an increase in test data,

either in control data, i.e. test patterns, or in test response

size. Typically, the overhead introduced by the X-handling

measures increases with the number of Xs to be handled. As

a consequence, an exact analysis of X-propagation to POs and

PPOs results in smaller test response sets and smaller test sets.

B. Stuck-at Fault Simulation

Fault simulation algorithms such as the PPSFP (Parallel

Pattern Single Fault Propagation) and the concurrent algorithm

[1–4] use an n-valued logic with limited number of symbols to

compute the signal values in the fault-free and faulty circuit.

In 5-valued test generation or fault simulation for instance,

the five signal states {0, 1, D, D̄, X} are distinguished, where

D and D̄ correspond to faulty values, i.e. D corresponds to

a fault-free value of 1 and a faulty value of 0 and D̄ vice

versa. These algorithms are again not capable of correctly
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evaluating reconvergences of Xs. In the example of Fig. 1, the

two stuck-at-0 faults are actually propagated and observable at

the circuit output. Yet, 5-valued simulation evaluates the output

signal to X. n-valued fault simulation results in a pessimistic

estimation of fault coverage. However, correctly evaluating

fault coverage is important to guarantee high product quality.

A less pessimistic analysis may also reduce costs in terms

of test data volume and test time, the number of patterns or

number of specified bits.

To summarize, exact evaluation of X-propagation in logic

and fault simulation will benefit the test quality in terms of

fault coverage (i.e. reduced test escapes) and test overhead. In

this paper, we propose an efficient SAT-based method for the

accurate identification of X-propagation in logic simulation.

Based on this method, we investigate the influence of the

pessimism in state of the art n-valued simulation in logic simu-

lation and its application to X-masking schemes. Furthermore,

the algorithm is applied to stuck-at fault simulation to evaluate

the impact of simulation pessimism on fault coverage.

The rest of the paper is organized as follows. Section II

formalizes the problem of accurate simulation. Section III

reviews the state of the art in X-propagation assessment and

fault simulation in presence of X-values. Additionally, an

overview is given over recent X-handling schemes. Section IV

describes our approach for accurate X-propagation assessment

in logic simulation, while section V extends this approach for

stuck-at fault simulation with increased accuracy. Section VI

explains the experimental setup and presents the case study

on the impact of the simulation pessimism in general, and

its impact on different X-handling schemes. The section also

evaluates the pessimism of 3-valued stuck-at fault simulation.

Finally, section VII concludes this work.

II. PROBLEM STATEMENT

This work targets the accurate logic simulation of fullscan

or combinational circuits in presence of unknown values for

a given set of input stimuli, without the pessimism introduced

by n-valued simulation algorithms due to propagation of

unknown values. Unknown values may result from X-sources

internal to the circuit or from only partially specified input

stimuli.

Classical 3-valued logic simulation distinguishes between

the binary logic values 0 and 1, and a state with unknown

value, usually denoted U or X. For the following discussion,

we distinguish three types of X-values, namely

• Real X-values (REX): A signal state which can be proven

to depend on the assignments to X-sources

• Pessimistic X-values (PEX): A superset of the REX

values as computed for instance by 3-valued logic sim-

ulation

• False X-values (FEX): PEX values which do not depend

on the assignments to X-sources. FEX values have a logic

value ∈ {0, 1}.

It follows that PEX = FEX ∪ REX and FEX ∩ REX = ∅ as

illustrated in Fig. 2.

Set of Pessimistic Xs 

(PEX)

Real Xs 

(REX)

False Xs 

(FEX)

Fig. 2. PEX, REX and FEX values

To determine whether the value of a signal is a REX for

a given input stimulus, the Boolean difference w.r.t. the X-

sources must be computed. This, for example, can be done

by computing and comparing all possible values of the signal

by enumerating all assignments to the X-sources. If the signal

value is not constant for all assignments, it is a REX for the

given input stimulus.

In X-masking algorithms, the occurrence of X-values at

the pseudo primary outputs or inputs of compaction hardware

impacts the overhead in terms of hardware, test data, or time.

In addition, overmasking may result in a loss of failure data

and fault coverage. An accurate logic simulation algorithm

can be employed to accurately classify which pseudo primary

outputs capture REX values in which pattern.

To accurately compute whether a fault in the circuit with

X-sources is detected by a given test pattern, the test responses

of the fault free and faulty circuit must be computed and

compared. The exact response of the fault free circuit can be

obtained by an accurate logic simulation as outlined above.

In the same way, the response of the faulty machine can be

computed. If there is at least one output pair with constant,

but opposite values in the fault free and faulty circuit, the

corresponding fault is detected by the pattern. This method is

able to compute the exact fault coverage of a test pattern set

if the number of X-sources is very small.

III. RELATED WORK

Both approximate and exact methods have been proposed to

overcome the pessimism in logic and stuck-at fault simulation,

trading off accuracy and runtime.

A. Logic Simulation with Increased Accuracy

Accurate logic simulation in presence of X-values can be

mapped to symbolic simulation or expressed as a satisfiability

instance. In a symbolic or indexed simulation of the circuit

[5], the Boolean function of each signal is expressed in

dependence of the free variables. This can be implemented by

use of reduced ordered binary decision diagrams (ROBDDs)

[6]. ROBDDs provide a canonical representation of Boolean

functions and allow to compute whether a signal depends on

an X-source or not. In the latter case, the signal actually has

a fixed binary value ∈ {0, 1} and is represented by a terminal

node in the ROBDD. However, the memory requirements for

BDDs may prohibit their use for some circuit structures, such

as multipliers.

A different approach for exact logic simulation is based on

computing the forward implication at each gate by analyzing

the intersection of the input cube with the implicants of the



function and its inverse [7]. While the authors report results

for circuits with up to 10 inputs, it is unclear whether this

cube-based algorithm scales to circuits of thousands of inputs.

The recent work in [8] investigates the propagation of

X-values resulting from uninitialized registers in high-level

RTL models by mapping the design to a quantified Boolean

formula (QBF) and solving it with a QBF solver. The proposed

algorithm can accurately identify whether uninitialized register

values are propagated over a limited number of clock cycles

and whether they are observable at sequential elements.

Reasoning about the circuit behavior in presence of X-

values is also known in the domain of formal verification of

designs with black boxes where parts of the implementation

are unknown. In the SAT-based work of [9], the state of

signals driven by black boxes is modeled using two binary

variables such that an X-state can be represented. However,

this technique is unable to express correlations of X-states,

similar to classical 3-valued logic simulation. In [10], an

accurate BDD-based symbolic simulation to handle outputs of

black boxes is proposed, and it is shown for smaller circuits

that this technique increases the accuracy of the verification

algorithm.

The mixed approach of [11] combines BDDs and reasoning

techniques similar to SAT solvers for system-level verifica-

tion. The algorithm distinguishes internal variables for which

the exact state needs to be kept and variables for which a

pessimistic value is sufficient in the context of the design

verification. If the available memory is exceeded, the method

conducts an explicit case splitting analysis, which increases

runtime in exchange for lower memory consumption.

Since the computational effort for formal methods may

render the application to larger circuits too expensive or even

impossible, pessimistic algorithms have been proposed which

still offer increased accuracy compared to classical n-valued

logic simulation. In restricted symbolic simulation [12] with

a limited domain of symbols, also termed distinguishing X-

simulation [13], or applied to test generation as in [14], the

simulation result remains pessimistic. However, runtime and

space requirements are much lower than for unbound symbolic

simulation.

Indirect implications which are derived during static learn-

ing can also be used to increase the accuracy of logic simula-

tion [15, 16]. The idea stems from the ATPG domain and is

based on evaluating the contrapositive of signals in the circuit.

A learning criterion selects a subset of indirect implications

which are not trivially found by following all transitive direct

implications. While methods based on static learning require

only moderate computational effort, the number of the result-

ing indirect implications may be very high and increase the

size of the circuit representation significantly.

The approximation algorithm of [17] is based on partition-

ing the circuit into reconvergent regions of limited size starting

at X-valued fanout stems. Partitions are simulated separately

to learn about X-propagation. This information is then fed

back into the simulation of the whole circuit. Due to the size

limitation on partitions, the result is still pessimistic.

B. X-Handling and Test Response Compaction in Presence of

X-Values

Different kinds of compaction schemes show different

vulnerability to Xs and, in consequence, different techniques

have been developed to prevent Xs from corrupting the com-

pactor signature. They can be classified as X-tolerant space

compaction, X-tolerant time compaction and X-masking for

both space and time compaction. All of them benefit if the

number of Xs to be masked can be reduced.

X-tolerant space compactors tolerate Xs by construction of

the compactor [18–23]. Two types of time compactors and

according X-tolerance schemes can be distinguished: finite im-

pulse response (FIR) compactors as convolutional compactors

[24] and infinite impulse response (IIR) compactors as MISR

compactors (Multiple Input Shift Registers). Xs fed into FIR

compactors corrupt only a subset of bits of the signature and

can thereby inherently be tolerated and extracted on the tester

[25]. Xs fed into IIR compactors may affect all signature

bits generated in all future compaction cycles. They can be

tolerated by X-canceling schemes [26].

X-tolerant compactors are only suitable if the amount of Xs

is bound to a certain number p. If the amount of Xs fed into

the compactor exceeds p, Xs will corrupt the signature. The

limit p can be traded off against the compaction ratio. In order

to optimize the compaction ratio, it is crucial to identify the

signals with REX values instead of those with PEX values.

X-masking logic is synthesized in between the circuit out-

puts, i.e. scan outs, and the inputs of any arbitrary compaction

logic [27–32]. During scan-out a predetermined X can be

converted into a specified value by feeding it e.g. through a

NAND gate and controlling the value of the output by an

extra mask input. Most masking approaches mask a superset

of those scan cells exposed to X-propagation, where a trade-

off between control data for masks and overmasked PPOs has

to be found. With fewer Xs to be masked, better solutions

for the trade-off between overhead and overmasking can be

found, and less area is required for the implementation of the

masking function [27, 32].

For all the aforementioned X-handling schemes it is benefi-

cial to identify the circuit outputs carrying the real Xs instead

of the pessimistic super set only. Thereby, the efficiency of the

schemes can be improved in terms of applicability, compaction

ratio and information content of the signatures.

C. Stuck-at Fault Simulation with Increased Accuracy

The use of indirect implications in stuck-at fault simulation

has been proposed by [33]. Due to the limitations of static

learning methods, the achievable accuracy is limited, i.e. only

a small subset of actually detectable faults is identified in

addition to classical fault simulation algorithms.

As in logic simulation, ROBDDs can also be used for

a symbolic simulation of the fault-free and faulty circuit

and fault classification. The application for symbolic fault

simulation of MOS circuits is described in [34].

Especially for sequential circuits, where Xs originating

from uninitialized sequential elements may spread over the



whole circuit and significantly impair fault coverage, symbolic

simulation has been applied. Restricted symbolic simulation is

used in [35] for synchronous sequential circuits.

The use of BDDs for the computation of synchronizing

(reset) sequences which set an uninitialized sequential circuit

to a defined state was proposed in [36]. The technique was

applied to test generation in synchronous sequential circuits

in [37]. For larger circuits, the symbolic traversal and search

of states by BDDs may exceed the available memory. To

trade off memory requirements and accuracy of state traversal,

the hybrid algorithm for fault simulation of [38] conducts

exact BDD-based symbolic simulation until the BDD memory

requirement exceeds a given limit. In that case, the hybrid

approach switches to conventional 3-valued simulation and

introduces pessimism. Switching between the pessimistic and

accurate simulation is performed between simulation cycles.

IV. ACCURATE LOGIC SIMULATION

In contrast to pessimistic n-valued simulation, which only

computes the set of PEX values, the proposed accurate logic

simulation algorithm is able to efficiently distinguish all REX

and FEX values. This is performed by firstly computing a

pessimistic set of X-valued signals (PEXs) which is then

analyzed by a SAT solver. Only reconvergences of REX

signals have to be handled by the SAT solver since only these

can generate FEX values. The results are the sets of REX and

FEX valued signals in the fault-free circuit.

This step is correct and complete, i.e. firstly it correctly

identifies all REX valued signals in the set of PEX valued

signals, and secondly, it determines the actual binary value

for all FEX valued signals. This value is independent of

assignments to the X-valued inputs or other X-sources.

A. Overview of the Accurate Logic Simulation Algorithm

The simulation algorithm is a hybrid approach that com-

bines restricted symbolic simulation, reconvergence analysis

and exact SAT-based reasoning. It extends the method of [39].

FEX signals can only emerge if a REX is propagated along

multiple paths which reconverge at a gate and X-canceling

occurs as illustrated in the example in Fig. 1. The convergence

of unrelated X-values cannot produce a FEX state.

Starting with a fast 3-valued logic simulation of the netlist

with signals S, inputs I and outputs O under a test pattern

P : I 7→ {0, 1, X} and Ix ⊆ (I ∪ S) the set of X-

sources, the values of the internal signals S and outputs O

are determined. Let Sx and Ox denote the subsets of signals

respectively outputs with a PEX3V value determined by 3-

valued simulation. To reduce the number of X-reconvergences

to be processed by the SAT solver, an event-based restricted

symbolic simulation is conducted on the signals Sx. The result

is the set PEXRSS ⊆ PEX3V .

Following a reconvergence analysis of the PEXRSS sig-

nals, a SAT instance is generated which is used for the exact

computation of the signal states at REX reconvergences under

the given input pattern P . During topological traversal of the

PEXRSS-valued signals starting from the X-sources Ix, the

SAT-based evaluation at REX reconvergences is invoked. At

all other gates where the value can be correctly and quickly

computed without SAT-based analysis, the netlist traversal

performs direct forward implications of the signal states. The

flow of the algorithm is depicted in Fig. 3.

Given pattern p and PEX3V signals:

Perform reconvergence analysis of PEXRSS signals

Generate SAT instance under pattern p

(I)

(II)

(III)

Topological traversal of PEXRSS-valued signals 

starting at X sources, for each gate: 

True:

Evaluate SAT instance 

and update state of 

gate output signal

(V) False:

Compute state of gate 

output signal by table 

lookup

Gate is reconvergence of 

REX signals?

(VI)

Compute PEXRSS by event-based restricted 

symbolic simulation 

(IV)

Fig. 3. Accurate logic simulation flow

B. Restricted Symbolic Simulation

Restricted symbolic simulation (RSS) simulates a circuit

under a given pattern with a higher, but still limited number

of symbols [12]. Apart from symbols for the binary values

{0, 1}, additional symbols represent different X-states in the

circuit. Symbols are usually encoded as integers in the machine

word. Each X-source is assigned a unique symbol. Inversions

of X-states are computed by negation of the numerical value

of the encoded symbol.

Reconvergences of X-valued signals can result in X-

canceling as e.g. the conjunction of an X-state and its inversion

yielding 0 irrespective of the actual value of the unknown. This

evaluation is easily performed based on the integer encoding.

If two or more unrelated X-states are combined at a gate,

the resulting symbolic output value cannot be represented in

the encoding and a yet unused X-symbol is introduced. At

this point, restricted symbolic simulation introduces pessimism

into the computation by losing the identity of the combined

X-states.

Here, restricted symbolic simulation is implemented as

an event-based simulation which only evaluates the set of

PEX3V signals. The separation of 3-valued simulation (e.g.

implemented as pattern parallel simulation) and event-based

restricted symbolic simulation reduces the runtime especially

for low numbers of X-sources in the circuit.

C. Reconvergence Analysis

From the previous step (I), the set of PEXRSS-valued

signals is known. At PEXRSS-valued fanout stems, a recon-

vergence analysis is performed. This analysis is implemented



as an event-based forward traversal of the PEXRSS signals

starting from the fanout stem. It derives the set of gate

output signals SR
x where disjoint paths reconverge. Found

reconvergences are stored for subsequent generation of the

SAT instance.

D. Generation of the SAT Instance for Signal Classification

A SAT solver is used to exactly classify the PEXRSS-

valued signals in the circuit in presence of X-sources. For a

considered REX reconvergence, a SAT instance is constructed

that is satisfiable if and only if the reconverged signal is a

REX. This is achieved by searching for two assignments P1

and P2 from Ix 7→ {0, 1} of the X-sources which result

in complementary values at the reconverged signal. If such

assignments do not exist, then the reconverged signal has a

constant value ∈ {0, 1} irrespective of the value assignments

to Ix.

A single SAT instance is generated per pattern and eval-

uated under different constraints such that all REX reconver-

gences for that pattern can be classified iteratively. The SAT

instance does not comprise all gates and signals of the circuit,

but is restricted to those which generate PEXRSS-values at

their output. The SAT instance models two copies of these

gates and signals, termed s and s′. The set of clauses of the

gates in the input cone of s (s′) is denoted Cs (C ′

s). Additional

clauses are introduced at reconvergences for comparison as

illustrated in Fig. 4. For each reconvergence s ∈ SR
x , the two

clauses {s, s′}, {¬s,¬s′} are satisfied only if the values of

signal s in the circuit and s′ in the copy have different values.

To evaluate each reconvergence s separately, the clauses for

comparison can be directly satisfied via an additional selector

variable sSEL per reconvergence. The resulting clauses

Ds := {{s, s′,¬sSEL}, {¬s,¬s′,¬sSEL}}

are added to the SAT instance for each reconvergence, result-

ing in the SAT instance PSAT for pattern P:

PSAT :=
⋃

s∈SR
x

(Cs ∪ Cs′ ∪ Ds).

To evaluate a particular reconvergence s, the corresponding

selector variable sSEL is constrained to true and all other

selector variables are constrained to false. The SAT solver

then searches for two assignments to the X-sources which

cause complementary values at s and s′. If such assignments

exist, then the signal value is a REX which depends on the

value of the X-sources. If the SAT solver proves that no such

assignments exist, then s has a FEX value independent of the

assignment to any of the X-sources.

E. Exact Logic Simulation

The exact logic simulation of the circuit with a given pattern

is performed by a topological traversal of the PEXRSS valued

signals in the circuit, starting from the inputs (step IV in

Fig. 3). The PEX signals are classified either by invoking

the SAT solver (step V) or by a table look-up based logic

simulation. The SAT solver is invoked at a reconvergence if
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Fig. 4. Principle of signal evaluation at PEX reconvergences si ∈ SR
x

and only if multiple inputs of the corresponding gate have

been classified as REX values. The result of the SAT-based

computation (step V) is then used in the evaluation of the

subsequent, yet unclassified PEX signals. If only one of the

inputs of a gate is a REX and the others have a defined value

including FEX, the correct output value is derived by a table

look-up without the SAT solver.

The result of the accurate logic simulation is the correct

classification of all PEX signals in the circuit into FEX

and REX for the considered pattern P . This classification

includes all primary and pseudo primary outputs of the circuit.

Consequently, this information can be used for X-masking

schemes as outlined in section VI.

V. IMPROVED COMPUTATION OF STUCK-AT FAULT

COVERAGE

The computational effort of an accurate logic simulation of

every faulty machine per pattern is computationally very ex-

pensive. The proposed algorithm uses the SAT-based accurate

logic simulation method of the previous section for the fault-

free circuit as basis for the stuck-at fault coverage computa-

tion. This way, the serial analysis of all yet undetected faults

for each pattern can be avoided. By trading-off computing

time and pessimism in the fault classification step, a significant

improvement in accuracy compared to conventional n-valued

fault simulation is achieved with reasonable computational

effort.

The next section outlines the algorithm, followed by a

presentation of the fault classification method. The remaining

pessimism of the proposed method is discussed in section V-C.

A. Overview

Fig. 5 shows the overall flow of the fault analysis algorithm

which incorporates ideas from PPSFP fault simulation [2–

4]. First, each pattern is accurately simulated (step I). To

analyze the faulty machines, the circuit is partitioned into

fanout-free regions as shown in Fig. 6. The fanout-free regions

are processed one at a time. Based on the accurate logic

simulation, the exact logic values in the fault free case and

the activated faults in the fanout-free regions are known.



For each pattern:

Accurate simulation of the fault free circuit and 

FEX/REX signal classification

(I)

(II)

(III)

For each fanout free region with activated 

undetected faults:

Explicit fault injection and simulation at 

corresponding fanout stem, exploiting knowledge 

from step (I)

Compute detected faults (IV)

Fig. 5. Overview of stuck-at fault coverage computation in presence of Xs

To determine the observability of the activated faults, the

corresponding fanout stems are evaluated by explicit fault

injection and simulation (step III). For the simulation of the

transitive fanout of the stems, a pessimistic but fast 3-valued

logic simulation is performed, trading off computational effort

and accuracy.

B. Stuck-at Fault Classification

A fault effect is propagated through the circuit and may turn

an X-value into a defined value of 0 or 1, or vice versa. If an

output is altered from a defined value to an X, a possible detect

can be reported. However, if the fault is propagated along

reconverging paths with X-values, the output in the faulty case

might be a FEX as well, and in principle it is possible to

decide about a definite detect or a definite undetect in the

same way as we decide about REX and FEX in the fault

free case. Yet this computation has to be performed for each

fault separately and is only possible for small circuits due to

complexity limitations.

By applying algorithmic optimizations as found in state-of-

the-art fault simulators, the efficiency of the fault classification

is increased: Fault activation in fanout-free regions is evaluated

separately from fault propagation from the corresponding

fanout stem [2–4]. To avoid excessive simulation times for

the stems, a fast 3-valued logic simulation is performed in

step III.

For each fanout-free region, the activation of each fault in

the region is determined using the signal classification from

Fanout stem
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Fig. 6. Computation of fanout stem observability and fault detection in fanout

free regions

the accurate logic simulation. For the local propagation of the

faults to the corresponding fanout stem, these exact values are

used as well. Within the fanout-free region, the fault effect

can only propagate along a single path towards the next fanout

stem. Off-path signals are not affected by the fault. However,

a faulty signal may influence a reconvergence of X-values in

the output cone of the fault. While fault activation can be

correctly derived based on the values of the accurate logic

simulation, the local propagation to the corresponding fanout

stem can only be pessimistically computed, unless another

accurate analysis is conducted.

If faults are activated and propagated to a stem, an ex-

plicit fault injection and simulation originating at this stem

is conducted to determine stem observability at the circuit

outputs or at an intermediate signal dominator [4]. Here, signal

reconvergences may be affected by the fault. We trade-off

the computational requirements and the accuracy of the fault

classification by using 3-valued logic simulation for the stem

simulation. This introduces some pessimism compared to the

exact solution. At the boundary of the transitive fanout of the

considered stem, the results of the accurate simulation of step

I are used as shown in Fig. 6.

Finally, using stem observability and fault activation infor-

mation, the detected faults are enumerated (step IV).

C. Pessimism in the Fault Coverage Computation

While an accurate logic simulation of the fault-free and

each faulty machine allows to compute the exact fault coverage

of a given test pattern, the required computational effort is

prohibitively high. The algorithm discussed in the preceding

section uses 3-valued logic simulation to evaluate the logic

gates in the fanout of the fault to speed up the computation.

Consequently, X-reconvergences reachable from the fault site

are evaluated pessimistically.

This may affect local fault propagation in fanout-free

regions as well as fanout stem observability at observable

circuit outputs. An example is given in Fig. 7 where the

stuck-at-1 fault influences the X-reconvergence at the XOR

gate. In the proposed algorithm, the detection of this fault

cannot be definitely classified. This small degree of pessimism

0

1

X1

0/1 (X)

SA-1

X1/¬X1 (X)

X1/X1 (X)

Fig. 7. Fault-free and faulty circuit state with accurate computation of fault

propagation and the proposed algorithm (in brackets)

which is introduced by trading-off runtime and accuracy may

cause definite detects of an accurate analysis to be classified

as possible detects. In the following experimental part, the

accuracy of the algorithm is evaluated.



D. Computation of Transition Fault Coverage

The proposed method can be extended to the computation

of transition fault coverage by separate analysis of the launch

and capture time frame. An exact logic simulation of the

launch time frame computes transition fault activation, and

a stuck-at fault simulation of the capture time frame com-

putes fault propagation and observability. This approximately

doubles the computational effort compared to stuck-at fault

simulation.

VI. EVALUATION AND RESULTS

The proposed algorithm has been verified and applied

to numerous benchmark and industrial circuits. This section

presents a comparison with related work and a discussion of

the achieved accuracy. Firstly we briefly explain the verifi-

cation of the correctness and computation of accuracy of the

results. We investigate the amount of FEXs with respect to a 3-

valued logic simulation and former approaches for enhancing

the accuracy of X-propagation evaluation in section VI-B.

Then we assess the influence of an exact logic simulation on

X-masking schemes preceding a response compaction. Section

VI-C and VI-D present the improvements in stuck-at fault

coverage of the proposed fault simulation algorithm. Section

VI-E compares the result to restricted symbolic simulation

based algorithms. Finally, we discuss the computing time of

the proposed algorithm.

To show the impact of the exact analysis in dependence

on the number of X-sources, we conducted the experiments

by injecting Xs into the primary and pseudo-primary inputs

(PPIs) of the designs. We conducted experiments with 0.5%,

1.0% and 2.0% Xs in the PPIs, which results in X-densities

in the PPOs roughly corresponding to the numbers reported

in [40].

A. Verification by Exhaustively Filled Patterns

The correctness of the algorithm is verified using a sim-

ulation based strategy. For input patterns with less than 16

X-valued inputs, the partially specified patterns are filled

exhaustively, i.e. all possible assignments for these X-valued

inputs are enumerated. The resulting patterns are subject to

logic respectively fault simulation. If signals carry a constant

value of 0 or 1 for all the patterns, they cannot be a REX, and

if a stuck-at fault is detected by all the patterns, it is a definite

detect.

For larger circuits and patterns with more than 16 X-valued

inputs, the required computing effort prohibits exhaustive

verification. Here, a validation approach is chosen. Instead of

enumerating all possible patterns that originate from a partially

specified one, only 128 patterns are chosen. From these 128

patterns, two are chosen deterministically (all X-valued inputs

set to 0, and to 1) while the rest is randomly filled.

In addition, the fault simulation of 128 filled patterns

(originating from a single partially specified pattern), followed

by intersection of the sets of faults detected by each pattern,

allows to derive an upper bound of the number of additionally

detectable faults in the circuit due to accurate analysis. This

information is used to assess the accuracy of the proposed

algorithm (c.f. section VI-D). Because of the small sample size

of only 128 patterns, the computed coverage is an optimistic

upper bound. Thus, the derived accuracy of the proposed

algorithm is a pessimistic lower bound of its actual accuracy.

B. Accurate Logic Simulation

1) Improving Simulation Accuracy: Firstly, we investigate

the degree of pessimism found in 3-valued logic simulation

using the largest ITC’99 benchmark circuits (b17, b18, b19)

and a set of industrial circuits kindly provided by NXP (named

p*k) as shown in Table I. The number of REX valued outputs

is determined for different configurations of X-sources at the

circuit inputs. Secondly, we compare the amount of found

FEX outputs with the results of the method based on indirect

implications presented in [33].

#Stuck-at Scan conf.

Circuit #Inp. #Outp. #Gates faults #chains length

b17 1452 1512 35549 81330 — —

b18 3357 3364 124952 277976 — —

b19 6666 6713 251692 560696 — —

p77k 3487 3400 65015 121262 143 28

p78k 3148 3484 68263 163258 195 22

p81k 4029 3952 106450 223764 144 29

p89k 4632 4557 80963 155794 306 57

p100k 5902 5829 84356 166960 270 53

p141k 11290 10502 152808 287552 264 45

p239k 18692 18495 224597 455992 360 61

p259k 18713 18495 298796 607536 360 61

p267k 17332 16621 238697 372140 360 62

p269k 17333 16621 239771 374296 360 62

p279k 18074 17827 257736 493744 385 59

p295k 18508 18521 249747 478996 330 62

p330k 18010 17468 312666 547808 320 64

p378k 15732 17420 341315 816274 325 64

p388k 25005 24065 433331 856678 400 66

p418k 30430 29809 382633 688808 576 93

TABLE I

CIRCUIT CHARACTERISTICS.

For the three different numbers of X-sources, 16 different

configurations are investigated per circuit. In each configu-

ration, the X-sources are selected randomly and 32 random

patterns are assigned to the circuit. The propagation of the X-

values to the outputs is computed by 3-valued logic simulation.

Then, the REX outputs are determined for each pattern.

Table II lists for the three cases the average X-density at the

outputs and the minimum, average and maximum REX ratio

over the 16 configurations. The X-density denotes the average

ratio of PEX valued outputs computed by 3-valued simulation

and the number of circuit outputs. The REX ratio at the circuit

outputs O for a configuration c is the ratio of the number of

REX outputs and the number of PEX outputs determined in

3-valued simulation over all patterns:

REX ratioc :=

∑
Pat. k

|REXk
c ∩ O|∑

Pat. k
|PEXk

c ∩ O|
,

with REXk
c (PEXk

c ) being the set of REX (PEX) outputs

under pattern k.

For the majority of the circuits, a high percentage of X-

valued outputs can be proven to be false X. For circuit p259k,



Circuit
X-input ratio 0.5% X-input ratio 1.0% X-input ratio 2.0%

X-den. REX ratio [%] X-den. REX ratio [%] X-den. REX ratio [%]

[%] min avg max [%] min avg max [%] min avg max

b17 0.98 42.5 90.1 100.0 2.24 47.0 86.1 100.0 3.55 56.5 82.5 100.0

b18 0.68 52.3 91.0 100.0 1.57 63.2 87.4 99.2 3.50 65.3 82.1 94.8

b19 0.81 63.8 84.8 99.6 1.65 69.1 81.8 93.6 3.35 64.2 80.6 92.3

p77k 1.94 17.2 83.1 100.0 0.45 35.0 84.2 100.0 2.51 64.8 86.6 97.6

p78k 2.25 50.3 57.2 66.1 4.97 50.9 56.9 65.4 9.31 53.6 58.9 66.8

p81k 1.67 47.5 52.9 56.6 3.28 49.0 56.5 73.7 6.12 53.7 59.0 62.3

p89k 0.50 69.6 86.7 98.9 0.81 55.5 80.1 97.9 2.50 56.7 82.5 96.0

p100k 0.50 58.8 86.1 94.3 0.89 72.0 86.3 97.0 3.45 58.1 82.8 93.6

p141k 1.60 25.0 73.9 87.9 2.23 64.5 76.6 86.0 3.81 67.3 76.6 83.8

p239k 1.40 47.2 63.2 82.2 3.03 60.2 66.8 78.3 4.89 62.1 69.4 78.6

p259k 1.21 44.9 47.1 51.4 2.40 46.2 48.8 55.0 6.34 49.6 53.7 96.5

p267k 0.75 81.9 90.4 98.9 1.78 56.3 86.4 96.7 3.21 69.2 84.9 94.6

p269k 0.66 50.7 89.4 99.4 1.70 55.1 83.7 95.5 3.01 76.4 88.2 93.3

p279k 0.80 72.6 81.6 90.6 1.27 74.1 85.9 94.2 2.81 75.9 83.8 89.6

p295k 0.26 83.3 90.3 98.6 3.54 84.4 92.5 98.8 4.23 48.9 77.2 99.2

p330k 0.83 64.6 79.7 90.3 1.96 65.2 78.8 94.6 3.45 74.1 80.4 94.5

p378k 2.52 51.2 55.7 63.1 5.42 52.5 55.3 57.3 9.28 56.7 58.3 59.5

p388k 2.01 41.4 56.2 91.7 3.27 44.1 50.8 91.0 4.89 38.7 51.4 73.8

p418k 0.79 75.2 85.3 95.8 1.42 70.7 84.5 91.3 2.47 78.8 85.5 90.8

TABLE II

RATIO OF REX OUTPUTS FOR DIFFERENT X-SOURCES CONFIGURATIONS. THE SMALLER THE PERCENTAGE, THE HIGHER IS THE PESSIMISM OF

3-VALUED LOGIC SIMULATION AND THE HIGHER IS THE GAIN OF EMPLOYING THE EXACT ANALYSIS.

in average only about 50% of the PEX valued outputs are

actually REXs. Over all circuits, only about 75% of the X-

valued outputs are REX outputs.

In the second experiment, we compare the number of de-

tected FEX outputs with the indirect implication based method

from [33]. We report results for the set of ISCAS’85/89 circuits

evaluated in [33]. The experiment assumes that 50% of the

circuit inputs are X-sources. Each circuit is evaluated with

32 random input patterns. Table III lists the average and

maximum number of FEX outputs per pattern for the method

of [33] and the exact method proposed here.

Indir. Impl. [33] Proposed method

Circuit avg #FEX max #FEX avg #FEX max #FEX

c2670 1.03 2 1.88 5

c5315 0.22 2 3.44 7

s5378 3.00 11 5.84 13

s9234 2.40 6 8.90 19

s13207 2.50 11 13.72 29

s15850 7.00 22 18.91 41

s35932 0.06 1 0.88 8

s38417 1.90 11 44.66 68

s38584 24.00 53 68.91 130

TABLE III

AVERAGE AND MAXIMUM NUMBER OF FEX OUTPUTS FOUND BY [33]

AND THE PROPOSED METHOD.

For all circuits, the average and maximum number of iden-

tified FEX outputs in the exact method exceeds the number of

the indirect implication based method. For circuit s38417, the

average and maximum number of identified false X-outputs is

more than 20x respectively 6x higher.

2) Impact on Chain and Vector Masking: The exact anal-

ysis of REX values is beneficial for all X-tolerating and X-

masking architectures. In this section, we focus on the most

simple ones, scan vector and scan chain masking, where

either a complete vector or complete chain is masked per

pattern. More complex schemes may benefit even more. The

experiment is restricted to the industrial circuits, because scan

configurations were not available for the ITC’99 benchmark

circuits.

Table I gives an overview of the scan configurations of the

circuits. The first columns give the number of primary and

pseudo-primary inputs and outputs, as well as the number of

gates. Column five and six show the number of scan chains

and the maximum scan chain length. The scan configurations

are chosen to have many but very short scan chains.

Three different X-source distributions with 1.0% Xs in

the inputs are chosen from the previous experiments: The

distribution with the minimum number of REX outputs, an

average one and the one with the maximum number of REX

outputs. For these distributions we generate X-aware test

patterns with a commercial ATPG tool and apply them to

analyze the percentage of overmasked scan chains or vectors.

Table IV reports the results for the three X-distributions.

The table reports the percentage of scan chains (respectively

vectors) with at least one REX output in the exact analysis

w.r.t. the chains (vectors) with at least one PEX output

according to 3-valued analysis:

Mask ratio =
#XChains Exact

#XChains 3-valued
· 100%.

This mask ratio quantifies the fraction of chains (vectors)

which are masked according to the exact analysis, compared

to masking based on 3-valued analysis. For circuit p77k and

the minimum configuration, for instance, only 70.1% of the

scan chains masked based on 3-valued analysis (91.2% of the

vectors), actually require masking when the exact analysis is

applied. The results show that up to 30% of the masked chains

(vectors) are masked unnecessarily when only a pessimistic

analysis is applied.

In order to assess the negative impact of this overmasking

on the observability of scan cells, another set of experiments

is conducted for the five largest circuits in the set. Based on

the ATPG test patterns, the number of observable scan cells is



Min., Mask ratio [%] Avg., Mask ratio [%] Max., Mask ratio [%]

Circuit Chains Vectors Chains Vectors Chains Vectors

p77k 70.1 91.2 96.0 94.4 97.6 97.1

p78k 82.9 99.2 88.0 98.9 98.2 100.0

p81k 88.7 95.8 92.7 92.6 87.9 92.7

p89k 87.7 69.5 97.6 92.6 96.9 98.0

p100k 91.8 88.4 96.5 93.4 97.8 94.5

p141k 94.4 100.0 81.7 95.0 87.5 96.1

p239k 84.1 99.1 84.7 97.5 86.5 99.1

p259k 67.5 93.1 67.4 93.7 65.0 90.8

p267k 96.6 90.2 99.4 97.1 99.7 99.7

p269k 96.3 96.3 98.7 99.9 99.7 99.5

p279k 95.9 99.2 97.6 98.1 98.3 95.9

p295k 95.8 98.3 97.7 99.0 99.1 99.4

p330k 98.1 99.1 98.4 99.1 98.2 99.5

p378k 86.3 100.0 87.2 100.0 88.8 99.0

p388k 76.0 98.2 75.6 97.2 78.3 98.0

p418k 98.3 97.3 98.2 97.1 98.6 99.9

TABLE IV

PERCENTAGE OF SCAN CHAINS AND VECTORS TO BE MASKED

ACCORDING TO EXACT ANALYSIS W.R.T. PESSIMISTIC SIMULATION FOR

MIN., AVG., MAX. CONFIGURATION WITH 1.0% X-INPUT RATIO.

computed for X-masking based on 3-valued and exact analysis.

The results show that the number of observable cells increases

by the exact analysis, depending on the circuit. Generally, the

increase is higher the higher the X-density is. While for p388k

the increase is quite high at 8.22%, other circuits show only

insignificant gain for any of the X-configurations.

The results show that a pessimistic X evaluation overesti-

mates the amount of Xs in the circuit outputs. Applying an

exact analysis is beneficial for all X-tolerating and X-masking

schemes and helps to reduce overmasking significantly.

C. Comparison with Enhanced Fault Simulation based on

Indirect Implications

The stuck-at fault simulation method of [33] exploits in-

direct implications found by static learning. In an experiment

similar to section VI-B1 and Table III, the authors of [33]

investigate the number of additionally detected faults for a

subset of ISCAS’85 and 89 circuits. The experiments consider

32 random patterns per circuit. The probability of an X-value

at a particular circuit input is set to 50%.

These experiments are repeated with the proposed fault sim-

ulation algorithm. Table V presents the average and maximum

number of additionally detected stuck-at faults per pattern

w.r.t. 3-valued fault simulation for [33] and the proposed

method. For instance, for circuit c5315 the method of [33]

detects in average 0.4 faults per pattern in addition to 3-

valued fault simulation, while the proposed method detects

8.0 additional faults. Similarly, the maximum number of

additionally detected faults per pattern improves by a factor

of 7. For all circuits, the average and maximum number of

additionally detected faults is improved.

D. Increase of Stuck-at Fault Coverage

The fault simulation algorithm has been applied to the

industrial circuits provided by NXP. For these circuits, we

investigate the fault classification of random pattern resistant

Indir. Impl. [33] Proposed method

Circuit avg #faults max #faults avg #faults max #faults

c2670 5.0 6.0 8.3 17.0

c5315 0.4 4.0 8.0 29.0

s5378 6.0 28.0 12.8 76.0

s9234 3.0 8.0 14.7 39.0

s13207 3.0 17.0 28.5 50.0

s15850 16.0 77.0 45.7 114.0

s35932 0.5 1.0 3.7 25.0

s38417 10.0 79.0 78.5 159.0

s38584 27.0 51.0 81.8 161.0

TABLE V

ADDITIONALLY DETECTED FAULTS IN PRESENCE OF X-VALUES IN

ENHANCED FAULT SIMULATION BASED ON INDIRECT IMPLICATIONS [33]

AND THE PROPOSED METHOD.

stuck-at faults. For each circuit, the X-source configurations

of Table II are evaluated.

A collapsed list of stuck-at faults in the support [41] of the

X-valued inputs is generated. The faults are restricted to this

subset since the accurate analysis of the X-valued signals only

affects the support of X-valued inputs. Random pattern testable

faults are removed by 3-valued fault simulation of 10000

random patterns. For the remaining hard faults, a commercial

tool is used to generate X-aware deterministic patterns with

high abort limit. The fault coverage of the test set is computed

with classical 3-valued fault simulation. A loose upper bound

of fault coverage is computed using the technique discussed

in section VI-A. Finally, the fault coverage is computed using

the proposed algorithm.

Table VI shows the results for three X-source ratios. The

columns show the number of additionally detected stuck-at

faults in the proposed algorithm compared to 3-valued fault

simulation (FC Inc.) and the achieved accuracy w.r.t. the

method of section VI-A (Acc.) for the considered X-source

configurations.

The algorithm is able to classify a large number of addi-

tional hard faults as detected by the generated test set when

compared to 3-valued fault simulation. The number reaches

up to 20955 faults for circuit p378k, where ATPG could only

reach a very low fault coverage. For many circuits and X-

source configurations, the accuracy of the proposed algorithm

exceeds 70% w.r.t. the loose upper bound. Results for higher

X-source ratios are reported in [42].

E. Comparison with Restricted Symbolic Simulation

Restricted symbolic simulation (RSS) is very effective in

the analysis of simple local reconvergences of REX values.

However, with higher number of X sources in the circuit, the

pessimism of RSS increases as well. For the larger circuits

of the considered benchmarks, Table VII shows for X-input

ratios 1.0%, 2.0% and 5.0% the per-cent increase of identified

FEX valued outputs of the proposed exact logic simulation

algorithm w.r.t. RSS. The X-input configurations have been

computed as described in section VI-B1. The increase of

identified FEX valued outputs is typically higher for larger

numbers of X-sources and ranges from 0.0% to 22.7% for

the considered circuits. The maximum increase of 162.5% has

been observed for circuit p77k and 1.0% X-input ratio, where



X-inp. Conf. min Conf. avg Conf. max

Circuit [%] FC Inc. Acc. FC Inc. Acc. FC Inc. Acc.

b17

0.5 0 0.0 0 100.0 0 100.0

1.0 0 0.0 1 1.6 1 25.0

2.0 0 0.0 1 1.9 5 38.5

b18

0.5 0 100.0 1 8.3 1 5.0

1.0 662 74.7 480 68.3 14 46.7

2.0 261 55.2 753 27.2 348 47.4

b19

0.5 3 1.8 0 0.0 1 1.1

1.0 0 0.0 6 6.4 213 54.2

2.0 2573 59.9 314 37.6 51 9.0

p77k

0.5 23 57.5 76 65.5 0 0.0

1.0 32 45.1 3 9.7 2 4.3

2.0 65 31.9 751 70.8 513 75.1

p78k

0.5 66 62.3 484 53.7 503 46.6

1.0 440 42.3 367 44.2 1960 55.8

2.0 1827 48.4 981 43.2 3444 53.0

p81k

0.5 144 11.7 9 0.7 37 3.5

1.0 72 2.9 12 0.6 173 7.6

2.0 96 2.3 210 5.1 241 6.7

p89k

0.5 168 53.2 98 23.5 5 5.4

1.0 107 48.9 192 28.3 288 63.0

2.0 141 47.2 78 25.2 1996 70.4

p100k

0.5 93 74.4 265 58.5 19 7.7

1.0 20 12.8 83 24.8 543 68.4

2.0 166 21.9 123 20.9 1867 80.9

p141k

0.5 303 78.1 189 44.3 2937 96.1

1.0 258 58.9 1058 92.3 479 75.7

2.0 1119 82.3 821 65.6 3677 94.3

p239k

0.5 1101 29.6 1089 37.6 820 29.3

1.0 1520 23.2 663 13.9 4797 39.8

2.0 2025 18.0 3821 28.8 4431 28.0

p259k

0.5 506 26.1 1246 25.9 1535 37.7

1.0 3149 37.0 2741 33.8 2649 31.2

2.0 851 0.8 2142 18.0 3688 28.2

p267k

0.5 52 16.6 331 36.7 76 40.9

1.0 274 44.7 286 66.7 1405 62.0

2.0 9 1.2 996 42.3 1906 46.1

p269k

0.5 2 1.6 262 35.6 634 29.8

1.0 13 2.8 229 34.5 260 33.6

2.0 1907 63.9 132 11.1 1265 48.1

p279k

0.5 13 15.1 191 72.6 205 85.8

1.0 47 23.3 305 63.9 1688 81.1

2.0 319 48.9 1986 81.5 3607 82.2

p295k

0.5 19 57.6 36 100.0 90 83.3

1.0 28 48.3 110 57.6 1504 95.6

2.0 132 68.0 731 62.9 825 77.8

p330k

0.5 942 86.2 358 52.7 4597 85.1

1.0 2553 73.7 4421 65.0 2875 79.1

2.0 3815 72.4 4654 68.9 18110 86.4

p378k

0.5 1332 45.4 3886 49.9 3793 55.8

1.0 6971 55.1 7415 57.4 10484 54.0

2.0 20955 60.4 18789 58.7 13841 55.2

p388k

0.5 2456 80.8 735 46.4 3130 75.2

1.0 3862 57.5 5583 68.7 3875 76.9

2.0 2416 52.0 5658 46.1 9029 59.4

p418k

0.5 91 14.9 606 57.4 646 57.7

1.0 1141 47.8 4277 83.0 2282 66.8

2.0 1724 58.5 2514 59.5 1905 48.3

TABLE VI

INCREASE IN DETECTED STUCK-AT FAULTS AND ACHIEVED ACCURACY

FOR THE X-SOURCE CONFIGURATIONS OF TABLE II

.

an exact analysis uncovers more than 2.6 times as many FEX

valued outputs than RSS.

With regard to fault simulation, RSS can only identify

a subset of the detectable faults classified by the proposed

algorithm correctly. For the larger circuits, the fault coverage

is computed using an RSS-based algorithm without the pro-

posed exact analysis of the fault-free circuit. The number of

additional detectable faults for the test set over the RSS-based

Circuit

X-input ratio 1.0% X-input ratio 2.0% X-input ratio 5.0%

FEX increase [%] FEX increase [%] FEX increase [%]

min avg max min avg max min avg max

b19 5.8 8.3 0.0 16.8 9.9 8.5 12.7 5.0 12.7

p378k 6.0 3.4 4.2 5.5 15.1 8.9 19.5 18.0 22.7

p388k 1.6 3.2 1.2 5.3 2.4 3.1 5.4 0.6 3.1

p418k 0.1 3.2 0.0 4.7 3.3 0.9 14.9 5.9 5.8

TABLE VII

INCREASE IN FOUND FEX VALUED OUTPUTS IN EXACT LOGIC

SIMULATION W.R.T. RSS.

algorithm is given in Table VIII. Depending on circuit and

X-configuration, the proposed SAT-based algorithm classified

up to 42270 faults more than the RSS-based computation of

fault coverage.

Circ.

X-input ratio 1.0% X-input ratio 2.0% X-input ratio 5.0%

∆RSS det. faults ∆RSS det. faults ∆RSS det. faults

min avg max min avg max min avg max

b19 0 0 0 0 0 0 900 408 97

p378k 275 127 724 1869 2761 840 42270 5712 5331

p388k 379 110 192 256 785 2055 1222 2801 3692

p418k 0 6 0 1 104 55 138 313 356

TABLE VIII

NUMBER OF ADDITIONAL DETECTABLE FAULTS IN THE PROPOSED

ALGORITHM COMPARED TO RSS-BASED FAULT COVERAGE COMPUTATION

F. Computing Time

The algorithm has been implemented in a Java based EDA

framework using the SAT4J SAT solver [43]. All experiments

have been conducted on an Intel Xeon CPU with 2.8 GHz

frequency. The runtime is in the order of ATPG, ranging from a

few minutes for smaller circuits up to a few hours. The runtime

for fault simulation for a single pattern including the construc-

tion of the SAT instance (in sec.) and memory consumption

(in MB) is given in Table IX for the X-source configurations

of Table II. The runtime of the proposed algorithm depends

on the circuit size, the number of patterns to be evaluated,

and the number of X-sources. As shown in the table, runtime

increases with the number of X sources. For very high numbers

of X-sources, many internal signals have a REX value. This

increases both the size of each SAT instance, as well as the

number of instances to be evaluated. This causes the relatively

high runtime for circuit p378k and p388k for the 2.0% X-input

ratio. In the worst case, a redundancy evaluation is performed

for each signal reconvergence in the circuit for each considered

pattern.

The cones with X-valued signals which are mapped to

a SAT instance are rather small. In the experiments with

industrial circuits, the number of gates included in a SAT

instance ranges on average per circuit from 453 gates in circuit

p89k to 22779 gates in circuit p378k, including the cone

copy. The resulting SAT instances including the clauses for

comparison range from 1826 to 115662 clauses. Maximum

memory consumption reaches 2.4GB for circuit p378k.

VII. CONCLUSION

In this paper, the influence of pessimistic evaluation of X-

propagation in n-valued logic and stuck-at fault simulation



X-inp. Runtime per pattern (sec) Mem.

Circuit [%] Conf. min Conf. avg Conf. max (MB)

b17

0.5 0.7 0.8 1.2 475

1.0 0.8 0.8 0.8 779

2.0 0.7 0.6 0.8 609

b18

0.5 1.3 8.0 4.1 1136

1.0 2.9 3.6 9.4 1494

2.0 7.1 9.5 16.8 1890

b19

0.5 12.4 13.5 15.7 1278

1.0 6.0 12.6 33.7 1224

2.0 27.5 23.2 58.0 1573

p77k

0.5 0.8 3.8 3.1 624

1.0 3.8 6.2 1.3 1158

2.0 3.8 5.6 49.4 1019

p78k

0.5 2.7 3.8 4.4 621

1.0 3.5 6.1 6.1 1005

2.0 5.0 2.6 7.6 1356

p81k

0.5 5.7 5.1 7.9 1086

1.0 6.9 6.6 7.0 1168

2.0 11.4 9.5 8.3 1445

p89k

0.5 2.8 2.9 2.9 581

1.0 1.8 2.4 3.2 550

2.0 0.8 1.3 1.3 1108

p100k

0.5 3.4 4.8 5.0 984

1.0 4.1 5.3 6.5 989

2.0 3.4 3.7 4.7 1445

p141k

0.5 10.6 12.4 11.1 1119

1.0 9.0 9.6 11.4 801

2.0 4.9 7.0 12.3 1846

p239k

0.5 6.1 4.7 10.5 1427

1.0 10.7 10.9 12.9 1443

2.0 62.7 24.5 30.6 1248

p259k

0.5 10.8 14.3 11.1 1289

1.0 14.5 18.0 96.2 1379

2.0 98.2 46.1 46.3 1551

p267k

0.5 17.5 23.3 19.5 1301

1.0 23.0 16.8 18.0 1097

2.0 3.6 5.8 3.9 1599

p269k

0.5 16.7 19.9 20.5 1437

1.0 22.2 18.4 16.9 1109

2.0 8.8 9.0 10.1 1486

p279k

0.5 18.4 21.2 25.6 1389

1.0 24.9 24.0 24.8 1306

2.0 7.5 12.7 15.2 1674

p295k

0.5 18.1 19.9 20.0 1280

1.0 5.1 5.6 6.0 1309

2.0 4.4 7.6 7.9 1856

p330k

0.5 7.6 7.1 23.8 1769

1.0 17.2 18.8 16.4 1643

2.0 34.7 24.7 43.9 1722

p378k

0.5 12.1 20.2 27.9 1794

1.0 45.7 58.6 67.6 2429

2.0 151.1 220.3 92.5 2063

p388k

0.5 22.0 13.3 14.5 2085

1.0 31.1 30.6 27.0 2182

2.0 86.0 81.8 163.2 2282

p418k

0.5 11.9 12.9 13.8 1829

1.0 15.7 17.2 19.7 1958

2.0 15.1 22.2 30.2 2042

TABLE IX

FAULT SIMULATION RUNTIME IN SEC PER PATTERN AND MEMORY

CONSUMPTION FOR THE X-SOURCE CONFIGURATIONS OF TABLE II.

was examined. An accurate logic simulation algorithm using

SAT-based reasoning to exactly identify the signals with real

X-values in the circuit was presented. This algorithm was

extended to compute the fault coverage of a test set with high

accuracy in presence of unknown values.

In the experiments the algorithm was applied to industrial

circuits. It was shown that the stuck-at fault coverage of test

sets can be significantly higher than estimated by classical

fault simulation, improving product quality without incurring

any additional test or hardware overhead. The logic simulation

algorithm was used to analyze the impact of pessimistic

simulation on X-handling schemes. It was shown that X-

handling efficiency can be improved significantly, if exact

methods are used for X-propagation assessment.
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