
Scan Test Power Simulation on GPGPUs

Holst, Stefan; Schneider, Eric; Wunderlich, Hans-Joachim

Proceedings of the 21st IEEE Asian Test Symposium (ATS’12) Niigata, Japan, 19-22

November 2012

doi: http://dx.doi.org/10.1109/ATS.2012.23

Abstract: The precise estimation of dynamic power consumption, power droop and temperature development

during scan test require a very large number of time–aware gate–level logic simulations. Until now, such

characterizations have been feasible only for rather small designs or with reduced precision due to the high

computational demands. We propose a new, throughput–optimized timing simulator on running on GPGPUs

to accelerate these tasks by more than two orders of magnitude and thus providing for the first time precise

and comprehensive toggle data for industrial–sized designs and over long scan test operations. Hazards and

pulse–filtering are supported for the first time in a GPGPU accelerated simulator, and the system can easily

be extended to even more sophisticated delay and power models.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic

reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form

to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

http://dx.doi.org/10.1109/ATS.2012.23

1

Scan Test Power Simulation on GPGPUs
Stefan Holst, Eric Schneider and Hans-Joachim Wunderlich

University of Stuttgart

Pfaffenwaldring 47

70569 Stuttgart, Germany

Email: {holst,schneiec,wu}@iti.uni-stuttgart.de

Abstract—The precise estimation of dynamic power consumption,
power droop and temperature development during scan test
require a very large number of time–aware gate–level logic
simulations. Until now, such characterizations have been feasible
only for rather small designs or with reduced precision due to
the high computational demands.

We propose a new, throughput–optimized timing simulator on
running on GPGPUs to accelerate these tasks by more than two
orders of magnitude and thus providing for the first time precise
and comprehensive toggle data for industrial–sized designs and
over long scan test operations. Hazards and pulse–filtering are
supported for the first time in a GPGPU accelerated simulator,
and the system can easily be extended to even more sophisticated
delay and power models.

Index Terms—GPGPU, Data–Parallelism, Scan–Test, Power,
Time–Simulation, Hazards, Pulse–Filtering

I. INTRODUCTION

Power estimation is one of the most crucial steps in physi-

cal design [1–3]. Compared to the functional operation of a

design, scan testing generates much higher switching activity

in a module [4] and great effort is put into optimizing test

patterns [5], scan clock schemes [6], and test schedules [7–

10] to keep test power within affordable limits [11–13].

Tremendous speedups are gained by using data–parallel

architectures like general purpose graphics processing

units (GPGPU) [14, 15] for problems in electronic design

automation [16] such as electrical simulation [17], circuit

optimization [18] or power grid analysis [19]. Gate level

simulations have been accelerated using GPGPUs by parallel

computation of independent gates [20], faults [21–24], or

Monte–Carlo samples for statistical static timing analysis [25].

The most precise way to determine the data dependent power

of synchronous sequential circuits is to perform a complete

time simulation and compute the weighted switching activ-

ity (WSA) [1] based on all the events observed on internal

signals. However, all proposed GPGPU gate level simulators

either do not consider timing at all (zero delay model) or only

calculate the latest transition at each gate [25]. This is not

sufficient for power estimation as hazards may account for up

to 70% of dynamic power [26].

We propose a novel time simulator for GPGPUs, which takes a

combinational time–annotated gate–level circuit and calculates

for each set of input transitions all events on the internal

signals and outputs. In scan test, all input assignments to

the circuit are known in advance and can be evaluated in

parallel by the time simulator. Consequently, the simulator

is designed for high throughput of many independent sim-

ulation runs and taps into the full potential of throughput–

optimized data–parallel architectures. An efficient linear–time

pre–processing and low memory requirements let the simulator

handle even industrial–sized designs. The support for arbitrary

cells, individual timing per cell instance and a large class

of timing models makes this simulation system an ideal tool

for generating high–quality switching activity data for further

analysis.

The next section briefly describes the execution model of

typical GPGPU architectures in order to provide the necessary

background for understanding the design decisions made for

the presented algorithm. Section III presents the overall time

simulation system, and section IV describes the data–parallel

simulation core in detail. The series of experiments reported in

section V shows the performance benefit of the new simulator.

II. GPGPU EXECUTION MODEL

GPGPUs are throughput oriented architectures. Instead of

reducing latencies with techniques like out–of–order execu-

tion, speculative computing and complex control hardware,

GPGPU architectures use a massive amount of lightweight

threads to hide latencies caused by data dependencies and

memory accesses. Thousands of these threads are necessary to

fully occupy a data–parallel architecture. Each thread executes

the same code, but operates on different data. Threads are

scheduled in batches causing multiple units to execute the

same code in a lock–step fashion. This is most efficient, if

many threads follow exactly the same execution paths. If

the control flow of two threads diverges as a result of a

data dependent conditional branch, however, some execution

units may become idle and the performance degrades until

the control flow of the threads merge again. Only threads of

the same batch can share data during execution over fast but

small local memories. Information exchange between threads

from different batches is only possible with very expensive

global synchronizations, which should be avoided as much as

possible.

The memory hierarchy of data–parallel architectures is kept

very flat and the amount of cache available per thread is very

limited. Besides the high latencies for memory reads partly

hidden by the thread scheduler, this also exposes physical

properties of the connection between the GPGPU and the on–

board memory. Every memory access results in a transaction

on a w bytes wide bus between the on–board memory and the

GPGPU. To use all w bytes in a transaction, threads of the

same batch must access data in the same region at the same

time.

2

III. TIME SIMULATION SYSTEM

Figure 1 shows the overall time simulation system with

control flow in the vertical direction and data flowing from

left to right. The complete time simulation system consists

of both sequential and data–parallel tasks. The sequential

tasks (white boxes in fig. 1), which involve scheduling and

allocations during initialization and calibration, are performed

on a latency–optimized CPU. The data–parallel tasks (shaded

boxes in fig. 1), which form the inner simulation loop, are

performed on the throughput–optimized GPGPU.

combinatorial network
extraction

topological ordering

load init. waveform capacities

waveform memory allocation

full-speed simulation

monitored simulation

increase waveform capacities

waveform memory allocation

overflows?

yes

no

netlist

waveform
capacities

input
waveforms

output
waveforms

waveform
capacities

Fig. 1. Overall simulation flow.

The sequential tasks are concerned with maximizing the

amount of parallelism for a given circuit to reach maximum

performance in the inner simulation loop. In the inner loop,

data and control dependencies are reduced to a minimum and

maximum simulation throughput is obtained by spawning the

maximum number of parallel threads for the simulation task.

A. Design Preprocessing and Topological Ordering

Event–based time simulation approaches are not the optimal

choice for data–parallel architectures because of the high

number of necessary synchronizations and irregular memory

access patterns. Instead, the proposed time simulator follows

an oblivious simulation approach that propagates the input

data towards the outputs in a single pass. In a given gate–

level design, first, all the state elements like flip–flops and

latches are replaced by pairs of pseudo–primary inputs and

outputs. To reduce the number of synchronizations to the

minimum, the resulting cycle–free, purely combinational net-

work is ordered topologically using an as–soon–as–possible

(ASAP) scheduling. The first level contains all primary and

pseudo–primary inputs, and the gates on the following levels

only depend on gates and inputs from previous levels. All

gates in a single level are pairwise independent and will be

evaluated in parallel during simulation. As the number of

necessary synchronizations equals the length of the longest

structural path in the circuit, the ASAP-schedule guarantees

the maximum amount of gate–parallelism for the given design.

B. Waveset Capacities and Calibration

The input data will be processed within a single pass over

the circuit propagating intermediate results over each level

of gates until the outputs are reached. For each signal and

input assignment, the complete history of transitions is stored

in a data structure called waveform [27–29]. Details on the

encoding of a waveform will be given in section IV. Multiple

independent input assignments are simulated at the same time

(pattern–parallelism). Therefore, each internal signal needs

storage for a set of waveforms, called a waveset. The storage

requirement per waveset depends on the number of input as-

signments s processed in parallel and the number of transitions

c to be stored per signal. The number of transitions for a

signal is not known in advance and may be different for

each signal and input assignment. However, using variable–

sized or dynamically growing data structures for waveforms

would again lead to irregular memory access patterns and a

severe performance impact on the data–parallel code. Instead,

all waveforms in a waveset have the same capacity c.

The number of possible hazards on a signal is bound by

the amount of logic between this signal and the driving

sequential elements. Signals near the pseudo–primary inputs

usually show less hazards within a single clock cycle than

signals near the outputs. It is therefore reasonable to associate

each internal signal with an expected number of transitions.

If this information is available from previous simulation runs,

it is loaded in step three (fig. 1) to initialize the capacities

accordingly. Otherwise, all capacities are initialized to some

initial value c′.

During simulation, the number of transitions on a signal

may exceed the capacity of its associated waveset causing

an overflow. If this situation is detected after processing a

set of inputs, the simulator will enter a calibration loop (the

outer loop in fig. 1). This calibration loop processes the same

set of inputs again level by level in a monitored simulation,

which checks each generated waveset for overflows. If an

overflow is detected in a waveset, its capacity is doubled

and the same level is simulated again until all overflows are

avoided. After a calibration loop, some waveset capacities have

been adjusted to guarantee correct and complete results at all

internal signals and outputs. The next set of inputs is again

simulated with the full–speed simulation loop (the inner loop

in fig. 1), which provides an efficient, global overflow check

and avoids all memory re–organizations to reach maximum

simulation performance.

C. Waveset Memory Allocation

The amount of data–parallelism is bound by the size of the on–

board memory M . Let us consider for now, that all wavesets

have the same capacity c, and let r be the number of storage

spaces for intermediate signal wavesets necessary to complete

3

one simulation pass over the circuit. The number of input

assignments s that can be time simulated in parallel is

s =
M

c · r
.

The waveset capacities are already determined by the number

of transitions on the signals. To maximize pattern–parallelism,

r has to be reduced to a minimum. Figure 2 shows an example

of an allocation with r = 7. Wavesets that pass a barrier

indicated by a dashed line need to be stored in the on–

board memory, and the numbers denote their storage locations.

Simple reference counting can be used to find an allocation

with minimum r with a single pass over the circuit, re–using

each location as soon as its intermediate result is not anymore

required.

1

2

3

4

5

6

2

7

5

6

1

3

2

4

Fig. 2. A possible waveset allocation for the c17 with ASAP–scheduling.
Locations 1 and 3 are re–used in the third barrier and locations 2 and 4 are
re–used in the last one.

However, wavesets may have different capacities and using

just storage locations of one common chunk size would be

very inefficient. Moreover, capacities may change during cali-

bration and efficient efficient re–allocation should be possible,

too. The sizes of memory chunks to are proportional to 2i · c′

with i ≥ 0 and c′ the base capacity before any calibration. One

very efficient way to manage memory chunks of these sizes

is a buddy system [30, 31]. The allocated memory chunks

are organized in a binary tree, and each node in the binary

tree corresponds to a specific location in the memory. The

lowest child nodes represent memory chunks of size c′, their

parent nodes represent chunks of size 2c′ and so on up to the

root node, which represents all available memory. Figure 3

shows an example of such a tree. A new memory chunk is

allocated by looking up the next free leaf node on the level

corresponding to the desired chunk size. If no such node exist,

new child nodes are generated for a free leaf node of a bigger

chunk size. For instance, a new waveset w4 of size c′ would

be associated with node a in figure 3. For the next waveset

w5 of the same size, two children would be generated for

leaf node b and the waveset would be associated with the first

child. Deallocation is just the reverse operation. If w1 is not

needed anymore, for instance, its storage space is merged with

its buddy (sibling node a) by just removing these two nodes

from the tree. With the proper management of available leaf

nodes in free–lists [30], these operations can be implemented

in near–constant time (logarithmic time in the worst–case for

the split and merge operations) to allocate all wavesets for the

circuit in near–linear time.

w3

ch
un

k
si

ze

8c'

4c'

2c'

c' w1

w2 w3

w1

memory

a

b

w2

Fig. 3. Example of a binary tree for waveset memory management. The
waveset w1 was allocated with size c′, w2 and w3 are both of size 2c′.

All wavesets are allocated level–by–level in a single pass over

the circuit. For each level, the binary tree is stored in order to

serve as a basis for re–allocating wavesets during calibration.

If the monitored simulation discovers the first overflows on

level l, the appropriate waveset capacities are doubled and all

wavesets for this level are newly allocated using the binary

tree of level l−1. All remaining levels > l are re–allocated as

well during the current calibration run updating the trees for

each level accordingly. The re–allocation of later levels could

be avoided by using more sophisticated methods, but many

wavesets on these levels are likely to be increased as well due

to the propagation of hazards, which will lead to re–allocations

anyway. More intelligent allocation methods would provide no

benefit.

D. Parallelism

Figure 4 shows the two dimensions of parallelism exploited by

the simulator. Pattern–parallelism is exploited by processing s

independent input assignments at the same time, and gate–

parallelism is exploited by evaluating all g gates within a

level in parallel. Only the combination of these two dimen-

sions generates enough (s · g) threads to fully occupy typical

GPGPUs. Small circuits with low memory requirement r allow

for more input assignments s to be processed in parallel. For

larger circuits with higher memory requirement r, the number

of samples s is reduced, but each level contains more gates

and gate–parallelism dominates. Overall, a large number of

threads can be created over a wide range of circuit sizes, and

the number of threads is only bound by the memory size M .

... ...

...

......

...

...

...
...

...ga
te
-p
ar
al
le
lis
m

pa
tte
rn-

pa
ral
lel
ism

Fig. 4. The two dimensions of parallelism.

4

IV. GPGPU TIME SIMULATION CORE

The principle operation of a single thread on the GPGPU is to

compute the output waveform at a single gate with given input

waveforms. Each thread is spawned with different parameters

for the gate and locations of its input and output waveforms

in memory for fully data–parallel operation.

As parallelism is bound by the on–board memory size M ,

the waveform encoding must be very memory efficient. At the

same time, the encoding should allow for fast gate evaluations

with a simple control flow for efficient data–parallel execution

and the best possible use of memory transactions for optimal

on–board memory throughput. The waveform representation

and evaluation algorithm presented here is tuned towards

2–valued simulations for maximum efficiency. However, the

principle evaluation approach is also applicable to multi–

valued simulations and waveform representations like in [29].

A. Waveform Representation

Let vt be the signal value at time t. A waveform is a

description of signal values vt for all t > 0. In 2–valued

simulation, transitions are always alternating between rising

and falling on a single signal. Therefore, any signal value vt′ is

determined by a known value vt and the number of transitions

between t and t′. In the representation used here, the initial

signal value is always zero (v−∞ = 0) by default. With this

signal value given, only the time points ti need to be stored:

w = (t0, t1, t2, ..., tc−1) with t0 ≤ t1 ≤ · · · ≤ tc−1

The time of the first transition (which is always rising) is t0,

the time of the second transition is t1, and so on. To encode an

initial value of 1 on a signal, t0 is set to a large negative value,

denoted by the symbol −∞. A waveform is terminated by a

large value (symbol ∞) after the last valid transition time.

Figure 5 shows some waveforms and their representations. If

the initial value of a signal is 0, at most c− 1 transitions can

be stored, if the initial value of a signal is 1, at most c − 2
transitions can be stored.

B. Waveform Evaluation

The algorithm described below computes the output waveform

z for a gate with n ≥ 1 inputs. Cells with more than one

output are supported by performing the evaluation for each

output individually. Given are the logic function of the gate

f(v1, . . . , vn), the delay for a rising transition at the output

a

b

a·b

a⊕b

1 2 3 4 5 60 t

(2,∞,∞,∞)

(1,4,∞,∞)

(-∞,3,5,∞)

(5,∞,∞,∞)
c=4

Fig. 5. Waveforms and their representations. Rising, falling and inertial
delays are 1t.

δr, the delay for a falling transition δf , the positive and

negative inertial delays δip, δin, and the waveform at each

input w1, . . . , wn.

The input waveforms are processed in the order of their

representation with a merge–sort approach. A transition is

added to the output waveform, if (1) the logic value of f

changes with the currently processed input transition, and (2)

the transition does not generate positive pulses smaller than δip
or negative pulses smaller than δin. The logic values for the

evaluation of f are given by the current positions in the input

waveforms. As in a waveform w = (t0, t1, . . .), t0 is always

the time of a rising transition towards 1 and t1 is always the

time of a falling transition towards 0, the index i of a ti can

be used to determine the signal values at the transition. The

signal value before a transition at ti is just vti−ε = imod2
(for a sufficiently small ε > 0). If f changes its value indeed,

two cases are possible. In the case, that the new transition does

not generate a short pulse or a collision, it is saved in z and

the index for the output waveform is advanced. In the case,

that the new transition is too close to—or even earlier than—a

transition t′ saved previously, it is discarded and t′ is removed

from z by decreasing the output waveform index by one.

Figure 6 shows the computation of a waveform in pseudo–

code. In addition to the parameters already introduced, each

waveform w contains a special integer field recording over-

flows wov . A positive value in such an overflow field indicates,

that transitions may be missing in the waveform due to an

overflow in the current or previous gate evaluations. Lines 1–7

initialize the input waveform indices i1, . . . , in and the output

waveform index j. The overflow indicator zov is initialized to

the sum of the overflow field values of all inputs. The running

sum over the overflow fields allows a very efficient overflow

check at the very end of the simulation. If the function f

evaluates to one for all zero inputs, the output waveform is

initialized with an initial value of one. The following while–

loop processes transitions until the terminal symbol ∞ is

reached for all the input waveforms. Lines 9–11 select an

earliest, unprocessed transition (there may be more than one)

and consumes it by advancing the appropriate index ik. If

the logic function of the cell produces a value different from

the current one (jmod2), a transition may be generated

in z at time t + δ[jmod2]. The if–statement at line 14

implements three important tasks. It checks for collisions (with

δr 6= δf , output transitions may overtake each other and

have to be discarded), it handles the pulse–filtering condition

(inertial delays), and it prevents the storage of redundant −∞
symbols in the output waveform. If the output waveform is

empty (j = 0), the transition is always stored. Otherwise,

the difference between the current transition t and the last

one in z (zj−1) must be larger than the appropriate value

in δi for the current transition to be valid. New transitions

are stored by updating z and increasing j. If a transition is

discarded, the previously stored transition is also removed

from z by decreasing j. The if–statement at line 15 checks

for the overflow condition. If an overflow occurs, the overflow

indicator zov is increased and the while–loop is terminated at

this point. After the loop, the symbol ∞ is added to z.

5

parameters:
function of the cell: f(v1, . . . , vn)
array containing rising and falling delays: δ = [δr, δf]
array containing inertial delays: δi = [δin, δip]
waveforms at the cell’s inputs: w1, . . . , wn

overflow indicators: w1
ov , . . . , w

n
ov

results:
waveform at the cell’s output: z
overflow indicator: zov

1: i1, . . . , in ← 0
2: j ← 0
3: zov ←

∑n

x=1
wx

ov

4: if f(0, . . . , 0) = 1 then

5: z0 ← −∞
6: j ← 1
7: end if

8: while min{w1
i1
, . . . , wn

in
} <∞ do

9: t← min{w1
i1
, . . . , wn

in
}

10: choose k with wk
ik

= t

11: ik ← ik + 1
12: if (jmod2) 6= f(i1 mod2, . . . , in mod2) then

13: t← t+ δ[jmod2]
14: if j = 0 or t− zj−1 > δi[jmod2] then

15: if j = |z| − 1 then

16: zov ← zov + 1
17: break

18: end if

19: zj ← t

20: j ← j + 1
21: else

22: j ← j − 1
23: end if

24: end if

25: end while

26: zj ←∞

Fig. 6. Waveform evaluation in pseudo–code.

The overflow fields for all waveforms at the inputs of the

circuit are initialized to 0. If at the end of a simulation run any

output waveform shows a positive overflow field, a calibration

loop is performed on the input data. This overflow check is

very efficient and does not add any additional data depen-

dencies. During monitored simulation, the overflow fields are

checked after gate evaluation of each level.

The weighted switching activity for each input assignment is

accumulated in much the same way as overflows are recorded

and propagated. The only difference is, that a field is increased

by the weighted number of transitions in each waveform

evaluation and special care is taken not to add activities twice

at re–convergences. After simulation, a simple sum over all

circuit outputs gives the total weighted switching activity for

each assignment.

This algorithm is well suited for data–parallel execution in

a lock–step fashion. Control flow divergences (if–statements)

are reduced to the absolutely necessary and the most expensive

operations (summing, min–operator and gate function evalu-

ation) are unconditioned. The conditioned operations include

only quite inexpensive floating–point additions, comparisons

and index manipulations. In a batch of m threads, m loops are

executed in parallel and the batch is active until the while–loop

in every thread is finished. During this operation, each thread

will access their input waveforms only once and in the order of

increasing transition times. I.e. in the first iteration, all threads

access t0 in their input waveforms. The memory layout of a

waveset is organized in a way, such that the t0 fields of all

the waveforms are stored in the beginning, followed by all

t1 fields, and so on. This allows a batch to fill the memory

transactions as much as possible during the loop iterations.

V. EXPERIMENTAL RESULTS

The simulation algorithm has been implemented on CUDATM–

enabled hardware from NVIDIA R© [15]. This hardware pro-

vides high performance for single precision floating point

operations, therefore 32–bit floating point numbers are chosen

for the transition times in the waveforms. The host system for

the simulation experiments contains Intel R© Xeon R© processors

with 3.33GHz and 48GB RAM. The CUDATM–device is a

Fermi GPU clocked with 1.1GHz and is attached to 6GB of

on–board memory.

The experiments were performed on the largest ITC’99 circuits

and industrial designs provided by NXP. All benchmarks were

mapped to primitive gates with at most two inputs and the

delay of all gates is set to the same constant value. The scan–

chain configuration for the NXP benchmarks were known,

for the ITC’99 circuits, configurations with a maximum chain

length of 100 were generated.

A stuck–at test set was generated for each circuit and expanded

beforehand according to the scan–chain configuration into

the set of s input stimuli for the combinational circuit. This

data was given to a state–of–the–art commercial event–based

simulator running on a single CPU of the host system and to

our GPGPU–based simulation system to measure the runtimes.

In the commercial simulator, actual transition counting was not

performed as this would have led to costly file operations and

a biased comparison.

Table I compares the simulation performance of the com-

mercial event–based simulator to our approach. The first

two columns show design names and their size g in gates.

The next columns show the number of stuck–at fault test

patterns p and the number s of input stimuli after expansion.

The column e shows the simulation result, the number of

transitions caused on all internal signals by shifting all p

test patterns through the scan–chains. The transition counts

range from 568 Million for p78k up to many Billion for the

larger circuits. Column TCS shows, that the commercial event–

based simulator takes hours for the smaller circuits and even

days for the larger designs to complete. In the first run on

the GPGPU based simulator, no waveform capacity data is

available and all capacities are initialized to c′ = 16. The

column Tcold already shows a significant runtime improvement

over the commercial simulator despite the fact, that some

calibration loops are needed to adjust the waveform capacities.

Calibrations take time as they involve overflow checking for

each level and additional communication between CPU and

GPGPU. However, only very few calibration loops are needed

and the performance is still faster by factors of 24X–188X

6

compared to the commercial simulator. The GPGPU based

simulator was run again with the waveform capacities obtained

from the first run and the time is reported in column Tfs. This

represents the best case, as only full–speed simulations are

performed without any calibrations. Now, speedups of at least

two orders of magnitude are obtained in every case, reaching

up to 731X for p78k. Simulation effort is reduced from days

to a few minutes for larger designs.

TABLE I
PERFORMANCE COMPARISON

circuit g p s e TCS Tcold Tfs

b22 32k 964 97k 2.5G 0:56h 24s (142X) 7.3s (463X)
b17 36k 1.3k 129k 2.0G 0:33h 32s (62X) 10s (197X)
p77k 72k 588 180k 18G 3:56h 4.9m (49X) 1.0m (234X)
p78k 74k 81 5.3k 568M 0:15h 4.9s (188X) 1.3s (731X)
p100k 97k 2.1k 1.6M 57G 13:25h 0:20h (39X) 4.5m (181X)
p81k 109k 1.3k 687k 35G 9:43h 9.7m (60X) 2.2m (266X)
b18 125k 1.5k 148k 15G 4:37h 4.6m (60X) 46s (363X)
p141k 173k 1.6k 784k 79G 1d 8h 0:33h (58X) 4.5m (430X)
b19 252k 1.7k 170k 35G 12:26h 0:15h (47X) 1.7m (438X)
p239k 259k 1.1k 586k 106G 1d 6h 1:13h (25X) 5.4m (344X)
p267k 272k 1.1k 562k 61G 19:50h 8.1m (148X) 4.3m (279X)
p279k 288k 1.3k 528k 54G 19:32h 0:51h (23X) 4.3m (270X)
p259k 335k 1.2k 677k 135G 2d 9h 1:36h (36X) 7.5m (462X)
p500k 496k 2.4k 1.1M 370G 7d 1h 5:28h (31X) 0:25h (394X)
p874k 717k 1.8k 1.4M 527G 8d 7h 8:23h (24X) 0:31h (381X)
p951k 1.0M 2.3k 3.1M 2.0T 37d10h 1d 9h (27X) 1:43h (519X)

VI. CONCLUSIONS

The presented throughput–optimized timing simulator com-

putes all signal transitions and supports for the first time

hazards and pulse–filtering in a GPGPU implementation. It

generates high–quality switching activity data more than two

orders of magnitude faster than commercial event–based sim-

ulators and thus enables exact scan test power estimation for

industrial–sized designs and large test sets.

The partitioning of the simulation system in sequential and

data–parallel tasks, the consequent reduction of data depen-

dencies and synchronizations in the data–parallel part and the

exploitation of the two dimensions of parallelism tap into the

full potential of GPGPUs. The memory efficient encoding and

fast evaluation of waveforms with careful consideration of

control flow and memory access patterns allows to exploit this

potential.

VII. ACKNOWLEDGEMENT

We would like to thank Michael Imhof and Claus Braun for

their support.

REFERENCES

[1] F. Najm, “A survey of power estimation techniques in VLSI circuits,”
IEEE Trans. on VLSI Systems, vol. 2, no. 4, pp. 446–455, Dec 1994.

[2] E. Macii, M. Pedram, and F. Somenzi, “High-level power modeling, esti-
mation, and optimization,” in Proc. 34th Design Automation Conference

(DAC). ACM, 1997, pp. 504–511.
[3] C. Wang and K. Roy, “Maximum power estimation for CMOS circuits

using deterministic and statistical approaches,” IEEE Trans. on VLSI

Systems, vol. 6, no. 1, pp. 134–140, 1998.
[4] P. Girard, “Survey of low-power testing of VLSI circuits,” IEEE Design

& Test, pp. 82–92, 2002.
[5] K. Butler, J. Saxena, T. Fryars, G. Hetherington, A. Jain, and J. Lewis,

“Minimizing power consumption in scan testing: Pattern generation and
DFT techniques,” in Proc. IEEE International Test Conference (ITC),
2004, pp. 355–364.

[6] P. Girard, L. Guiller, C. Landrault, S. Pravossoudovitch, and H.-J.
Wunderlich, “A modified clock scheme for a low power BIST test pattern
generator,” in Proc. 19th IEEE VLSI Test Symposium (VTS), 2001, pp.
306–311.

[7] Z. He, Z. Peng, P. Eles, P. Rosinger, and B. Al-Hashimi, “Thermal-aware
soc test scheduling with test set partitioning and interleaving,” Journal

of Electronic Testing: Theory and Applications, vol. 24, no. 1-3, pp.
247–257, 2008.

[8] M. E. Imhof, C. G. Zoellin, H.-J. Wunderlich, N. Maeding, and
J. Leenstra, “Scan test planning for power reduction,” in Proc. 44th

Design Automation Conference (DAC). ACM, June 2007, pp. 521–
526.

[9] P. Rosinger, B. Al-Hashimi, and K. Chakrabarty, “Rapid generation of
thermal-safe test schedules,” in Proc. Design, Automation and Test in

Europe (DATE), 2005, pp. 840–845.
[10] R. Sankaralingam, N. A. Touba, and B. Pouya, “Reducing power

dissipation during test using scan chain disable,” in Proc. 19th IEEE

VLSI Test Symposium (VTS), 2001, pp. 319–325.
[11] P. Girard and H.-J. Wunderlich, “Models for power-aware testing,” in

Models in Hardware Testing - Lecture Notes of the Forum in Honor of

Christian Landrault. Springer-Verlag Berlin Heidelberg, 2009.
[12] L. Whetsel, “Adapting scan architectures for low power operation,” in

Proc. IEEE International Test Conference (ITC), 2000, pp. 863–872.
[13] S. Gerstendörfer and H. Wunderlich, “Minimized power consumption for

scan-based BIST,” in Proc. International Test Conference (ITC), 1999,
pp. 77–84.

[14] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips,
“GPU computing,” Proc. of the IEEE, vol. 96, no. 5, pp. 879–899, May
2008.

[15] “NVIDIA CUDA homepage.” [Online]. Available: http://

developer.nvidia.com/object/cuda.html

[16] J. F. Croix and S. P. Khatri, “Introduction to GPU programming
for EDA,” in IEEE/ACM International Conference on Computer-Aided

Design (ICCAD) - Digest of Technical Papers, Nov. 2009, pp. 276–280.
[17] K. Gulati, J. F. Croix, S. P. Khatr, and R. Shastry, “Fast circuit simulation

on graphics processing units,” in Proc. Asia and South Pacific Design

Automation Conference (ASP-DAC), 2009, pp. 403–408.
[18] Y. Liu and J. Hu, “GPU-based parallelization for fast circuit optimiza-

tion,” in Proc. 46th Design Automation Conference (DAC), 2009.
[19] J. Shi, Y. Cai, W. Hou, L. Ma, S. X.-D. Tan, P.-H. Ho, and X. Wang,

“GPU friendly fast poisson solver for structured power grid network
analysis,” in Proc. 46th Design Automation Conference (DAC), 2009.

[20] D. Chatterjee, A. Deorio, and V. Bertacco, “Gate-level simulation with
GPU computing,” ACM Trans. Des. Autom. Electron. Syst., vol. 16, pp.
30:1–30:26, June 2011.

[21] M. A. Kochte, M. Schaal, H.-J. Wunderlich, and C. G. Zoellin, “Efficient
fault simulation on many-core processors,” in Proc. 47th IEEE/ACM

Design Automation Conference (DAC), 2010, pp. 380–385.
[22] M. Li and M. Hsiao, “FSimGP2: An efficient fault simulator with

GPGPU,” in Proc. 19th IEEE Asian Test Symposium (ATS), Dec. 2010,
pp. 15–20.

[23] H. Li, D. Xu, Y. Han, K.-T. Cheng, and X. Li, “nGFSIM: A GPU-based
fault simulator for 1-to-n detection and its applications,” in Proc. IEEE

International Test Conference (ITC), Nov. 2010, pp. 12.1/1–12.1/10.
[24] K. Gulati and S. P. Khatri, “Fault table computation on GPUs,” Journal

of Electronic Testing, vol. 26, no. 2, pp. 195–209, Apr. 2010.
[25] K. Gulati and S. Khatri, “Accelerating statistical static timing analysis

using graphics processing units,” in Proc. Asia and South Pacific Design

Automation Conference (ASP-DAC), Jan. 2009, pp. 260–265.
[26] A. Shen, A. Ghosh, S. Devadas, and K. Keutzer, “On average power

dissipation and random pattern testability of CMOS combinational logic
networks,” in Proc. IEEE/ACM International Conference on Computer-

aided Design (ICCAD), 1992, pp. 402–407.
[27] Y. Min, Z. Zhao, and Z. Li, “An analytical delay model based on boolean

process,” in Proc. 9th Conference on VLSI Design, Jan. 1996, pp. 162–
165.

[28] L. Li, X. Yu, C.-W. Wu, and Y. Min, “A waveform simulator based on
boolean process,” in Proc. 9th Asian Test Symposium (ATS), 2000, pp.
145–150.

[29] A. Czutro, N. Houarche, P. Engelke, I. Polian, M. Comte, M. Renovell,
and B. Becker, “A simulator of small-delay faults caused by resistive-
open defects,” in Proc. 13th IEEE European Test Symposium (ETS), May
2008, pp. 113–118.

[30] K. C. Knowlton, “A fast storage allocator,” Commun. ACM, vol. 8,
no. 10, pp. 623–624, Oct. 1965.

[31] D. E. Knuth, The Art of Computer Programming Vol. 1 - Fundamental

Algorithms, 2nd ed. Addison-Wesley, 1969.

	ats12-46.new

