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Abstract—Apoptosis, the programmed cell death, is a phys-
iological process that handles the removal of unwanted or
damaged cells in living organisms. The process itself is initiated
by signaling through tumor necrosis factor (TNF) receptors and
ligands, which form clusters on the cell membrane. The exact
function of this process is not yet fully understood and currently
subject of basic research. Different mathematical models have
been developed to describe and simulate the apoptotic receptor-
clustering.

In this interdisciplinary work, a previously introduced
model of the apoptotic receptor-clustering has been extended
by a new receptor type to allow a more precise description
and simulation of the signaling process. Due to the high com-
putational requirements of the model, an efficient algorithmic
mapping to a modern many-core GPGPU architecture has
been developed. Such architectures enable high-performance
computing (HPC) simulation tasks on the desktop at low costs.
The developed mapping reduces average simulation times from
months to days (peak speedup of 256x), allowing the productive
use of the model in research.

Keywords-GPGPU, parallel particle simulation, numerical
modeling, apoptosis, receptor-clustering

I. INTRODUCTION

Apoptosis, the programmed cell death, is an important

physiological process since it enables organisms to remove

unwanted or damaged cells. A deeper understanding of the

processes involved in apoptosis is required for the control of

cell death especially the initiation of the apoptotic signaling

pathways. One of these pathways is the extrinsic pro-

apoptotic signaling pathway which is initiated by signaling

competent clusters of TNF receptors and the corresponding

TNF ligands. In order to study the formation of signal

competent clusters concerning their size and structure, a

mathematical model for the motion and clustering of the

receptors and ligands was introduced in [1]. Based on

biological research results published in [2], the developed

model with its receptor monomers and ligands has now been

extended by a third particle type, the receptor homodimers.

The original model has been developed and evaluated using

MATLAB. A more efficient, grid-based algorithm has been

implemented using the C programming language. However,

being a stochastic model, a significant number of simulation

runs is required to draw reliable conclusions, which causes

very long computation times.

In recent years, traditional graphics processing units

(GPUs) left the niche of visual data processing and emerged

to highly parallel and fully programmable many-core proces-

sor architectures. The acronym GPGPU (General-Purpose

Computations on Graphics Processing Units) has been

coined for the use of such GPUs in compute-intensive, non-

graphical applications. These many-core architectures are

widely available at very low cost and they enable high-

performance computing simulation applications on the desk-

top. Compared to classic CPU architectures, GPGPUs are

optimized for high computational throughput and they gain

their impressive performance through massive on-chip par-

allelism. A successful utilization of the high computational

potential requires thorough adaption and optimization of the

target algorithm to the GPGPU’s hardware characteristics.

In this work, an efficient, parallel mapping of the intro-

duced mathematical model to a GPGPU many-core archi-

tecture has been developed. It exploits fine-grained intra-

GPU parallelism with multiple active simulation instances

per GPGPU device, as well as coarse-grained inter-GPU

parallelism by utilizing all available GPGPU devices within

a system. The outcome of this interdisciplinary collaboration

leads to a peak speedup of 256x and an overall speedup,

which reduces simulation times from months to days and

hours.

This paper is structured as follows: section II presents the

related work in the field of apoptosis-related mathematical

modeling and accompanying parallel simulations. Section

III gives a motivation of the biological relevance of the

extrinsic signaling pathway, followed by the description of

the developed mathematical model in sections IV and V. The

characteristics of modern GPGPU many-core architectures

and the algorithmic mapping of the simulation model to

such an architecture are presented in sections VI and VII.

The evaluation of the mapping with detailed experimental

results is given in section VIII.



II. RELATED WORK

Over the last years, several mathematical models of

receptor-clustering on the cell surface have been estab-

lished. In [3], the mathematical description of the cluster

formation kinetics modeled by mass action kinetics for the

receptor and ligand concentrations results in a system of

coupled nonlinear differential equations. This ODE model

only contains a temporal dependance and neglects the spatial

extension of a single cell. Another model of the cluster

formation introduced in [4] deals with thermodynamical

aspects. In this model, the spatially extended cell membrane

was modeled as a lattice and Monte Carlo simulations show

the formation of receptor clusters. The idea of a model

considering the spatial extension of the cell membrane was

taken up in the lattice free particle model introduced in [1].

Additionally, the orientation of the particles is incorporated

to the particle model. According to the biological research

results published in [2], an extension of this particle model

by a third particle type, the receptor dimers, is required.

A wide variety of approaches exists for particle and

N-body simulations [5], which differ significantly in the

way the interactions between the particles are computed

and the particle data is organized. The basic princi-

ples range from particle-particle/particle-mesh approaches,

nested-grids, tree codes to self-consistent field methods [6].

The fields of application with respect to GPGPUs include

interactive and realtime visualizations of large particles

sets [7], astrophysical applications, as well as numerous

applications, e.g. in cellular modeling [8] and molecular

dynamics [9]. However, to the best of our knowledge, there

exists no accurate mathematical model for the description

of apoptotic receptor-clustering, which has been mapped to

GPGPU architectures.

III. RELEVANCE OF THE SIGNALING PATHWAY

The central and executing machinery of apoptosis is a

network of caspases, a specific form of proteases. Proteases

are proteins being able to cleave and thereby activate other

proteins. The extrinsic pro-apoptotic signaling pathway is

one of two major signaling pathways which converge at

the level of the caspase network, see Fig. 1. The external

stimulus of the extrinsic signaling pathway is the activation

of pro-caspase 8 at the signal competent ligand-receptor

clusters on the cellular membrane. The ligand under con-

sideration is TNF and the receptor belongs to the TNF

receptor superfamily, e.g. TNF receptor of type 1 (TNFR1).

According to [2], a so-called TNFR1-Fas chimera which

consists of the extracellular domains of TNFR1 and the

cytoplasmic part of the Fas receptor [10] is considered.

The membrane distal cysteine rich domain of TNFR1-

Fas receptors enables the multimerization of TNFR1-Fas

receptors [11]. TNF exists as a homotrimer being able to

bind up to three TNF receptors. The majority of the TNFR1-

Fas receptors exist as pre-assembled homodimers and the

minimal signal competent unit is one dimeric TNFR1-Fas

receptor bound with two TNF ligands [2].

Figure 1: Extrinsic signaling pathway. Figure taken from [1].

The TNFR1-Fas receptors and the TNF ligands move

around randomly on the cellular membrane. In order to in-

vestigate the formation of ligand-receptor clusters consisting

of several signal competent units, a particle model describing

the translatory and rotational motion of the molecules and

appropriate binding conditions are required.

IV. MODELING OF RECEPTOR-CLUSTERING

In the following, a particle model of the receptor-

clustering with three different particle types is introduced.

The basic idea of the particle model regarding monomeric

TNFR1-Fas receptors and TNF ligands was established

in [1]. Due to the suggestion of the existence of pre-

formed dimeric TNFR1-Fas receptors [2], an extension of

the model introduced in [1] by a third particle type, the

dimeric TNFR1-Fas receptors, is desirable. Therefore, we

present a particle model with three particles types, see Fig. 2.

(a) (b) (c)

Figure 2: Different particle types - monomer (a), dimer (b)

and ligand (c) - involved in the particle model.

For simplicity, the molecules are shortly called

monomers, dimers and ligands. Starting point of the particle

model are Langevin equations for the particle translation and

the particle rotation

mv̇ = Fint − βv + σtransX̃t,

Iω̇ = g(ϕ,x)− γrotω + σrotD̃t,

where X̃t and D̃t are white noises, the terms −βv and

−γrotω are friction terms and Fint and g(ϕ,x) contain

the interaction between the particles, cf. [1]. Here, the

quantities x and ϕ with ẋ = v and ϕ̇ = ω describe the

motion of the particles. The dimensionless coordinates of the

center of mass of the three particle types are denoted with



x̄M/D/L and the dimensionless angles for the description of

the binding sites are ϕ̄M/D/L summarized in the matrix ξ̄

and the vector ϕ̄, respectively. According to [1], neglecting

the terms mv̇ and Iω̇, a system of stochastic differential

equations with 3(zM + zD + zL) equations can be derived

dx̄Mi/Dk/Lj
= 3µ̃2

F̄Mi/Dk/Lj
(ξ̄, ϕ̄)dt̄+ µ̃dW̃tr,t̄,i/k/j ,

dϕ̄Mi/Dk/Lj
=
κ

2
ζ̃2gMi/Dk/Lj

(ξ̄, ϕ̄)dt̄+ ζ̃dW̃r,t̄,i/k/j ,

1 ≤ i ≤ zM, 1 ≤ k ≤ zD, 1 ≤ j ≤ zL, and µ̃ =
√
2µ,

ζ̃ =
√
2µζ. Here, zM/D/L denotes the number of monomers,

dimers and ligands, respectively. The stochastic dynamical

behavior of the system is described by the Wiener processes

W̃tr,i/j/k and W̃r,i/j/k, cf. [12], and the parameters µ, ζ, κ
were derived in [1].

The interaction force F̄int in dimensionless form is

given by the Lennard-Jones-(2n, n) potential V̄LJ(r̄) =
22n (σ̄LJ/r̄)

2n − 21−n (σ̄LJ/r̄)
n

[13] for the repulsive and

attractive interaction between two monomers, a monomer

and a ligand, and between a dimer and a ligand.

For the interaction between two dimers, two ligands and

between a monomer and a dimer, there is only a repulsive

interaction described by W̄LJ(r̄) = 22n(σ̄LJ/r̄)
2n. Then, the

force acting on a monomer is given by

F̄Mi
(ξ̄, ϕ̄) = −

zD∑

k=1

W̄ ′
LJ(|x̄Dk

− x̄Mi
|)eDkMi

(1)

−
zM∑

k=1,k 6=i

(
V̄ ′
LJ(|x̄Mk

− x̄Mi
|) ·H(δ − |ψMk; Mi

|)

+ W̄ ′
LJ(|x̄Mk

− x̄Mi
|) ·H(|ψMk; Mi

| − δ)
)
eMkMi

−
zL∑

k=1

(
V̄ ′
LJ(|x̄Lk

− x̄Mi
|) ·H(δ − |ψLk; Mi

|)

+ W̄ ′
LJ(|x̄Lk

− x̄Mi
|) ·H(|ψLk; Mi

| − δ)
)
eLkMi

,

i = 1, . . . , zM, with ψMk; Mi
:= ϕ̄eMkMi

− ϕ̄Mk; Mi
and

ψLk; Mi
:= ϕ̄eLkMi

− ϕ̄Lk; Mi
. Here, ϕ̄eMkMi

denotes the

angle between the vector eMkMi
and the positive real line

and ϕ̄Mk; Mi
describes the angle between the compatible

binding site of Mk lying the closest to eMkMi
and the

positive real line. Furthermore, H(·) denotes the Heaviside-

function and δ is the size of the apex angle of the binding

sites. The force acting on a dimer and a ligand has a similar

structure as (1) according to the repulsive and attractive

interaction explained above.

Finally, the function g that ensures the correct relative

orientation of the particles has to be defined precisely for

the different particle types. Let RMi; Mk
= |eMiMk

| and

RMi; Lk
= |eMiLk

|. Then, the function g for monomers is

given by

gMi
(ξ̄, ϕ̄) =

1

zM

zM∑

k=1

k 6=i

ψMi; Mk
(ψMi; Mk

− π)(ψMi; Mk
+ π)·

H(rcut −RMi; Mk
)
rcut −RMi; Mk

rcut
· 3

√
3

π3

+
1

zL

zL∑

k=1

ψMi; Lk
(ψMi; Lk

− π)(ψMi; Lk
+ π)·

H(rcut −RMi; Lk
)
rcut −RMi; Lk

rcut
· 3

√
3

π3
,

where rcut > 0 is a suitably chosen constant which is

explained below (sect.VII). The functions gDk
(ξ̄, ϕ̄) and

gLj
(ξ̄, ϕ̄) for dimers and ligands have a similar structure.

With the functions F̄Mi/Dk/Lj
(ξ̄, ϕ̄) and gMi/Dk/Lj

(ξ̄, ϕ̄),
the interaction between the particles is completely described.

V. EULER-MARUYAMA APPROXIMATION OF SDE

In order to simulate the receptor-clustering, the system

of nonlinearly coupled systems of stochastic differential

equations is solved numerically. Here, an Euler-Maruyama

approximation of the stochastic differential equations, as

described in [14], is used

∆x̄Mi/Dk/Lj
= 3µ̃2

F̄Mi/Dk/Lj
(ξ̄, ϕ̄)∆t̄+ µ̃∆W̃tr,t̄,i/k/j ,

∆ϕ̄Mi/Dk/Lj
=
κ

2
ζ̃2gMi/Dk/Lj

(ξ̄, ϕ̄)∆t̄+ ζ̃∆W̃r,t̄,i/k/j ,

1 ≤ i ≤ zM , 1 ≤ k ≤ zD, 1 ≤ j ≤ zL. The terms

[∆W̃tr,t̄,i/j/k]l, l = 1, 2, and ∆W̃r,t̄,i/j/k are normally dis-

tributed random variables with mean zero and variance τ∆t,
i.e. N (0, τ∆t), and can be written as ∆W̃t̄ = Zt̄ ·

√
τ∆t,

where Zt̄ ∼ N (0, 1). Besides, the terms ∆x̄Mi/Dk/Lj
and

∆ϕ̄Mi/Dk/Lj
describe the discrete variation in the particle

coordinates and the variation in the orientation of the particle

binding site, respectively.

Thus, the simulation of the particle translation and particle

rotation requires the generation of N (0, 1) distributed ran-

dom variables and the evaluation of the interaction forces

F̄Mi/Dk/Lj
and the functions gMi/Dk/Lj

. An appropriate

binding condition finalizes the simulation of the receptor-

clustering.

VI. GPGPU BACKGROUND

GPGPU architectures gain their impressive computa-

tional performance through massive on-chip parallelism and

throughput-optimization. Large numbers of rather simple

arithmetic processing cores are tightly coupled to form

multiprocessor units. These multiprocessors provide small

shared memories and L1-caches that enable fast commu-

nication and data re-use among the cores. They are able

to communicate via L2-caches and the global memory of

the GPGPU device. Modern GPGPU architectures com-

bine coarse-grained scalable data and task parallelism at

multiprocessor-level with fine-grained data and thread par-

allelism at core-level.

GPGPU programs are partitioned into host code that runs

on the host’s CPU and one or more parallel kernels, which

run on the GPGPU. Fig. 3 shows the basic thread execution

and memory organization by the example of Nvidia’s CUDA

(Compute Unified Device Architecture).
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Figure 3: GPGPU thread and memory organization.

Kernels execute sequential programs with a set of very

lightweight threads. Hence, the problem is mapped to a

grid of thread blocks, which themselves consist of a grid

of threads (see Fig. 3 (a)). A thread block is processed by a

multiprocessor. Fig. 3 (b) shows the accompanying memory

organization. Each thread has a private set of registers and

a very fast local memory. All threads within a thread block

have low latency access to the shared memory and the L1-

cache of the multiprocessor. Besides the local memories,

GPGPUs typically offer a global memory, as well as cached

constant and texture memories, which can be accessed by

all threads of the GPGPU.

VII. ALGORITHMIC MAPPING TO GPGPU

The extended mathematical model has been mapped to a

grid-based, stochastic particle simulation, which can consist

of up to three different kinds of particles (monomers, dimers,

ligands) in different numbers. The forces and torsional

moments are computed in parallel for all particles. Thereby,

each particle is processed by a single thread. The algorithmic

mapping extends the scope of parallelism from pure thread-

level to multiple parallel simulation instances on a single

GPGPU and the utilization of multiple GPGPUs.

The simulation domain is subdivided into equally sized

cells and all particles of the simulation reside within these

cells. According to the model, the interactions between

particles decrease with increasing distance. This allows the

introduction of a circular interaction region, defined by a

distance threshold value rcut > 0. Particles with a distance

d < rcut interact with each other, while particles with

a distance d > rcut do not interact. This reduces the

computational overhead since only interacting particles have

to be processed.

Memory bandwidth is a scarce resource on GPGPUs and

high data locality is required for efficient memory accesses.

Therefore, the grid-based mapping stores all particles in

sorted lists according to the grid cells they reside in. The

sorting is performed in parallel on the GPGPU using radix-

sort. Although the data locality is improved by the grid-

based organization of the particles, the number of required

memory accesses is still very high and associated with

notable costs. The developed mapping introduces two main

optimizations, which help to improve performance at this

point.

Following a Brownian motion, the particles do not tend

to leave the boundaries of a grid cell within each simulation

time step, if the grid cell size is reasonably large. Therefore,

the system checks each particle’s position during the motion

computation. If the particle leaves its current grid cell, a

sorting flag is set. After the motion computation, only the

marked particles have to be sorted. This position-dependent

sorting reduces the overall number of sorting steps in each

simulation time step.

Particles within a grid cell can interact not only with

particles inside this cell, but with particles of up to nine

neighboring cells. Without further optimization, the mapping

would have to access the particle data from these nine grid

cells, with one read direction at a time. This means that at

first all neighboring cells in the upper left direction are read,

followed by all cells in top direction, followed by the upper

right direction, etc. In total, each grid cell is read nine times,

which induces a very high memory bandwidth overhead.

Therefore, the mapping re-schedules the memory accesses

in a way that the particles of each grid cell are read only

once. Fig. 4 shows the optimized scheduling for an example

with 3 × 3 grid cells. At first, the upper left grid cell is

Grid cell which is read

Grid cell which is not read

Order of memory
accesses

Figure 4: Optimized scheduling of read accesses to particle

data.

read by all its direct neighbors, then the upper middle grid

cell and so on. This scheduling utilizes the GPGPU’s shared

memories for data re-use, since the considered particle data

can be accessed by all the neighboring grid cells after being

loaded once.

A third optimization subdivides the grid cells into four

quadrants to simplify the treatment of particles in neigh-

boring grid cells. Fig. 5 shows that there exist exactly four

possibilities for the position of a particle’s interaction region

within a grid cell, as long as 2 · rcut ≤ grid cell size. In

Figure 5: Subdivision of grid cells into four quadrants.

this case, the particles within the quadrants interact with

a maximum of three neighboring grid cells’ particles and



the particles of their own grid cell. This reduces the overall

number of memory accesses from nine to four (see Fig. 6).

The size of the grid cells has a direct influence on the

achievable simulation performance. Essentially, two aspects

dominate the costs of each simulation step: the sorting algo-

rithm and the computation of the interactions. Thus, the costs

Grid cell which is read Grid cell which is not read

Order of memory
accesses

Figure 6: Reduced number of grid cell read accesses.

are describes by the formula O(3N) · O(NM) +O(4 N
M2 ),

where N is the total number of particles and M denotes the

number of grid cells. The first term in the formula indicates

the costs for the sorting algorithm (radixsort) multiplied by

the likeliness for one particle leaving a grid cell. Here, we

assume that a duplication of M or N leads to a duplication

of the likeliness under the assumption of a uniform particle

distribution. The second summand in the formula describes

the costs for the computation of the interactions which is

performed in parallel. Each particle interacts with particles

in four grid cells and we assume that each grid cell contains

N/M2 particles, hence, the term 4N/M2. It is easy to

check that the function fN (M) = 3N · αNM + 4 ·N/M2

possesses a minimum which is reached for M = 30 with

α = 0.05/(N ·Mmax) and 1/Mmax ≥ 2 · rcut. Actually,

the optimal number of grid cells fits very well to the

observations of the computer experiments.

Fig. 7 gives an overview of the sequence of algorithmic

steps, which is performed during a simulation. At first, the
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Figure 7: Structure of the parallel simulation system.

available GPGPUs are allocated and the required particle

data is transferred. This step is performed only once at

the beginning of the simulation. In the second step, the

main simulation loop is entered with the generation of a

set of normally distributed random numbers. These pseudo-

random numbers are computed in parallel on the GPGPU.

The random numbers are required for the later computation

of the new particle positions. In the third algorithmic step,

the forces and torsional moments are computed for all

the particles in the system. Arithmetically, the formulas

introduced in sections IV and V are evaluated. The fourth

step comprises the computation of the new particle positions,

using the generated random numbers and the computed

forces. In the fifth and last step of the main simulation loop,

the grid is updated and the lists are sorted to keep the data

locality. The main simulation loop is repeated until the total

number of demanded simulation runs has been computed.

The dotted boxes sampling and cluster detection in Fig. 7

indicate that the simulation time steps are sampled at user-

defined intervals. During such a sampling step, the particle

bindings are evaluated to detect potential cluster structures.

VIII. EXPERIMENTAL RESULTS

The developed mapping has been evaluated with respect

to the achievable computational performance and the bio-

logical indications of the pro-apoptotic receptor-clustering.

The used hardware platform consists of an Intel Xeon

X5680 CPU (3.33GHz) and four Nvidia C2070 GPGPUs

(1.15GHz), running Linux and CUDA 4.1. The receptor-

clustering results and the particle-related figures in this paper

have been visualized with CellVis [1].

A. Evaluation of Computational Performance

The overall achievable performance of the simulation

model has been evaluated through multiple simulation runs

over different numbers of particles. Each run consisted of

105 simulation time steps. Table I shows the speedups for a

setup with the same number of monomer, dimer and ligand

particles. The results show that the overall speedup increases

Total particles 9216 18432 36864 64512

CPU time (s) 8546 31412 103412 348904

GPGPU time (s) 182 325 685 1363

Speedup 46.96x 96.65x 150.97x 255.98x

Table I: Speedup over different numbers of particles.

significantly with larger numbers of particles. This result was

expected and is mainly due to the fact, that each particle is

processed by a single thread. As described in section VII,

the computational potential of the GPGPU device is not only

exploited through parallel calculations of forces, torsional

moments and random numbers, but also by execution of

multiple parallel simulation instances on a single GPGPU

and the utilization of multiple GPGPU devices in a system.

For this evaluation, a typical simulation setup with 2496

monomers, 2496 dimers and 1344 ligands has been chosen.

Table II shows the achieved speedups for configurations

with up to 8 parallel simulations per device and 4 GPGPU

devices.

The results show a slightly lower speedup compared to

the single instance, single GPGPU setup, which is mainly

due to the increased administrative overhead for the manage-

ment of multiple simulation instances on multiple devices.



Par. Instances 4 8 16 24 32

CPU (s) 20920 41840 83680 125520 167360

GPGPU (s) 208 305 520 760 977

Speedup 101.1x 131.98x 163.44x 163.65x 170.43x

Table II: Speedup with different numbers of parallel in-

stances on multiple GPGPUs.

B. Evaluation of Biological Indication

To analyze the formation of ligand-receptor clusters, a

simulation with 192 monomers, 2688 dimers and 2880 lig-

ands has been performed. The assumption that the majority

of the receptors are pre-assembled as homodimers is taken

into account and the number of particles under consideration

is of a realistic biological order. rcut is set to 10−3 and

the apex angle of the sector modeling the binding site is

chosen to be δ = π/3. The exponent in the Lennard-

Jones potential is n = 6 and the other parameter values are

µ = 0.094, ζ = 2887 and κ = 104. For a simulation time of

0.1 s with a time step ∆t̄ = 10−9, the computation time on

a single GPGPU took only 1.95 days. On this time scale of

simulation time, the formation of ligand-receptor clusters is

observed and signal competent cluster units consisting of one

dimer bound with two ligands are formed. The cluster after

62.30 ms of size 6 consists of two signal competent cluster

units, the cluster of size 4 contains one signal competent

unit, see Figure 8. Besides the clusters of size 4 and size 6

Figure 8: Ligand-receptor clusters of size 4 and size 6.

illustrated in Figure 8, a non-negligible number of ligand-

receptor clusters of size 3 occurs. However, not all of these

ligand-receptor clusters of size 3 are signal competent. Since

the formation of ligand-receptor clusters highly depends on

the number of particles, a detailed analysis of the receptor

clustering in dependence of the particle configuration is

desirable and will be possible due to the mapping of the

algorithms to the GPGPU architecture.

IX. CONCLUSION

In this paper, the joint effort of an interdisciplinary

collaboration for the precise, parallel simulation of pro-

apoptotic receptor-clustering has been presented. A previ-

ously introduced mathematical model has been extended and

improved by a third particle type, the receptor homodimers.

The high computational requirements of the model motivated

the development of an algorithmic mapping to a modern

GPGPU accelerator architecture. Besides a peak speedup of

more than 256x, the parallelization leads to a significant

reduction of computing times for most simulation setups of

interest. Generally speaking, such configurations are now

simulated in hours or days instead of months.
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[11] M. Branschädel et al., “Dual function of cysteine rich domain
(crd) 1 of tnf receptor type 1: Conformational stabilization
of crd2 and control of receptor responsiveness”, Cellular
signalling, vol. 22, no. 3, pp. 404–414, 2010.

[12] C. Gardiner, Handbook of stochastic methods: for physics,
chemistry & the natural sciences,, ser. Springer Series in
Synergetics. Springer, 2004, vol. 13.

[13] J. E. Jones, “On the Determination of Molecular Fields. I.
From the Variation of the Viscosity of a Gas with Temper-
ature”, Proc. of the Royal Society of London. Series A, vol.
106, no. 738, pp. 441–462, 1924.

[14] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic
Differential Equations (Stochastic Modelling and Applied
Probability), corrected ed. Springer, August 1992.


	BIBM2012_Paper_B339

