
Acceleration of Monte-Carlo Molecular

Simulations on Hybrid Computing

Architectures

Braun, Claus; Holst, Stefan; Wunderlich, Hans-Joachim; Castillo,

Juan Manuel; Gross, Joachim

Proceedings of the 30th IEEE International Conference on Computer Design (ICCD’12)

Montreal, Canada, 30 September-3 October 2012

doi: http://dx.doi.org/10.1109/ICCD.2012.6378642

Abstract: Markov-Chain Monte-Carlo (MCMC) methods are an important class of simulation techniques,
which execute a sequence of simulation steps, where each new step depends on the previous ones. Due to
this fundamental dependency, MCMC methods are inherently hard to parallelize on any architecture. The
upcoming generations of hybrid CPU/GPGPU architectures with their multi-core CPUs and tightly coupled
many-core GPGPUs provide new acceleration opportunities especially for MCMC methods, if the new degrees
of freedom are exploited correctly. In this paper, the outcomes of an interdisciplinary collaboration are
presented, which focused on the parallel mapping of a MCMC molecular simulation from thermodynamics to
hybrid CPU/GPGPU computing systems. While the mapping is designed for upcoming hybrid architectures,
the implementation of this approach on an NVIDIA Tesla system already leads to a substantial speedup of
more than 87x despite the additional communication overheads.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic
reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form
to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

http://dx.doi.org/10.1109/ICCD.2012.6378642

Acceleration of Monte-Carlo Molecular Simulations
on Hybrid Computing Architectures

Claus Braun, Stefan Holst and Hans-Joachim Wunderlich

Institute of Computer Architecture and

Computer Engineering

University of Stuttgart

Pfaffenwaldring 47, D-70569, Germany

Email: {braun,holst,wu}@informatik.uni-stuttgart.de

Juan Manuel Castillo and Joachim Gross

Institute of Thermodynamics and

Thermal Process Engineering

University of Stuttgart

Pfaffenwaldring 9, D-70569, Germany

Email: {sanchez,gross}@itt.uni-stuttgart.de

Abstract—Markov-Chain Monte-Carlo (MCMC) methods are
an important class of simulation techniques, which execute a
sequence of simulation steps, where each new step depends on
the previous ones. Due to this fundamental dependency, MCMC
methods are inherently hard to parallelize on any architecture.
The upcoming generations of hybrid CPU/GPGPU architectures
with their multi-core CPUs and tightly coupled many-core
GPGPUs provide new acceleration opportunities especially for
MCMC methods, if the new degrees of freedom are exploited
correctly.

In this paper, the outcomes of an interdisciplinary collab-
oration are presented, which focused on the parallel mapping
of a MCMC molecular simulation from thermodynamics to
hybrid CPU/GPGPU computing systems. While the mapping is
designed for upcoming hybrid architectures, the implementation
of this approach on an NVIDIA Tesla system already leads to
a substantial speedup of more than 87x despite the additional
communication overheads.

Keywords-Hybrid Computer Architectures, GPGPU, Markov-
Chain Monte-Carlo, Molecular Simulation, Thermodynamics

I. INTRODUCTION

The massive parallelism of contemporary general-purpose

graphics processors (GPGPUs) enables simulation applica-

tions at workstation-level, which previously required high-

performance computing centers. Moreover, the latest develop-

ments in computer architecture show that an increasing num-

ber of upcoming processors is going to combine traditional

general-purpose multi-core with tightly coupled data-parallel

many-core architectures on a single chip [1, 2]. Such hybrid

architectures will be able to deliver strong computational per-

formance together with high memory bandwidth and reduced

communication overhead within an attractive power envelope.

However, the high computational potential of these hybrid

architectures can only be exploited by thoroughly adapted or

re-designed algorithms. This requires algorithmic partitioning

which maps serial or coarse-grained parallel tasks to latency-

optimized CPUs and fine-grained, data-parallel tasks to the

throughput-optimized computation units.

Stochastic-based simulation methods play an important

role since they allow the solution of problems that tend to be

very hard to be solved by deterministic algorithms. For search

and optimization problems, evolutionary [3–5] and genetic

The authors would like to thank the German Research Foundation (DFG)
for financial support of their projects within the Cluster of Excellence in
Simulation Technology (EXC 310/1) at the University of Stuttgart.

algorithms [6, 7] have been applied. Simulated annealing [8, 9]

has been used to localize globally optimal problem solutions.

One of the most important classes of such techniques are

Monte Carlo (MC) [10] methods, which approximate solutions

for quantitative problems, with multiple coupled degrees of

freedom, by random sampling. The problem targeted in this

paper is the parallelization of molecular simulations of the

grand canonical ensemble, from the field of thermodynamics,

on hybrid computing systems. The problem analysis in the

next section will show, that these simulations are an instance

of a special case of MC methods, the Markov-Chain Monte-

Carlo (MCMC) simulation. MCMC methods sample from a

probability distribution that is based on the construction of a

Markov-Chain, which is inherently serial and very difficult to

parallelize on contemporary architectures. Being the core of

many tasks in thermodynamics, MCMC molecular simulation

often forms the major bottleneck, which is typically tackled

by coarse-grained parallelization and distribution of simulation

instances on clusters or workstation grids. Commonly, this is

associated with considerable overhead and costs.

After a review of the related work on parallel MCMC

and molecular simulations in section III, an approach to fully

utilize the compute power of a hybrid architecture is presented

in section IV. The proposed mapping is designed to provide

high performance by applying general MCMC parallelization

techniques and exploiting some special properties of the tar-

get problem at the same time. The experimental results in

section V will show a substantial simulation speedup even on

commonly available GPU-based accelerators with their well-

known communication overheads involved.

II. PROBLEM DEFINITION AND ANALYSIS

In many scientific fields, such as material science or chem-

ical engineering, molecular simulation is an essential method

for the study of molecular structures and processes. A molec-

ular simulation consists in the sampling of a large number

of molecular configurations compatible with a particular state

of a system in thermodynamic equilibrium. The distribution

of these compatible molecular configurations in the phase

space, or set of all possible molecular configurations, is called

ensemble. Depending on which parameters are variable and

which of them are held constant, different ensembles can be

defined. For example, in the grand canonical ensemble, the

temperature, volume, and chemical potential of the system are

constant, while the energy, pressure, and number of particles

are fluctuating properties. By means of statistical mechanic

laws, average properties of the ensemble can be related with

macroscopic properties of simple gasses and fluids. In order to

calculate statistically significant values for the properties of the

system, a large number of configurations has to be analyzed,

often in the order of billions.

In Monte-Carlo molecular simulations, the way to generate

new configurations is known as importance sampling. Using

importance sampling, an initial molecular configuration of

the system is modified with what is called a MC move to

obtain a new molecular configuration (MC step). The new

molecular configuration is accepted or rejected depending on

the ensemble probability. If the modification is accepted, the

next MC step will be based on the new molecular configuration

just generated. If it is rejected, the old configuration is not

modified in the current step. This procedure is repeated, so

that new configurations are generated in a chain such that the

new configuration depends only on the previous configuration

(Markov-Chain). In the canonical ensemble, new molecular

configurations are generated by means of molecule transla-

tions and rotations. In the grand canonical ensemble, it is

also possible to add and delete molecules of the system. In

the canonical ensemble, the probability of accepting a new

configuration n from a starting configuration o is

Pr(o → n) = min{1, e−
(En−Eo)

kBT },
where En − Eo is the energy difference between the two

configurations, kB the Boltzmann constant and T the tem-

perature of the system. Figure 1 shows the basic principle of

the method with a simple example. A known flat area Avss of

valid system states is given, and the flat area of interest Aoi is

to be calculated. The goal is to estimate the relative area Aoi

Avss
.

The initial system configuration is represented by a point a
in the figure. A new configuration is generated by means of

a random displacement. If the new point does not belong to

Avss, it is rejected immediately. If the point belongs to Avss,

the number of times the point falls inside Aoi is updated. This

step is repeated a large number of times. Finally, the relative

area is calculated by

Aoi

Avss

=
of points that fall in Aoi

total # of points generated in Avss

.

A
oi

a

A
vss

Fig. 1. Sampling of a state space.

The acceptance probability Pr depends on the energies of

the systems. The total energy E of a system is the sum of

two different energy contributions for all the molecular pairs

in the system. The first contribution considers the repulsion

between the electrons of different atoms at short distance,

and their attractive or also called dispersive interaction at

larger distances. These interactions are usually described by a

Lennard-Jones potential [11], which is only a function of the

distance rij between the particles i and j:

φLJ (rij) = 4ε

{

(

σ

rij

)12

−
(

σ

rij

)6
}

,

where ε and σ are constants that depend on the nature of the

atoms i and j.

The second contribution is the electrostatic interaction

between point particles, and is described by the Coulomb

potential:

φCoul (rij) =
1

4πε0
qiqj
rij

,

where ε0 is the dielectric constant of vacuum space, and qi
and qj the charges of the particles i and j.

The Lennard-Jones potential is a short range potential, as

the value of the potential decreases rapidly when the distance

between the interacting atoms increases. Therefore, it is a

common practice to truncate the potential at a large distance

called cut-off, so that the potential is set equal to zero at

distances larger than the cut-off. The difference between a

truncated and a non-truncated potential is generally negligible

and the size of the simulated system (i.e. the side length of the

simulated cube of matter) can be set to two times the cut-off

distance. To mimic the properties of an infinitely large system,

the simulation cube is virtually replicated to all sides by proper

boundary considerations in the calculation of the interactions

between particles.

On the other hand, the Coulomb potential is a long range

potential, so truncation is not an option. For this potential it

is necessary to calculate the pair interactions for atoms that

are separated by a long distance, even in different periodic

images of the system. Furthermore, the final result depends

on the order in which the interactions are calculated and

summed. The most widespread method to accurately calculate

electrostatic interactions in molecular simulations is the Ewald

summation [12]. With this method, the charges in the system

are first conveniently screened, and the sum of the pair

interactions is calculated in the Fourier space. This method has

the advantage that the sum is quickly convergent, and includes

all the periodic images of the system. In the following, we will

just review the structure of the computational steps relevant

for parallelization. The exact formulas and constants can be

found in the original publication. In the Ewald summation

there are different contributions to the Coulomb potential. The

real energy,

φreal (rij) =
1

4πε0

qiqj erfc (
√
αrij)

rij
,

where α is an adjustable parameter, and erfc is the comple-

mentary error function. For computing the long-range term

called Fourier energy F , in a first step C complex coefficients

are calculated as:

ck =
N
∑

i=1

f (i, k) with 1 ≤ k ≤ C.

f is a complex-valued function, which depends only on the

location of the atom i and the coefficient index k. In the next

step, the coefficients are used to calculate the final Fourier

energy:

F =
C
∑

k=1

g[k] · |ck|2,

with g[k] being a table of constants.

Both the short-range electrostatic interaction and the

Lennard-Jones potential are accumulated over all particle pairs

to obtain the pair energy:

P =
∑

i,j∈A,i 6=j

φLJ(rij) + φreal(rij),

and the total energy of a system is just E = P + F .

The performance of Monte-Carlo based molecular sim-

ulation depends on two factors: The number of accepted

MC steps per computing time, and the overall change in the

configuration of the system within each step. Large changes

in the system configuration are desirable in each step, as

the sampling of the ensemble will be faster. The drawback

is that the acceptance probability will be very low. Small

changes would lead to a large number of accepted steps, but

the sampling of the ensemble will be very poor.

In an MC step only small random modifications are possi-

ble in the configurations. Typically, just one particle is changed

at a time to obtain reasonable acceptance rates. The magnitude

of change in the system in every MC move is easily adjusted

by choosing a maximum translation distance and a maximum

rotation angle. These parameters are commonly chosen in

a way, that an acceptance rate of 0.5 is achieved. It was

suggested [13] that this acceptance rate gives the best overall

performance for serial implementations.

While typical MC simulations have only a relatively small

number (usually no more than 103–104) of particles in the

system, still a massive amount of Monte-Carlo moves are

necessary to sufficiently sample the compatible configurations

of the ensemble.

III. STATE OF THE ART

From the known parallelization approaches for Monte-

Carlo based algorithms [14], the speculative computation of

future moves [15] is the most promising for an adaption to the

given problem. By creating multiple instances of the molecular

system and by evaluating the energies of these systems in

parallel, a speedup is achieved without compromising the

sequential dependencies of the Markov-Chain. This concept

has already been applied to MC based molecular simulation

on parallel CPUs [16, 17]. However, for bringing this approach

to tightly coupled GPGPU architectures, additional aspects

like data-parallelism and scarce memory bandwidth have to

be taken into account.

Quite similar to MC molecular simulation are molecular

dynamics (MD) algorithms. MD algorithms compute for each

configuration the forces between all particles and move them

according to Newton’s equations of motion to obtain a new

configuration for the next time step. GPGPU implementations

of MD algorithms [18–21], as well as similar simulation

algorithms [22, 23] often use the following parallelization

concepts:

• Spatial decomposition: When the particle interactions are

local, particles that are further apart can be simulated in

parallel.

• Data-parallel energy calculation: The same computations

are performed for all the particles or particle-pairs in the

system, hence this step is particularly suitable for data-

parallel implementation.

For Monte-Carlo simulations of systems with electrostatic in-

teractions, long range forces are dominating, hence the spatial

decomposition approach becomes inefficient. Nevertheless, the

data-parallel calculation of the energies is applicable.

In [24], speculative computations have been applied on

GPGPUs, however, this work only considered the Lennard-

Jones part. To the best of our knowledge, no approach is

available to leverage the performance of hybrid architectures

for MC molecular simulation by combining speculative com-

putation and complete parallel energy evaluation.

IV. MCMC MOLECULAR SIMULATION ON HYBRID

ARCHITECTURES

The presented algorithm efficiently combines and extends

the two parallelization concepts of data-parallel energy calcu-

lations and speculative computing from [15]. These concepts

complement each other and preserve the sequential path of the

original algorithm. In the following, we will focus on single-

atom particles for sake of simplicity. However, the described

discussion is easily extended to molecules.

A. Energy Evaluation

Let A be a set of atoms in the molecular system. Each

atom i ∈ A is described by its location and orientation in the

simulation box, and a set of constant model parameters such

as mass and charge. In each MC step, the energy difference

caused by a change in the simulation box has to be calculated.

The system can be changed by removal of an atom o ∈ A and

the addition of a new atom n at a different location and/or

orientation (figure 2):

An = (Ao \ {o}) ∪ {n}.

We will note this change in the following as o ⊲ n. The

energy difference ∆Eo⊲n for this change is calculated with

the expression:

∆Eo⊲n = En − Eo = Pn − Po + Fn − Fo.

The change in the pair energy can be computed by just

considering the interactions of o and n with all other atoms

in the system:

Pn−Po =
∑

i∈A,i 6=o

φLJ(rin)−φLJ(rio)+φreal(rin)−φreal(rio).

These O(|A|) terms can all be calculated in parallel.

old configuration A0 new configuration An

translating atom i by removing and adding at different location

i

remove add

i

Fig. 2. Translation of atom by removal and addition.

Let U be the set of changes to the molecular system. A

kernel launch kernel〈A,U〉() generates |A| · |U | threads on

the GPGPU and each of these threads evaluates a different

pair of 〈a, o ⊲ n〉 with a ∈ A and o ⊲ n ∈ U .

Algorithm 1 Kernel k pair for pair energy calculation

k pair〈a, o ⊲ n〉()
begin

e[tid] = 0
if (a 6= o)
float dx = global load(a.x)− global load(n.x)
float dy = global load(a.y)− global load(n.y)
float dz = global load(a.z)− global load(n.z)
dx = min image(dx)
dy = min image(dy)
dz = min image(dz)
float r = dx2 + dy2 + dz2

if (r > 0)
e[tid] = φLJ (r) + φreal(r)

fi
fi
e =

∑
tid

e[tid]
if (tid == 0)
global write(e)

fi
end

Algorithm 1 shows the kernel for the pair energy calcula-

tion in pseudo-code. tid is the thread id accessing the common

shared memory array e[]. All other variables are local to each

thread. First, the coordinates of the atom are loaded from the

GPGPU’s global memory. These accesses are organized in a

way to provide maximum coalescing, i.e. they are coordinated

in a way that a minimum number of memory transactions is

performed by the hardware. The function min image(d) adds

or subtracts the side length l of the simulation box, so that its

return value is |d′| < l
2

. Then, the distance and the energies

are computed. A partial summation is performed and the result

is written to the global memory.

The term F contains the rest of the contributions to the

energy given by the Ewald summation. In case of the Fourier

energy, each of the f (i, k) summands can be evaluated in par-

allel. However, the memory access time required for reading

the positions and the model parameters of every atom limits

the overall performance. To mitigate this problem, each thread

calculates all the summands f (ri, k) for a given atom, which

improves the ratio between memory accesses and arithmetic

operations.

Algorithm 2 shows the kernel to generate the partial sums

for all coefficients ck. er[], ei[] are arrays in the GPGPU’s

shared memory. In contrast to k real, this kernel works on

atom locations and not on distances between atoms. The

Algorithm 2 Kernel k fourier for Fourier-part energy cal-

culation
k fourier〈a, o ⊲ n〉()
begin
er[tid] = 0
ei[tid] = 0
if (a == o) then

x = global load(n.x)
y = global load(n.y)
z = global load(n.z)

else
x = global load(a.x)
y = global load(a.y)
z = global load(a.z)

fi
for (k = 0; k < C; k ++)

(er[tid], ei[tid]) = f((x, y, z), k)
er =

∑
tid

er[tid]
ei =

∑
tid

ei[tid]
if (tid == 0)
global write(er, ei)

fi
end

end

locations are loaded either from the common molecular system

or from the update data passed to the kernel. After loading the

necessary data, the amount of local computation is maximized

by calculating all coefficients in a loop and writing the partial

sums to the global memory. A further reduction of the data is

not possible at this point, since this would require the complete

sums of all ck and not only the partial sums. Hence, a second

kernel is necessary.

Algorithm 3 Kernel k fourier sum for Fourier-part sum-

mation
k fourier sum〈k〉(psums)
begin
e[tid] = 0
er = 0
ei = 0
for (s = 0; s < psums; s++)

(er, ei) = (er, ei) + global load(ck[s])
end
e[tid] = e[tid] + ffactor[k] · (er2 + ei2)
e =

∑
tid

e[tid]
if (tid == 0)
global write(e)

fi
end

The kernel described in algorithm 3 is launched with

k fourier sum〈{0, ..., #coeff − 1}〉(# partial sums). After

summing up all the partial sums for a coefficient c (k), a

partial sum of F is calculated and stored.

All energy contributions consist of an infinitely paralleliz-

able part (the individual parts of the sum) and a reduction

operation with log2(n) steps. Hence, the possible speedup is

in the order of

speedup =
n

1 + log2(n)
.

B. Speculative Computation

Given an initial molecular configuration, in every MC step

m ≥ 1 different new configurations, so called mutants, are

generated by performing a single MC move. The energies of

all these mutants are calculated in parallel. This procedure has

multiple advantages:

• The number of mutants in all steps are the same, and the

computing effort for the energy calculations are roughly

the same.

• There is limit to the amount of data that is shared among

the parallel instances, which reduces memory bandwidth

demand significantly.

• MC moves with low acceptance probability and large

displacements can be used, improving the sampling of

the ensemble.

Let Eo be the energy of the initial molecular configuration

and Ej the energy of the mutant j. For every mutant we

calculate the factor:

wj = e
−

(Ej−Eo)

kBT .

According to [17], we select the mutant j as the new config-

uration of this MC step with a probability given by:

Pr(j) =
wj

∑m

i=1
wi

.

Finally, the molecular configuration of the selected mutant j
is accepted or rejected with the probability:

Pr = min(1, wj)

C. Alteration of Acceptance Probabilities

In the parallel algorithm, it is convenient to adjust the

maximum displacements to obtain a low acceptance rate. The

reason is that, the lower the acceptance probability, the higher

the quality of an accepted move. In addition, the more mutants

are simulated in parallel, the smaller the acceptance rate per

mutant can be. Consequently, to reduce the acceptance rate per

mutant, the maximum translation distance and rotation angle

are increased accordingly.

D. MCMC Simulation System

The overall flow of a Monte-Carlo cycle with two mutants

is shown in figure 3. In mutant preparation, the CPU generates

init memory

mutant preparation

R(a01) R(an1) R(a02) R(an2) Fan1 Fan2

∑ ∑

mutant selection

final sum

k_pair k_fourier

partial energy sums

1 2

k_fourier_sum

mutant accept or reject

sync

Fig. 3. Flow of a Monte Carlo simulation cycle with two mutants

m ≥ 1 mutants randomly. Then, the energy differences for

each mutant are calculated with the help of the three kernels

k pair, k fourier, k fourier sum, which are executed on the

GPGPU. The kernels k pair and k fourier sum perform an

efficient partial summation of the energies in the shared

memory of the GPGPU. Only a limited number of p threads

can access such a common shared memory, leading to ⌈n/p⌉
partial sums. The CPU performs the final summation and

checks the acceptance of the mutants. If a mutant is accepted,

the loop proceeds with a new molecular system. To reduce

the memory bandwidth required for communication between

the CPU and the GPGPU, the mapping transfers only the

differences between molecular configurations and not the full

information.

V. EXPERIMENTAL RESULTS

To evaluate the speedup of the proposed algorithmic map-

ping of the Markov-Chain Monte Carlo molecular simulation,

a state-of-the-art serial production code written in Fortran

has been compared on an Intel Xeon X5680 CPU with

3.33GHz against the hybrid mapping written in C with CUDA

extensions. For reference purposes, a version of the code has

been mapped to a standard multi-core CPU using MPI.1 This

code showed a purely linear scaling behavior on up to 4 CPU

cores with a speedup of at most 3.9x. For the hybrid mapping,

the data-parallel parts of the algorithm were executed on an

Nvidia Fermi GPGPU whith 448 processing cores running at

1.15 GHz. The memory consumption of all considered test

cases was in the order of a few MBytes and is therefore not

discussed any further.

As a typical example of a molecular simulation, Single-

Point-Charge (SPC) water [25] was chosen, and both,

Lennard-Jones energy and electrostatic interactions were con-

sidered. With p being the number of molecules in the system,

n = 3p atoms were simulated. During the experiments,

random translations and rotations of molecules were evaluated.

A profiling of the simulation execution time showed, that the

simulation runtime is determined by the energy evaluation

after each Monte Carlo move. In detail, 80% to 90% of the

execution time were consumed by the GPGPU energy kernels.

The extension to different types of MC moves will not have

any impact on the overall performance.

Table I shows the overall simulation runtimes for molec-

ular systems of various sizes. Each molecular system was

initialized by placing all water molecules on a regular lattice

in the simulation box. Then, 104 Monte Carlo trials were

executed with an acceptance probability of roughly 50% to

equilibrate the system. After equilibration, the simulation time

was measured while evaluating another 104 translation trials.

In the hybrid implementation, a single mutant was evaluated

per MC cycle. It can be seen from the table, that a substantial

speedup is achieved for all molecular systems. The speedup

increases with the number of molecules in the system as the

massive computing power of the GPGPU becomes better and

better exploited. Molecular systems with a small number

of molecules can not exploit the full parallelism provided

by the GPGPU. For these systems, multiple mutants were

generated per MC cycle to improve the acceptance rates in

the overall simulation. The effectiveness of this approach from

1thanks to A. Kohler, Institute of Computer Architecture and Computer
Engineering, University of Stuttgart.

Molecules Fortran Hybrid GPU/CPU Speedup
256 45s 4.9s 9.2x
512 91s 5.1s 18x

1024 189s 5.7s 33x
1536 279s 6.2s 45x
2048 374s 6.3s 59x
3072 562s 7.9s 71x
4096 755s 8.7s 87x

TABLE I
SIMULATION RUNTIMES FOR DIFFERENT NUMBER OF WATER MOLECULES

IN THE SYSTEM AND 104 MONTE CARLO TRIALS.

the performance standpoint can be evaluated by measuring

the slowdown in the simulation time while evaluating m > 1
mutants in parallel during a MC cycle.

Table II shows the simulation runtimes when multiple

mutants were evaluated in each MC cycle. The percentages

in paranthesis indicate the amount of simulation speed main-

tained in spite of the additional workload for the GPGPU.

We observed, that for example with 256 molecules, doubling

the workload (m = 2) for the GPGPU had negligible impact

on the overall simulation runtime. With roughly the same

simulation time, two molecular configurations were available

in each cycle to choose from. The probability to accept a

system in a MC cycle was therefore higher and the algorithm

progressed faster. The benefit for particular simulation cases

can be easily calculated using the runtime values presented

here and the acceptance rates in the particular cases. As

expected, no benefit was achieved for large systems with more

than 4096 molecules. The simulation slowed down according

to the number of mutants, which shows that the parallelism

of the GPGPU was already fully exploited by parallel energy

calculation.
Molecules m = 1 m = 2 m = 3 m = 4

256 4.9s 4.9s (100%) 5.4s (92%) 5.4s (91%)
512 5.0s 5.6s (90%) 6.1s (83%) 6.3s (80%)

1024 5.7s 6.2s (92%) 7.8s (73%) 8.7s (66%)
1536 6.1s 7.9s (78%) 9.2s (66%) 14.0s (44%)
2048 6.3s 8.8s (72%) 14.0s (45%) 16.2s (39%)
3072 7.9s 13.9s (57%) 17.3s (46%) 23.5s (34%)
4096 8.7s 16.2s (54%) 23.7s (37%) 30.6s (29%)

TABLE II
SIMULATION RUNTIMES FOR MULTIPLE MUTANTS IN EACH OF THE 104

MONTE CARLO TRIALS.

VI. CONCLUSION

In this paper we presented a new method for the parallel

mapping and implementation of Markov-Chain Monte-Carlo

molecular simulations on hybrid CPU-GPGPU systems. The

mapping is characterized by data-parallel energy caclulations

and speculative computations in each Monte-Carlo step. Fur-

thermore, the different simulation tasks are thoroughly parti-

tioned to exploit the high single thread performance of the

CPU and the massive data-parallelism of the GPGPU. The

computations are arranged in a way that allows maximum

data re-use and a substantial reduction of communication

overhead. The proposed mapping is able to directly utilize

the different architectural characteristics of hybrid computing

systems. It was shown that the parallel mapping achieves a

speedup of more than 87x. This significant speedup enables

MCMC molecular simulations at workstation-level and the
investigation of problem sizes, which previously required

computing clusters or grid-based systems.

REFERENCES

[1] A. Branover, D. Foley, and M. Steinman, “AMD Fusion APU: Llano”,
IEEE Micro, vol. 32, no. 2, pp. 28 –37, march-april 2012.

[2] M. Daga, A. Aji, and W. chun Feng, “On the Efficacy of a Fused
CPU+GPU Processor (or APU) for Parallel Computing”, in 2011 Sym-
posium on Application Accelerators in High-Performance Computing
(SAAHPC), July 2011, pp. 141 –149.

[3] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence through
Simulated Evolution, L. J. Fogel, A. J. Owens, and M. J. Walsh, Eds.
John Wiley & Sons, Inc. New York, USA, 1966.

[4] I. Rechenberg, Evolutionsstrategien: Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. Friedrich Frommann
Verlag, 1973.

[5] H. P. Schwefel, Numerical Optimization of Computer Models. John
Wiley & Sons, Inc. New York, USA, 1981.

[6] J. H. Holland, Adaptation in Natural and Artificial Systems. University
of Michigan Press, 1975.

[7] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, 1989.

[8] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
Simulated Annealing”, Science, vol. 220, no. 4598, pp. 671–680, 1983.

[9] V. Černý, “Thermodynamical approach to the traveling salesman prob-
lem: An efficient simulation algorithm”, Journal of Optimization Theory
and Applications, vol. 45, no. 1, pp. 41–51, 1985.

[10] N. Metropolis, “The Beginning of the Monte Carlo Method”, Los Alamos
Science, vol. 15, no. 584, pp. 125–130, 1987.

[11] J. E. Jones, “On the Determination of Molecular Fields. I. From the
Variation of the Viscosity of a Gas with Temperature”, Proceedings
of the Royal Society of London. Series A, Containing Papers of a
Mathematical and Physical Character, vol. 106, no. 738, pp. 441–462,
1924.

[12] P. P. Ewald, “Die Berechnung optischer und elektrostatischer Gitterpo-
tentiale”, Annalen der Physik, vol. 369, no. 3, pp. 253–287, 1921.

[13] G. Heffelfinger and M. Lewitt, “A comparison between two massively
parallel algorithms for Monte Carlo computer simulation: An inves-
tigation in the grand canonical ensemble”, Journal of Computational
Chemistry, vol. 17, no. 2, pp. 250–265, January 1996.

[14] D. R. Greening, “Parallel simulated annealing techniques”, Physica D:
Nonlinear Phenomena, vol. 42, no. 1-3, pp. 293 – 306, 1990.

[15] E. Witte, R. Chamberlain, and M. Franklin, “Parallel Simulated Anneal-
ing Using Speculative Computation”, IEEE Transactions on Parallel and
Distributed Systems, vol. 2, no. 4, pp. 483–494, October 1991.

[16] D. M. Jones and J. M. Goodfellow, “Parallelization Strategies for
Molecular Simulation using the Monte Carlo Algorithm”, Journal of
Computational Chemistry, vol. 14, no. 2, pp. 127–137, 1993.

[17] K. Esselink, L. D. J. C. Loyens, and B. Smit, “Parallel Monte Carlo Sim-
ulations”, Physical Review E, vol. 51, no. 2, pp. 1560–1568, February
1995.

[18] J. E. Stone et al., “GPU-accelerated molecular modeling coming of age”,
Journal of Molecular Graphics and Modelling, vol. 29, no. 2, pp. 116–
125, 2010.

[19] J. A. van Meel et al., “Harvesting graphics power for MD simulations”,
Molecular Simulation, vol. 34, no. 3, pp. 259–266, 2008.

[20] J. A. Anderson, C. D. Lorenz, and A. Travesset, “General purpose
molecular dynamics simulations fully implemented on graphics process-
ing units”, Journal of Computational Physics, vol. 227, no. 10, pp. 5342
– 5359, 2008.

[21] J. Yang, Y. Wang, and Y. Chen, “Gpu accelerated molecular dynamics
simulation of thermal conductivities”, Journal of Computational Physics,
vol. 221, no. 2, pp. 799–804, 2007.

[22] E. Elsen et al., “N-Body Simulations on GPUs”, Stanford University,
Tech. Rep., 2007.

[23] Y. Frishman and A. Tal, “Multi-Level Graph Layout on the GPU”, IEEE
Transactions on Visualization and Computer Graphics, vol. 13, no. 6,
pp. 1310 –1319, Nov.-Dec. 2007.

[24] J. Kim et al., “Molecular Monte Carlo Simulations Using Graphics
Processing Units: To Waste Recycle or Not?” Journal of Chemical
Theory and Computation, vol. 7, no. 10, pp. 3208–3222, October 2011.

[25] H. J. C. Berendsen et al., Intermolecular Forces, 1981, ch. Interation
Models for Water in Relation To Protein Hydration, pp. 331–342.

	ICCD_paper_201_final

