
Transparent Structural Online Test for

Reconfigurable Systems

Abdelfattah, Mohamed S.; Bauer, Lars; Braun, Claus; Imhof,

Michael E.; Kochte, Michael A.; Zhang, Hongyan; Henkel, Jörg;

Wunderlich, Hans-Joachim

Proceedings of the 18th IEEE International On-Line Testing Symposium (IOLTS’12)

Sitges, Spain, 27-29 June 2012

doi: http://dx.doi.org/10.1109/IOLTS.2012.6313838

Abstract: FPGA-based reconfigurable systems allow the online adaptation to dynamically changing runtime

requirements. However, the reliability of modern FPGAs is threatened by latent defects and aging effects.

Hence, it is mandatory to ensure the reliable operation of the FPGA’s reconfigurable fabric. This can be

achieved by periodic or on-demand online testing. In this paper, a system-integrated, transparent structural

online test method for runtime reconfigurable systems is proposed. The required tests are scheduled like

functional workloads, and thorough optimizations of the test overhead reduce the performance impact. The

proposed scheme has been implemented on a reconfigurable system. The results demonstrate that thorough

testing of the reconfigurable fabric can be achieved at negligible performance impact on the application.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic

reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form

to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

http://dx.doi.org/10.1109/IOLTS.2012.6313838

Transparent Structural Online Test for Reconfigurable Systems

Mohamed S. Abdelfattah∗, Lars Bauer∗∗, Claus Braun∗, Michael E. Imhof∗, Michael A. Kochte∗

Hongyan Zhang∗∗, Jörg Henkel∗∗ and Hans-Joachim Wunderlich∗

∗Institute of Computer Architecture and Computer Engineering, University of Stuttgart, Germany
∗∗Chair for Embedded Systems, Karlsruhe Institute of Technology, Germany

Abstract—FPGA-based reconfigurable systems allow the on-
line adaptation to dynamically changing runtime requirements.
However, the reliability of modern FPGAs is threatened by latent
defects and aging effects. Hence, it is mandatory to ensure the
reliable operation of the FPGA’s reconfigurable fabric. This can
be achieved by periodic or on-demand online testing.

In this paper, a system-integrated, transparent structural on-
line test method for runtime reconfigurable systems is proposed.
The required tests are scheduled like functional workloads, and
thorough optimizations of the test overhead reduce the perfor-
mance impact. The proposed scheme has been implemented on
a reconfigurable system. The results demonstrate that thorough
testing of the reconfigurable fabric can be achieved at negligible
performance impact on the application.

Keywords-FPGA, Reconfigurable Architectures, Online Test

I. INTRODUCTION AND SYSTEM OVERVIEW

Computing systems based on reconfigurable architectures

are gaining relevance. Their applications range from various

embedded systems to high-performance computers and large-

scale research systems. Often, such systems are implemented

using Field Programmable Gate Arrays (FPGAs). The func-

tionality of FPGAs can be changed by configuration data,

allowing the implementation of different designs at different

points in time. Moreover, latest generation FPGAs support the

concept of partial runtime reconfiguration, i.e. selected regions

of the fabric can be reconfigured during runtime without

affecting other regions. This concept provides a very high

degree of flexibility that can be used to adapt such runtime

reconfigurable systems to different requirements.

Some architectures use their reconfigurable fabric to im-

plement application-specific accelerators that are integrated

into a processor core as so-called Special Instructions [1] or

that are attached to a processor as a co-processor [2]. Other

architectures implement entire application tasks as hardware

blocks and reconfigure them to the fabric on demand [3]. For

practical reasons, basically all FPGA-based implementations

partition the reconfigurable fabric statically into so-called

containers and the accelerators/tasks are configured into these

containers.

Manufactured in latest semiconductor process technologies

(e.g. Xilinx Virtex-7 in 28nm), FPGAs are increasingly prone

to aging effects and latent defects in the fabric [4]. Classic

production and burn-in tests are no longer sufficient to guaran-

tee reliable reconfigurable systems throughout the lifetime. For

such systems it is mandatory to ensure that the reconfiguration

process itself is reliable. This requires thorough testing of

the part of the FPGA to be reconfigured (i.e. the container).

Such tests are challenging, because they have to be executed

online with very limited resources and they should cause only

minimal overhead. The diversity of FPGA architectures and

the limited availability of documentation make these tests

a non-trivial task. Such a reliable reconfiguration process is

also required for approaches, which utilize reconfiguration to

achieve reliable system operation [5–7].

In this work, a novel system scheme for the online pre-

configuration test (PRET) of FPGA structures is introduced.

The scheme is non-intrusive and allows all required test config-

urations to be scheduled independent of each other prior to any

user or accelerator configuration. Containers are configured

either with application-specific accelerators or with PRET test

configurations. PRET is extensible and allows the seamless

integration of additional test configurations for specialized

functional blocks or future FPGA structures. Therefore, the

proposed PRET method is independent of the reconfigurable

system into which it is integrated. However, to illustrate the

constraints and desired properties for designing test methods

for reconfigurable systems, we explain its integration into a

typical system architecture that is also used for evaluation

in section V (more details in the experimental setup). This

system consists of a core pipeline and a set of reconfigurable

containers that are connected to it (see fig. 1). Special inter-

container buses are used to connect the containers to each

other, to the processor pipeline (access to register file), and

the data memory hierarchy (access to cache/scratchpad).

R
e

c
o

n
f.

C
o

n
ta

in
e

r

Inter-

Cont.

Buses

…

…

Memory Controller

C
o

re
 P

ip
e

li
n

e

Data Cache/Scratchpad

Off-Chip
Memory

IF

ID

MEM

WB

EXE

R
e

c
o

n
f.

C
o

n
ta

in
e

r

Inter-

Cont.

Buses

Load/Store
Units &
Address

Generation
Units

Inter-

Container

Buses

TPG

&

ORA

Inter-

Cont.

Buses

Inter-

Cont.

Buses

Interface

Fig. 1: System architecture with integrated test pattern generator
(TPG), output response analyzer (ORA), and reconfigurable contain-
ers [8]

The system architecture is extended by the test pattern

generator (TPG) and the output response analyzer (ORA) to

test the containers, as shown in fig. 1. The inter-container buses

are used to connect TPG/ORA to the containers. Therefore, the

communication between TPG/ORA and a particular container-

under-test is limited by the I/O interface of the containers (in

this system two 32-bit inputs and outputs, respectively) and it

has to operate at system frequency. Whenever a test config-

uration is configured into a container, no other configuration

can be performed, i.e. reconfigurations requested by the appli-

cations are delayed. In addition to complying with container

size and I/O constraints, these delays should be minimized.

The runtime system, which controls the reconfigurations, is

extended to schedule test configurations in regular intervals.

The remainder of this paper is structured as follows:

section II gives a concise introduction to structural FPGA

testing. A detailed description of the online pre-configuration

test method is given in section III. Implementation details and

experimental results are presented in sections IV and V. The

paper is concluded in section VI.

II. STATE OF THE ART FPGA TEST

The thorough test of the FPGA fabric requires structural

knowledge. The test consists of the application of multiple test

configurations (TCs). Such a TC configures the FPGA in a way

that a part of the structures or the function of the structures

is controllable and observable so that appropriate test stimuli

can be applied to test for faults. The number of required TCs

may range from a few up to a few hundreds if programmable

interconnect structures are completely included [9].

Different test strategies are used for the logic and se-

quential parts of the Configurable Logic Blocks (CLBs),

interconnects, I/O cells and specialized cores like RAM or

DSPs. For memories, functional March tests [10] are used,

for arithmetic structures like multipliers or DSPs, functional

tests with high structural fault coverage are possible [11].

The test cost of FPGAs is dominated by the test time and

test data volume. The test time mainly depends on the number

of TCs, whereas the test data comprises the data volume for

the configuration bits and test stimuli. If the mission logic is

fixed and known, an application dependent test of the FPGA

is possible [12]. However, this work focuses on dynamically

reconfigurable architectures and hence requires application

independent testing.

The stuck-at fault model is most commonly used for the

test of logic resources. For testing interconnect, stuck-on and

stuck-open faults in programmable interconnect points and

stuck-at and bridge faults for wires [13, 14] are targeted. Tests

for delay faults have been introduced in [15].

For an online in-field test of FPGAs, external equipment

for test pattern generation (TPG) and output response analysis

(ORA) [16, 17] is not available. Internal testing approaches

based on built-in self-test principles include TPGs and ORAs

in the unit under test. TPGs can be efficiently implemented

by counters or linear feedback shift registers to exhaustively

generate all stimuli for a module under test. ORAs can be

implemented by mutually comparing corresponding outputs

of similarly configured modules under test [18].

The highly regular nature of FPGAs allows to configure

the structures under test into an iterative logic array such that

the resulting test time is constant and does not depend on

the array size (C-testability [19]). FPGAs with support for

memory and partial memory readback allow a test strategy

similar to scan design where the response is captured in

sequential elements, read back, and finally analyzed [20, 21].

The readback increases the time for test.

While the programmable interconnect structures are to

some extent already tested during the test of other structures,

dedicated deterministic testing based on multiple test configu-

rations has been proposed [14, 22]. Due to the complexity of

the interconnect configuration circuitry, a very high number

of TCs is required. In addition to testing, the homogeneous

structure of an FPGA allows efficient diagnosis of faulty com-

ponents. High resolution is achieved by failure data analysis

and additional dedicated TCs to distinguish faults with equal

signatures [23].

Using partial dynamic reconfiguration of FPGAs, the test

reconfiguration can be conducted by an external [24] or

embedded processor during runtime [25, 26]. Access to an in-

ternal high-bandwidth configuration port significantly reduces

the time required for reconfiguration.

Both test and diagnosis can be executed offline, requiring

idle periods of the unit under test, or online, allowing the parts

of the array which are currently not under test to continue

functional operations. The Roving STARs (self testing areas)

method [27] partitions the FPGA into multiple regions, which

can be either used functionally or tested by an online built-

in self-test scheme controlled by an external module. By

relocation of mission logic from yet untested regions to tested

regions and test iterations, the whole array can be tested for

faults.

The described online approaches require an external or

internal reconfiguration controller (possibly embedded as soft

core). In contrast, this work avoids this overhead by trans-

parently integrating the reconfiguration process for PRET into

the functional system scheduling. The existing reconfiguration

mechanism in the system is reused for PRET.

III. ONLINE PRE-CONFIGURATION TEST METHOD

This section details our proposed test procedure for FPGA

fabrics. After explaining the fault model, the test approach

and characteristics are outlined. An in-depth explanation of

each combinational logic block (CLB) subcomponent test and

a global optimization method are given. Although dedicated

configurations for the test of interconnects exist, they are not

described here for the sake of conciseness. In this context,

[28] reports that up to 80% of the global interconnects are

implicitly tested by the CLB test configurations.

A. Fault Model

This work uses the stuck-at fault model for CLB sub-

components and local interconnects in which the available

structural information is sufficient for fault derivation. For the

remaining components, functional and cell faults are targeted

during test generation resulting in a hybrid fault model. The

tests are generated under the single fault assumption.

1) Lookup table in function mode: The lookup table

(LUT) in function mode is treated as a combinational function

of n inputs and m outputs, and the Cell Fault Model [29] is

applied. The Cell Fault Model makes no assumptions on the

structure of the unit under test. A cell fault is defined as any

mismatch at the output of a unit under test for the possible

inputs. As a result, the set of all cell faults covers all deviations

from the correct combinational behavior. The number of cell

faults equals the number of possible input patterns multiplied

by the number of possible faulty output patterns 2m(2n
− 1).

2) Lookup table in RAM mode: If the LUT is operated in

RAM mode, the functional target faults are derived from the

domain of memory testing and include address decoder faults,

stuck-at faults, transition faults and data retention faults.

3) Sequential elements: CLBs in an FPGA may contain

additional separate sequential elements such as flip-flops,

latches, or LUTs in shift register mode. For these elements,

the considered faults are stuck-at and transition faults (slow-to-

rise, slow-to-fall). The four faults per flip-flop dominate stuck-

at faults on the interconnection between flip-flops.

B. CLB Test Principle and Architecture

The CLB test approach presented in this and the following

section is applicable to different types of FPGAs since the

internal CLB structure is typically similar. The approach is

applied to the Virtex-5 target architecture as described in

section V-A.

The complexity of a CLB requires multiple TCs to exercise

all components. Full coverage of faults inside the logic is

ensured by deterministic design of the TCs and of the test

stimuli applied to exercise the configured components. As

shown in fig. 2, the CLBs are connected in a C-testable array

for low test time. The TPG and ORA may differ between

TCs. They are external to the container under test as shown in

fig. 1. The TPG provides input stimuli to the container under

test and the ORA receives its response via the inter-container

buses, respectively.

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1

1

1

TPG
(e.g. Counter)

ORA
Container

1 1 1 1 1 1 1

Fig. 2: Container configured into a C-testable array with external test
pattern generator and output response analysis (connected via inter-
container buses)

To avoid a long critical path and its dependence on the

container size, the tested subcomponents are pipelined to test

at system speed. Logic tests are pipelined by utilizing the

sequential elements included in each CLB. To test for all

faults, the unregistered outputs of CLBs must also be tested.

An interleaving array scheme [28] as shown in fig. 3 is used.

CLB

FF

LUT

CLB

FF

LUT

CLB

FF

LUT

Fig. 3: CLB in fully interleaved/pipelined array configuration

C. Test Methods for CLB Subcomponents

1) Lookup Table - Function mode: All cell faults are tar-

geted to cover all single and all multiple internal combinational

faults. The exhaustive set of test patterns is applied to the

inputs (2n test patterns for an n-input LUT).

A LUT is configured with two complementary functions

in order to test for all stuck-at faults in the configuration bits.

It would suffice to use the tautology and its inverse (all 1’s

and all 0’s) for testing a single LUT. However, XOR/XNOR

configurations are used instead since they can be connected

into C-testable arrays [30].
2) Lookup Table - Shift Register Mode: In shift register

mode, the flip-flops are configured into a long shift register.

In addition to stuck-at faults, transition faults are tested for by

applying standard scan chain test patterns [31]. The “01100”

test pattern is used because it contains the two transitions

between 0 and 1.

TPG

ORA

Carry chain

element

COUT

CIN

Pipelining FF

a) b)

Carry chain

element

Carry chain

element

X

X

S0

S1

X

X

A

A

X (COUT)

(CIN)

0 1

0 1

Fig. 4: Carry chain test architecture: (a) Two-stage chain under test
(b) Pipelined test setup

The LUTs in shift register mode are connected into multi-

ple scan chains of which the outputs are compared against one

another for response evaluation. To minimize test configura-

tions, separate flip-flops in each CLB can be simultaneously

tested in the same TC by including them into the chain.

3) Lookup Table - RAM mode: Each n-input LUT can

implement a 2n-bit RAM. Test patterns are generated at a

global TPG implementing the MATS++ [10] algorithm to

ensure coverage of all stuck-at faults, address decoder and

transition faults. Note that only 5 × 2n March operations are

required since the initialization step is specified directly in the

TC.

Each CLB contains multiple RAM modules. Test response

analysis is done by comparing the output of these RAM blocks

and aggregating the results into the global ORA, which will

detect multiple errors as long as there is at most one error per

CLB.

4) Multiplexer: Multiplexers are tested by applying all

possible configurations to exercise all select combinations. The

data path is tested for stuck-at faults by applying the 0 and

1 stimuli. Multiplexer testing is often included in other tests

since they are on the sensitized path used for testing other

subcomponents.

5) Fast Carry Chain: Many FPGA architectures contain

dedicated carry chains. An example is given in fig. 4 (a),

consisting of multiplexers and XOR cells. To test for all the

stuck-at faults in the carry chain efficiently, the elements must

also be configured into pipelined C-testable arrays. Two TCs

are required to fully test the carry chain.

The first TC shown in fig. 4 (a) tests for faults in the XOR

gates and a subset of the faults in the multiplexers. The inputs

(X) are driven with identical values and propagated through the

multiplexer to the XOR gate. In this scenario the multiplexers

are transparent and the carry-chain blocks are configured into

XOR arrays. The test signals are generated in the LUTs and

the outputs S0, S1 are compared and pipelined using the CLB

flip-flops.

In the second TC shown in fig. 4 (b), the carry-in and

carry-out pins are tested by connecting the chain elements in

a long carry chain and propagating the 0 and 1 values through

it to test for both stuck-at faults. A flip-flop is used at the end

of each column to pipeline the test.

6) Latches and Flip-Flops: Flip-flop testing is identical to

testing the LUT in shift register mode. If sequential elements

can be configured as level sensitive latches, a separate test

is required to guarantee proper latch function. To test for the

correct function of the latches, including all stuck-at faults and

transition faults, two non-overlapping clocks are used as input

to the scan chain. The same test pattern used for the flip-flops

(01100) is also used for testing the latches [31].

D. CLB Test Configuration Minimization

Since some CLB subcomponents can be tested in parallel,

the global number of TCs can be reduced. The method of [32]

maps the minimization of TCs to a set covering problem. Three

testability conditions must hold for each tested subcomponent:

(1) All required TCs of the submodule are applied; (2) All

inputs of each submodule must be controllable such that all

input combinations can be applied for the test; (3) All outputs

of each submodule must be observable to evaluate the results

of all test stimuli.

If all of the testability conditions of each subcomponent are

satisfied using a set of TCs, this set is sufficient to perform a

full structural test of the CLB, and all other TCs are redundant.

The lower bound of the number of global TCs is given by the

maximum number of TCs per submodule. For the CLB of the

used architecture (Virtex-5, c.f. section V-A), the lower bound

is 5 TCs as determined by the largest multiplexer in the CLB.

In this work, the search for a covering set of global TCs

is implemented using a randomized greedy heuristic with

polynomial runtime complexity. However, the results cannot

be applied directly since they do not necessarily satisfy two

additional constraints imposed on all TCs: Interconnection in

C-testable arrays and pipelining. Including these additional

constraints would require to significantly enlarge the set cov-

ering problem instance. Therefore, the results are used as

a starting point for manual optimization. A global TC that

cannot be pipelined and connected in a C-testable array is

divided into two TCs until all TCs satisfy these conditions.

An example is a global TC which requires all outputs of

the CLB to be observable for fault effects, but which cannot

generate at its outputs all the test stimuli for the inputs of the

next downstream CLB. By dividing this TC, the targeted CLB

subcomponents are distributed and the freedom to establish

C-testable and pipelined configurations increases. For the

considered CLB, the number of global TCs increases from

5 to 9 to satisfy the C-testability and pipelining constraints.

IV. IMPLEMENTATION

For testing the reconfigurable fabric of a Xilinx Virtex-5

FPGA, a series of test configurations (TCs) is first generated

from test configuration templates which are obtained as de-

scribed in the previous section. This is implemented in Java

based on the RapidSmith Java framework [33]. The output is a

set of XDL (Xilinx Design Language) files which are used to

generate bitstreams for the TCs (see fig. 5). First, the container

size is selected by specifying the CLB coordinates at the lower-

left and upper-right coordinates of a rectangular container on

the FPGA. The PRET tool then generates the TPG and ORA

for the TCs targeting the CLB subcomponents. Because of

the C-testability property, all container sizes require the same

number of test patterns. The container setup is then created by

instantiating the test configurations for all targeted CLBs. At

this point, the input and output connections are defined at the

boundary of the C-testable CLB array. While the connections

Specify

container size

Generate

TPG/ORA

Instantiate TCs

into container,

generate XDL

Generate

container setup

1.

2.

3. TC

TC4.

P
R

E
T

 g
e

n
e

ra
ti
o

n

XDL

XDL

Hardmacro

Hardmacro

PlanAhead

Partial bitstreams

VHDL

Codes

Reconf.

accelerators/test conf.
Static Top-level

Design

NetlistWrapper

Netlist

T
P

G
O

R
A

T
P

G
O

R
A

T
P

G
O

R
A

Fig. 5: XDL file generation flow for CLB TCs; Partial reconfiguration
flow for test configurations

within a CLB are defined by the test configuration XDL file,

the routing within the container between CLBs is done later

using the Xilinx place & route tool.

In order to integrate the TCs into the runtime system

of the reconfigurable architecture, each TC must be packed

into a partial bitstream and stored in memory. The runtime

system of the reconfigurable architecture fetches the partial

bitstream of the TC from memory and transfers it over the

internal configuration access port into the FPGA so that the

corresponding container is configured as a test array and ready

for being tested.

The standard partial reconfiguration flow generates the

partial bitstreams and uses PlanAhead as the tool to synthe-

size and place & route the design. The input source files

for PlanAhead are netlists synthesized from VHDL before

technology mapping. As the TCs are mapped and placed

designs describing the low-level configuration details of the

hardware resources to be tested, they cannot be used directly

as input to PlanAhead. They require additional handling for

the integration into the partial reconfiguration flow (see fig. 5):

Each TC is converted from its XDL description to a pre-

mapped and placed hardmacro and then wrapped in a VHDL

entity. This wrapper with the included hardmacro is then

synthesized to a netlist that is used as the input source file

of the reconfigurable accelerator. Together with the netlist of

the static top-level design (core pipeline, TPG, ORA and the

runtime system) it is provided to PlanAhead, which generates

the partial bitstream for the TC.

Since TCs and containers share the same communication

infrastructure (see fig. 1), TCs must have the same interface

to the inter-container buses as the containers have. In the tool-

flow, the mapping from CLB pins at the boundary of the

C-testable array in the hardmacro to symbolic identifiers in

VHDL is achieved by a wrapper. Although different TCs may

differ in their connection to the TPG and ORA, these com-

plexities are not exposed to the communication infrastructure

but masked by the wrapper so that TCs and containers have

the same I/O interface specification.

The runtime system establishes the communication be-

tween the TC and the TPG/ORA after the TC is reconfigured

to a container. The test only lasts a short time (see section V).

During that time, Special Instructions cannot be executed

in hardware as the inter-container buses are used by the

test. The runtime system either stalls the CPU or triggers

an emulation of the Special Instructions in software. This

software emulation (realized by an unimplemented-instruction

trap) is also used when a Special Instruction shall execute but

the reconfiguration of the accelerator is not completed yet.

V. EVALUATION AND RESULTS

A. Experimental Setup

A Leon-3 processor is used as core pipeline with 10

attached containers, where each container consists of 10x40

CLBs. The actual hardware prototyping is performed on

an XUPV5 FPGA board with a Xilinx Virtex-5 LX110.

A SystemC-based simulator is used for evaluating different

system parameters like the number of containers. The sys-

tem operates at a clock frequency of 100 MHz and has a

reconfiguration bandwidth of 66 MB/s. Although the internal

configuration access port of the Xilinx FPGA can operate at

up to 400 MB/s, the actual configuration bandwidth is limited

by off-chip DRAM speed.

To analyze the PRET overhead, a sophisticated H.264

video encoder is chosen as target application. The encoder

is a representative application since it uses many different

accelerators (e.g. transformations, filters, SADs, arithmetic

etc.) and it frequently reconfigures these accelerators in the

containers. In detail, the H.264 encoder consists of three

different functional blocks that are executed in sequence for

each video frame: motion estimation, encoding, and in-loop

deblocking filtering. Each of these functional blocks requires

different Special Instructions, hence the system reconfigures

the containers accordingly. In total, 9 Special Instructions are

implemented for the encoder by using combinations of 10

different accelerators [34]. The implementation of the H.264

encoder on the reconfigurable system leads to a speedup of

more than 20x compared to the same system without using

Special Instructions.

B. Test Configurations

Table I gives an overview on the nine generated test config-

urations (TCs). Column one shows the configuration number.

Column two shortly describes the portion of each CLB being

tested. Columns three and five list the PRET overhead in CLBs

used for the TPG and ORA and the maximum achievable

test frequency. The nine test configurations achieve complete

coverage of the targeted faults. The total hardware overhead

introduced by PRET is 17 CLBs.

The test time for a container consists of two parts: the

container configuration time and the test application time. The

latter is the sum of the number of pattern (c.f. table I) plus

the sequential depth of the pipelined TC. The configuration

dominates the test time with tens of thousands of cycles. The

configuration time is directly proportional to the size of the

configuration data (bitstreams) and the reconfiguration band-

width. Column four shows the sizes of the partial bitstreams

for the generated 9 TCs. Based on the configuration bandwidth

of 66 MB/s, configuration of a TC requires between 1.49 ms

and 1.99 ms.

While TCs 3 and 4 seem to be identical, two configu-

rations are needed to satisfy the C-testability and pipelining

constraints. The same holds for TCs 5 and 6. Each TC has

a common test interface consisting of one system clock, two

non-overlapping clocks, one 8-bit input from the TPG and one

TC Tested CLB subcomponents
PRET Bitstr.

Freq. Num.
overh. size

[MHz] patterns
[CLBs] [KB]

1 LUT as XOR, via FF 2 108 207 64
2 LUT as XNOR, via FF 2 108 207 64
3 Carry MUX, via latch 1 129 168 6
4 Carry MUX, via latch 1 122 154 6
5 Carry XOR, via FF 1 129 168 6
6 Carry XOR, via FF 1 131 154 6
7 Carry-I/O multiplexed 1 131 183 6
8 LUT as Shift Reg. with slice MUX 1 110 157 6
9 LUT as RAM with slice output 7 98.4 225 320

TABLE I: Characteristics of CLB test configurations

8-bit output to the ORA. The I/O interface of the containers

with 1 system clock and two 32-bit inputs and outputs is

extended with 2 non-overlapping clocks so that it becomes

a superset of the signals needed by the TCs.

C. Concurrent Test Scheduling

Tests are regularly scheduled to containers like functional

workloads, when these containers are currently not used and

the configuration port is available. A simple test strategy is ap-

plied here, which schedules one test configuration after a cer-

tain number of accelerator configurations (ACs) to demonstrate

that the test has negligible effect on the performance while still

maintaining high test effectiveness. Here, one TC is scheduled

before each AC (or before every 2nd, 4th, 8th, . . . AC). This

corresponds to one AC per TC (or 2 ACs per TC etc.) Fig. 6

shows the simulation results for the performance loss under

different test frequencies from 1 AC/TC to 64 ACs/TC for

three different numbers of containers. The performance loss is

mainly caused by the delay of the accelerator configurations

due to testing. Depending on the test frequency, the time

required to iterate through all nine TCs per container differs.

For the investigated cases, table II lists the test completion

time in seconds for different test frequencies. For example, in

the case of 12 containers and 32 ACs/TC, the test completion

time is approx. 59s. This is sufficient when targeting latent

and permanent faults which may emerge for example due to

aging. With this test frequency, the performance loss is only

0.16% which is negligible for the system performance.

0.01%

0.10%

1.00%

10.00%

1 2 4 8 16 32 64

10

12

14

P
e

rf
o

rm
a

n
ce

 l
o

ss
 [

%
]

Number of accelerator configurations per test configuration

Number of containers

Fig. 6: Performance loss under different test frequencies

#Cont.
Number of accelerator conf. per TC

1 2 4 8 16 32 64
Test completion time [seconds]

10 1.4 2.8 5.6 11.2 22.6 45.0 89.8
12 1.8 3.7 7.4 14.8 29.6 59.1 118
14 3.3 6.9 13.9 28.2 56.3 112 225

TABLE II: Test completion time (i.e. test latency)

VI. CONCLUSION

This work presents a novel pre-configuration test (PRET)

scheme for runtime reconfigurable architectures. Parts of the

reconfigurable fabric, called containers, are thoroughly tested

at runtime by scheduled test sessions. The impact of testing on

the system operation is minimized. The structural test method

is implemented and integrated into an existing reconfigurable

system. For this reconfigurable architecture with 12 containers

and a complex H.264 video encoding application, the test

overhead in terms of performance loss can be reduced to less

than 0.2% while providing a very fast test completion time of

only 59s. The proposed PRET approach requires only minimal

adaption at system level and introduces a negligible hardware

overhead of 17 CLBs.

Testing is the very first step towards dependable recon-

figurable architectures. Once faults in containers are detected

using PRET, countermeasures can be taken to recover from

resulting errors, to quarantine defective resources, and to

reconfigure the system for graceful degradation.

REFERENCES

[1] J. E. Carrillo and P. Chow, “The effect of reconfigurable
units in superscalar processors”, in Int’l Symposium on Field
Programmable Gate Arrays (FPGA), 2001, pp. 141–150.

[2] S. Vassiliadis et al., “The MOLEN polymorphic processor”,
IEEE Trans. Computers, vol. 53, no. 11, pp. 1363–1375, 2004.

[3] E. Lübbers and M. Platzner, “ReconOS: Multithreaded program-
ming for reconfigurable computers”, ACM Trans. on Embedded
Computing Systems, vol. 9, pp. 8:1–8:33, 2009.

[4] N. Metha and A. DeHon, “Variation and aging tolerance in FP-
GAs”, in Low-Power Variation-Tolerant Design in Nanometer
Silicon. Springer Science+Business Media, 2011.

[5] J. Lach, W. Mangione-Smith, and M. Potkonjak, “Enhanced
FPGA reliability through efficient run-time fault reconfigura-
tion”, IEEE Trans. Reliability, vol. 49, no. 3, pp. 296–304, 2000.

[6] S. Mitra et al., “Reconfigurable architecture for autonomous
self-repair”, IEEE Design & Test of Computers, vol. 21, no. 3,
pp. 228–240, 2004.

[7] C. Bolchini et al., “A Reliable Reconfiguration Controller for
Fault-Tolerant Embedded Systems on Multi-FPGA Platforms”,
in IEEE International Symposium on Defect and Fault Tolerance
in VLSI Systems (DFT), 2010, pp. 191–199.

[8] L. Bauer et al., “OTERA: Online test strategies for reliable re-
configurable architectures”, in NASA/ESA Conference on Adap-
tive Hardware and Systems (AHS), June 2012.

[9] C. Stroud, “Ch. 12.4 field programmable gate array testing”, in
VLSI Test Principles and Architectures, L. Wang, C. Wu, and
X. Wen, Eds. Morgan Kaufmann, 2006.

[10] M. Renovell et al., “SRAM-Based FPGAs: Testing the Embed-
ded RAM Modules”, Journal of Electronic Testing (JETTA),
vol. 14, pp. 159–167, 1999.

[11] K. Radecka, J. Rajski, and J. Tyszser, “Arithmetic Built-In Self-
Test for DSP Cores”, IEEE Trans. CAD of Integrated Circuits
and Systems, vol. 16, no. 11, pp. 1358–1369, 1997.

[12] M. Tahoori, “Application-Dependent Testing of FPGAs”, IEEE
Trans. Very Large Scale Integration Systems, vol. 14, no. 9, pp.
1024–1033, 2006.

[13] C. Stroud et al., “Built-in self-test of FPGA interconnect”, in
Proc. International Test Conference, 1998, pp. 404–411.

[14] M. Tahoori and S. Mitra, “Application-independent testing of
FPGA interconnects”, IEEE Trans. CAD of Integrated Circuits
and Systems, vol. 24, no. 11, pp. 1774–1783, 2005.

[15] E. Chmelar, “FPGA interconnect delay fault testing”, in Proc.
International Test Conference, 2003, pp. 1239–1247.

[16] W. K. Huang et al., “Testing configurable LUT-based FPGA’s”,
IEEE Trans. VLSI, vol. 6, pp. 276–283, 1998.

[17] M. Renovell et al., “Testing the interconnect of RAM-based
FPGAs”, IEEE Design & Test of Computers, vol. 15, no. 1, pp.
45–50, 1998.

[18] M. Abramovici and C. Stroud, “BIST-based test and diagnosis
of FPGA logic blocks”, IEEE Transactions on Very Large Scale
Integration Systems, vol. 9, no. 1, pp. 159–172, 2001.

[19] M. Renovell et al., “Test pattern and test configuration genera-
tion methodology for the logic of RAM-based FPGA”, in Proc.
Asian Test Symposium, 1997, pp. 254–259.

[20] C. Stroud et al., “Built-in self-test of logic blocks in FPGAs
(Finally, a free lunch: BIST without overhead!)”, in Proc. VLSI
Test Symposium, 1996, pp. 387–392.

[21] P. Sundararajan, S. Mcmillan, and S. A. Guccione, “Testing
FPGA devices using JBits”, in Military and Aerospace Appli-
cations of Programmable Devices and Techn., 2001.

[22] C. Stroud et al., “Built-in self-test of FPGA interconnect”, in
Proc. International Test Conference, 1998, pp. 404–411.

[23] M. Abramovici, C. E. Stroud, and J. M. Emmert, “Online
BIST and BIST-Based Diagnosis of FPGA Logic Blocks”, IEEE
Trans. VLSI, vol. 12, no. 12, pp. 1284–1294, 2004.

[24] V. Verma, S. Dutt, and V. Suthar, “Efficient On-line Testing of
FPGAs with Provable Diagnosabilities”, in Design Automation
Conference (DAC), 2004, pp. 498–503.

[25] J. Emmert, C. Stroud, and M. Abramovici, “Online Fault
Tolerance for FPGA Logic Blocks”, IEEE Trans. VLSI, vol. 15,
no. 2, pp. 216–226, 2007.

[26] B. F. Dutton and C. E. Stroud, “Soft core embedded processor
based built-in self-test of FPGAs”, in Int’l Symp. on Defect and
Fault-Tolerance in VLSI Systems, 2009, pp. 29–37.

[27] M. Abramovici et al., “Using roving STARs for on-line testing
and diagnosis of FPGAs in fault-tolerant applications”, in Proc.
International Test Conference, 1999, pp. 973–982.

[28] C. Metra et al., “Novel technique for testing FPGAs”, in Design,
Autom. and Test in Europe, 1998, pp. 89–94.

[29] M. Psarakis, D. Gizopoulos, and A. Paschalis, “Test Generation
and Fault Simulation for Cell Fault Model using Stuck-at Fault
Model based Test Tools”, Journal of Electronic Testing (JETTA),
vol. 13, pp. 315–319, 1998.

[30] M. Renovell, “SRAM-based FPGAs: a structural test approach”,
in Brazilian Symp. Integrated Circuit Design, 1998, pp. 67–72.

[31] S. Makar and E. McCluskey, “Functional tests for scan chain
latches”, in Proc. Int’l Test Conference, 1995, pp. 606–615.

[32] M. Renovell et al., “Test configuration minimization for the
logic cells of SRAM-based FPGAs: a case study”, in Europ.
Test Workshop, 1999, pp. 146–151.

[33] C. Lavin et al., “Rapid prototyping tools for FPGA de-
signs: RapidSmith”, in International Conference on Field-
Programmable Technology (FPT), 2010, pp. 353–356.

[34] M. Shafique, L. Bauer, and J. Henkel, “Optimizing the
H.264/AVC video encoder application structure for reconfig-
urable and application-specific platforms”, Journal of Signal
Processing Systems (JSPS), vol. 60, no. 2, pp. 183–210, 2009.

	IOLTS_AbdelBBIKZHW2012.pdf

