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Abstract—Structural on-line self-test may be performed to detect
permanent faults and avoid their accumulation. This paper improves
concurrent BIST techniques based on a deterministic test set. Here, the
test patterns are specially generated with a small number of specified
bits. This results in very low test latency, which reduces the likelihood of
fault accumulation. Experiments with a large number of circuits show
that the hardware overhead is significantly lower than the overhead for
previously published methods. Furthermore, the method allows to trade-
off fault coverage, test latency and hardware overhead.

Index Terms—Concurrent self test, BIST, test generation

I. INTRODUCTION

Recent process technology nodes have shown increased variability
as well as the susceptibility to transient and permanent faults [1–3].
Hence, many classical hardware based fault tolerance techniques are
getting now new attention for yield and reliability improvement [4–
6]. While on-line checking or on-line monitoring methods observe an
encoded output space for detecting any error, on-line test techniques
target structural faults to identify defective components [7]. Encoding
for on-line checking up to duplication and comparison may be rather
expensive in terms of hardware while structural on-line testing is
restricted to certain fault models and less expensive in general.

Dormant faults and subsequent fault accumulation can decrease the
system reliability [8] and require additional on-line test techniques
[9]. On-line techniques that use a deterministic, precomputed test set
are based on a fault model and allow to specifically target critical
faults.

Non-concurrent on-line BIST executes a structural test only in
periodic intervals or while the circuit is idle. The early deterministic
scheme in figure 1 is called Store-and-Generate [10]. It keeps the
aforementioned advantages and leads to rather low test time. If more
advanced deterministic BIST schemes like [11–13] are employed,
special care has to be taken that the CUT stays resumable, but test
time will decrease even further. Thus, the test can be applied more
frequently and the latency of fault detection is reduced [14]. Further-
more, special architectures make application of the deterministic test
set less intrusive [15–18].
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Fig. 1. Deterministic non-concurrent on-line test

Non-concurrent techniques can only be applied if the DUT is
sufficiently idle.

Concurrent on-line self-test methods use the functional input vec-
tors to execute a structural test over a longer time period. Duplication
and comparison is a special, expensive implementation of the scheme
in figure 2. Here, the pattern observer is just a copy of the CUT,
the output observer is a pairwise comparator, and the error signal
is generated by a disjunction of all the outputs. This leads to a
significant hardware overhead of around 120% in the examples
reported in section 5.

Hardware can be saved, if only a subset of patterns are monitored
and the CUT is not duplicated completely. Saluja et al. have proposed
a technique based on a pseudo-random test sequence [19, 20]. Here, a
monitoring circuit checks the circuit inputs for vectors which are part
of a pseudo-random test sequence (figure 2). Whenever such an input
vector occurs, the circuit response is included in a test signature. In
order to reduce the latency of detecting faults, deterministic test sets
can be applied instead [21–24].
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Fig. 2. Deterministic concurrent on-line test

The test set determines the test latency and fault coverage, but also
the hardware overhead. Test latency is the time required to test all
targeted faults at least once. The scheme is applicable to data-path
logic and finite state machines (FSMs) as well. If in FSMs only state
transition of branches are critical, a technique from processor control
[25] can be applied in hardware. The technique compresses the target
states in signatures and is known as control flow monitoring [26].

The size of the test set directly corresponds to the hardware of the
observers in figure 2 and special care is required during its generation.
Therefore, the authors of [22, 23] enumerate all possible tests for
each fault and find a minimum cover. This effectively minimizes
the hardware overhead of the observers. For larger circuits, [24]
proposes to use test sets from regular ATPG, but acceptable overhead
is achieved only in a few, rare cases. Moreover, for circuits with more
than 32 inputs, completely specified patterns result in a fault latency
that is several orders of magnitude too high.

The method presented here modifies a deterministic test set by
reducing the number of specified bits such that it can be applied to



the schemes of figures 1 and 2. Algorithms for test pattern generation
[27, 28] and test set modification [29–31] are available targeting
similar goals. In contrast to the existing test generation methods, the
technique allows to bound the test latency and it can take advantage
of the trade-off between fault coverage and hardware overhead.

The test set is computed from an ATPG test set by unspecifying bits
that are not required for fault detection, and by splitting patterns. The
large number of unspecified bits results in a hardware overhead that is
significantly lower compared to previously published methods based
on deterministic test sets. Furthermore, the method is completely
automated and can synthesize self-testable circuits for given random
logic macros. The proposed method is evaluated with a wide set
of circuits. If for a given application a fault coverage of 90% is
sufficient, a large number of circuits can be tested with less than
50% overhead. Moreover, the results show that hardware overhead
is as low as 8% and 80% on average when providing complete fault
coverage as compared to 120% for duplication.

Due to lack of space, the method is only applied to the concurrent
on-line test scheme in this paper. However, the generalization to the
non-concurrent case is straightforward by exploiting the don’t cares
as described in [32].

The rest of the paper is organized as follows: Section 2 shows how
the input and output observer are synthesized from partially specified
patterns. Section 3 shows the overall flow of the synthesis procedure
and section 4 presents how to estimate the test latency for such a
circuit. The method is evaluated using a set of benchmark circuits in
section 5.

II. INPUT/OUTPUT RELATION GENERATED FROM PARTIALLY

SPECIFIED PATTERNS

The input/output observer of Fig. 2 determines if the input vector
I and the corresponding output response O are in the correct relation
Φ (I, O). This relation is easily expressed by a Boolean function (Fig.
3). For example, in the case of duplication the relation matches the
Boolean function of the CUT.
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Fig. 3. Input output relation with partially specified patterns

In order to reduce the overhead for the relation Φ (I, O), the
relation may be derived from a set of deterministic patterns that detect
a given set of faults. In the example (Fig. 3), the partially specified
test set contains two patterns for the well-known benchmark circuit
C17. The output values are derived from logic simulation of these
patterns

If partially specified patterns are used in the input monitor, then
a single pattern matches a very large set of input vectors. Each
additional bit left unspecified in a pattern increases the likelihood
that the pattern occurs by a factor of 2.

The large input don’t care space significantly contributes to opti-
mization by the synthesis tool. Moreover, due to common sensitiza-
tion criteria many patterns in a test set may be very similar. Hence,
much of the logic in the monitors may be shared and it is beneficial to

synthesize input and output monitor together. In existing techniques,
the relation is usually implemented as a RAM, ROM or PLA [24, 33].
But since they are based on completely specified test patterns, almost
no optimization is possible.

The integration of the pattern observer and output observer of
figure 2 to the Boolean representation of the input/output relation
in figure 3 has benefits at the input and output side at the same time.

1) Input side: Most pattern monitoring techniques need decoding
logic for indicating a test pattern. The decoding logic is implicitely
integrated and exploited during logic synthesis.

2) Output side: An additional comparator is not needed. For
each pattern, comparison is only done for the subset of relevant
output literals, and this logic is also integrated and used during logic
synthesis.

III. GENERATION OF THE CONCURRENT BIST CIRCUITRY

The deterministic test set from which the monitors are derived
has a major impact on both hardware overhead and test latency. In
the following we briefly outline the overall flow of the generation
of the concurrent BIST circuitry and then discuss the steps in more
detail. Figure 4 gives an overview of the process. The input for the
self-test generation procedure are the circuit description, the set of
targeted faults and a precomputed test set of completely or partially
specified test patterns. The flow allows to specify a bound on the
test latency and the targeted fault efficiency for the resulting scheme.
The test latency is determined by the maximum number of specified
bits in the patterns. Fault efficiency is the ratio of covered faults and
detectable faults. The two parameters allow to trade-off coverage,
latency and hardware overhead.

The generation of the concurrent BIST test set comprises four
steps:

1) Generation of a partially specified test set with as few specified
bits as possible and a strict limit on the number of specified
bits per pattern.

2) Selection of patterns from this test set such that the targeted
fault efficiency is achieved.

3) Selection of a subset of output values to be compared.
4) Generation of the input/output relation of the monitor.
The first step in the process is accomplished by test set stripping.

Test set stripping is the identification of those bits in the test set that
are not required to be specified for fault detection. The method used
here allows to strictly limit the maximum number of specified bits
in any pattern. To achieve the given limit, additional patterns may
be created. Enforcing this limit bounds the test latency of the final
concurrent test.

From the resulting test set, a subset of patterns is chosen such that
a certain fault coverage or efficiency is achieved. In this second step,
we propose a greedy heuristic that results in low hardware overhead
for the requested target coverage.

In the third step, the outputs to be compared by the output monitor
are selected. For many test patterns, a very small number of outputs
is sufficient to detect all faults targeted by the pattern. Hence, the
final test set is analyzed with fault simulation and a subset of the
circuit response is selected with a simple heuristic.

After this step, the concurrent BIST circuitry is generated in step
4. During the whole self-test generation process the original circuit
is not altered in any way.

1. Test set stripping

Several algorithms have been proposed for test set stripping resp.
relaxation [29–31, 34]. In this paper, we adapt the stripping method
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Fig. 4. Generation of self-testing circuit

from [31] which allows to limit the number of specified bits in a
test pattern and uncovers a significant amount of over-specified bits
in excess of the number of already unspecified bits in the original
test set. In contrast to constrained ATPG, test set stripping avoids the
computational complexity associated with ATPG.

Using the method presented in [31], the resulting maximum
number of specified bits in a pattern can still sometimes exceed 100
bits. When applied to input vector monitoring, the likelihood that such
a pattern occurs in the input vectors of the circuit is 2−100. Hence,
a viable concurrent BIST requires that a very low limit is strictly
enforced. In contrast to the algorithm in [31], the extension presented
here obtains a significant reduction in the maximum number of
specified bits in a pattern.

To achieve this, the method has been extended with pattern splitting
to avoid a loss in fault coverage. The concept of pattern splitting
was first proposed in [29], yet that algorithm did not target the
maximum number of specified bits. Pattern splitting occurs if the
faults assigned to a pattern would result in a number of specified bits
in excess of the limit. Pattern splitting results in a duplication of the
originating pattern. Faults can then be assigned to the two duplicates.
This process is repeated if necessary.

The splitting algorithm is outlined in Alg. 1 and invoked after test
set stripping. Let F be the set of target faults. Then for each fault f
not detected by the stripped test set we search for a detecting pattern
p in the original test set that detects f with lowest cost, i.e. with a
minimum number of specified bits. If the number of specified bits
is below the given limit, p is duplicated and the bits required for
detection of f are identified. The resulting pattern p′ is added to the
final test set Tp. Fault simulation of p′ helps to find additional faults
detected by p′.

Since the stripped and duplicated patterns originated in the same
pattern of the test set, the similarity of these patterns can be exploited
during the synthesis of the concurrent BIST circuit.

The resulting set of partially specified test patterns is input to the
next step:

Algorithm 1 Pattern splitting
for all f ∈ F do

if f is undetected then
Let Lf := {p ∈ T | p detects f}
Select p ∈ Lf with minimum cost(p, f)
if cost(p, f) ≤ limit then

p′ := duplicate(p)
identify_req_bits(p′, f)
Tp := Tp ∪ {p′}
Fault simulation on specified bits of p′

end if
end if

end for

2. Selection of patterns

In some cases, the designer may choose to sacrifice some of the
fault coverage achieved by the original test set and significantly
reduce hardware overhead. For this, a heuristic selects a subset of
patterns from the stripped test set until a given fault efficiency has
been reached.

First, the test set from step one is analyzed with fault simulation.
For each pattern we determine the set of faults that it is able to detect.
Then, we repeatedly add the pattern that detects the highest number
of additional faults to the final test set until the desired fault efficiency
is achieved.

This straightforward heuristic provides the most consistent results
across a wide variety of benchmark circuits. Alternative heuristics can
weight patterns with number of care bits for each additional fault, or
use the hamming distance to the most similar pattern to take into
account logic sharing. In our experience, the logic synthesis of the
final BIST function with commercial synthesis tools does not benefit
from these heuristics.

3. Selection of outputs

Now, the final test set completely defines the input part of the
relation in section II. For the output part, it is sufficient to use the
correct response from the logic simulation of the test set. But often,
only very few outputs have to be compared to detect all the faults
testable by a pattern.

In this step, the method iterates over all the patterns. For each
pattern, fault simulation yields the outputs at which the fault effects
can be observed. If none of these outputs has already been selected
for observation, the list of detecting outputs is ordered and the first
output is selected. Here, the outputs are ordered according to the
original circuit description.

Instead of this heuristic, set covering may be used to find a
minimum set of outputs for each pattern. But similar to the pattern
selection in step 2, there is no consistent advantage of the more
complex approach when the results from final logic synthesis are
taken into account.

4. Generation of Input/Output Relation

After selection of the outputs, the function of the Boolean relation
for the monitor is derived.

For each test pattern t of the final test set Tp we now derive the
relation with respect to the input vector I of the circuit under test as

Φt(I, O) := (t == I) ∧ (Ot == O)

where Ot is the output vector constructed from the selected outputs
in step 3 and O is the output vector of the CUT. The operator == is
defined as the equality of the two vectors taking into account don’t
cares.



The error signal of the circuit is now simply

error :=
_

t∈Tp

¬Φt(I, O) .

The concurrent BIST circuit is then synthesized with the regular
logic synthesis flow. The large number of don’t cares as well as
the large commonalities between input and output relations gives the
synthesis a large degree of freedom to perform efficient synthesis.

IV. CONCURRENT TEST LENGTH

To evaluate the test length of the concurrent test scheme we use two
metrics. Firstly, we determine the expectation value of the number
of cycles required for completion of the concurrent test as proposed
in [35]. Secondly, we employ a well-known metric from pseudo-
random testing. We compute the test length required to achieve a
given confidence level such that no targeted fault resp. pattern in the
test set escapes. The required test length is a more meaningful metrics
to determine the fault latency.

The considerations are based on three assumptions also found in
[24, 35, 36]:

• All possible input patterns for the circuit occur in the input
stream.

• A pattern occurs in every clock cycle.
• All patterns occur with the same probability.

A. Computation of the expected value of the test length

The expectation value of the number of input vectors required for
completion of the concurrent test is called the concurrent test length
(CTL). The concurrent test is completed when every pattern of the
test set has occurred as input vector of the circuit at least once.

Let test set Tc consist of t completely specified patterns for a
circuit with n inputs. N = 2n is the number of all possible input
patterns for that circuit. The test is completed when every of the t
patterns has been hit, i.e. occurred at least once in the input stream.

The mean number of cycles required to hit all of the t completely
specified patterns in Tc at least once is derived in [35]:

CTL =

tX
i=1

N

i
= N

tX
i=1

1

i
(1)

Now let test set Tp consist of t partially specified patterns for a
circuit with n inputs. The number of specified bits in a single pattern
p ∈ Tp is denoted as np. Let pmax ∈ Tp denote the pattern with the
maximum number of specified bits npmax = maxp∈Tp{np}. pmax

is the pattern least likely to be hit by an input vector.
To compute an upper bound of the CTL we will assume that all t

patterns of Tp have the same number of specified bits as pmax. Thus,
the probability hp that a pattern is hit is assumed to be identical for
all t patterns:

hp = hpmax =
2n−npmax

N
= 2−npmax , (2)

where 2n−npmax is the number of completely specified patterns
covered by pmax.

Then, following the reasoning of [35], an upper bound of the CTL
of Tp can be computed as

CTL =
tX

i=1

1

hp · i
=

1

hp

tX
i=1

1

i
= 2npmax

tX
i=1

1

i
(3)

Similar to [24] we conducted a series of simulations on different
circuits and test sets and successfully validated the computation of
the CTL.

B. Required test length

To compute the test length required to achieve a given fault escape
probability we apply concepts known from pseudo-random testing.

In pseudo-random testing, the detection probability qf of a fault
f depends on the size of the test set Tf of the fault, i.e. the number
of patterns that detect it:

qf =
| Tf |
2n

. (4)

Assume that all faults have disjoint test sets. The fault with the
lowest detection probability resp. smallest test set is called the worst
fault. A valid simplification for the computation of the required test
length is to consider only the set of faults with detection probabilities
close to that of the worst fault, i.e. within the factor of 2 from
the detection probability of the worst fault [36]. Faults with higher
detection probabilities do not significantly impact the required test
length.

We can further simplify the computation by assuming that all of
these faults have the same detection probability as the worst fault
since we want to determine an upper bound for the test length.

Then, T U
k (eth) is an upper bound of the required test length to

achieve a fault escape probability not larger than eth, given the k
worst faults with disjoint test sets and identical detection probability
q [36]:

T U
k (eth) =

‰
ln(eth/k)

ln(1− q)

ı
(5)

Due to the stripping process, the set of partially specified test
patterns Tp has the property that for each test pattern p ∈ Tp there
exists at least one fault f which is only detected by p. Thus, the
detection probability of f is q = 2−np where np is the number of
specified bits in p. For each of these faults, the detection probability
is identical to the probability that the particular pattern occurs in the
input stream.

The k patterns that detect the k worst faults are now called the
worst patterns. They have the highest number of specified bits in the
test set Tp. Then eq. (5) can be used to compute an upper bound of
the test length required to achieve a pattern escape probability not
larger than eth.

V. RESULTS

The scheme proposed in section III has been implemented into our
in-house CAD tool. For test generation and synthesis, we use third-
party tools. Firstly, we evaluate the scheme in terms of hardware
overhead and test latency for a comprehensive set of benchmark
circuits from the ISCAS-85, ISCAS-89 and ITC-99 suite. Secondly,
the scheme is compared to duplication as well as the state-of-the-art
ATPG test-set based concurrent BIST method presented in [24]. The
method presented in [22] is not compared here, since the circuits used
for its evaluation are not openly available and it requires complete
enumeration of all possible tests.

In this experiment we bound the test latency by strictly limiting
the number of specified bits in the test patterns to 32 bits. Given a
clock frequency of 500 MHz, the expected duration of the concurrent
test (≈ 3E10 cycles) is about one minute of system operation.
The test sets for the circuits target stuck-at faults and have been
generated using the method from [37] and a commercial ATPG tool.
The resulting circuitry has been synthesized using a commercial
synthesis tool and mapped to the abstract technology library of the
tool. The original circuit has been mapped to that technology library
as well. The hardware overhead is the ratio of the resulting area of
the concurrent BIST circuitry and the benchmark circuit. Here, we



investigate the hardware overhead w.r.t. the targeted fault efficiency.
Table I lists the hardware overhead for fault efficiencies of 70%, 80%
and 90% as well as for the maximum fault efficiency to be achieved
given the limit of 32 bits.

The maximum achieved fault efficiency due to strictly enforcing
the limit and the resulting hardware overhead are given in columns
5 and 6. The last column gives the required test length to achieve an
escape probability no larger than 0.01, computed according to section
IV-B.

The two circuits c499 and c1355, where not even 70% fault
efficiency was reached, are both 32-bit SEC circuits consisting of
large XOR trees. Most of the faults in these structures require all of
the 41 inputs to be specified and cannot be detected with a limit of
32 bits.

For the sequential circuits of ISCAS89 and ITC99, the observation
logic is connected to the pseudo-primary inputs and outpus as well.
During synthesis, the arrival times of the outputs should be taken
into account to reduce the impact on clock frequency. To avoid any
impact on the critical path of the circuit, the checking may be moved
into the subsequent cycle. Obviously, this will require duplication of

Circuit HW overhead for FE Max. achieved FE
0.7 0.8 0.9 FE HW Req. length

c432 82% 100% 127% 100% 183% 1.98E10
c499 — — — 34% 53% 2.45E10
c880 61% 73% 99% 100% 154% 3.22E10
c1355 — — — 23% 39% 2.92E10
c1908 22% 36% 54% 100% 94% 1.73E10
c2670 41% 66% — 89% 90% 3.63E10
c3540 15% 21% 29% 100% 45% 2.67E10
c5315 32% 44% 64% 100% 104% 3.63E10
c6288 5% 6% 9% 100% 16% 3.11E10
c7552 25% 41% — 88% 78% 3.89E10

s298 34% 47% 60% 100% 79% 9.34E04
s344 33% 47% 55% 100% 68% 3.86E07
s349 35% 44% 51% 100% 69% 3.86E07
s382 42% 47% 63% 100% 82% 7.73E07
s386 47% 56% 68% 100% 87% 2.79E04
s400 36% 47% 63% 100% 80% 8.89E07
s444 33% 43% 61% 100% 83% 4.07E05
s1196 37% 50% 66% 100% 96% 6.28E06
s1238 39% 49% 66% 100% 97% 7.73E07
s1423 41% 53% 67% 100% 89% 3.17E10
s1488 23% 30% 41% 100% 60% 1.19E05
s1494 24% 32% 41% 100% 57% 1.10E05
s5378 33% 45% 62% 100% 91% 3.89E10
s9234 27% 35% 46% 98.1% 60% 4.18E10
s13207 25% 33% 43% 100% 57% 3.60E10
s15850 26% 33% 44% 99.9% 61% 4.58E10

b01 32% 46% 60% 100% 90% 4.39E02
b02 52% 57% 73% 100% 91% 2.15E02
b03 49% 58% 71% 100% 93% 1.24E09
b04 41% 51% 68% 100% 103% 2.81E10
b05 22% 31% 41% 100% 66% 1.98E10
b06 43% 56% 73% 100% 97% 4.32E02
b07 38% 42% 52% 100% 77% 2.57E10
b08 53% 61% 71% 100% 95% 2.39E07
b09 41% 49% 62% 100% 95% 1.55E08
b10 52% 64% 80% 100% 110% 2.78E06
b11 31% 39% 49% 100% 70% 5.69E09
b12 46% 59% 79% 100% 103% 3.38E10
b13 50% 62% 74% 100% 99% 2.75E10

Average 37.4% 47.3% 61.3% 83.7% 1.61E10

TABLE I
HARDWARE OVERHEAD DEPENDING ON TARGETED FAULT EFFICIENCY

WITH LIMITED TEST LENGTH (≈ 3E10 CYCLES)

the flip-flops, but this holds for duplication-based checking as well
and also increases the overhead there. But in contrast to the duplex
system, here the synthesis tool may use sequential re-timing to reduce
the number of flip-flops.

For comparison, table II gives the concurrent test latency (CTL)
and hardware overhead for duplication, the MICSET method and the
method presented here for the ISCAS-85 benchmark circuits. MIC-
SET [24] is a concurrent BIST architecture based on a deterministic
test set. The duplicated logic consists of a copy of the combinational
logic and one comparator per output. For duplication, the CTL is 0 by
definition. In this experiment, the test-set based methods (MICSET
and the method described here) achieve 100% fault efficiency for
stuck-at faults. The MICSET values have been computed according
to the information in [24].

Dupl. MICSET Proposed Scheme
Circuit #PI HW CTL HW CTL HW

overh. overh. overh.
c432 26 125% 3.02E11 1307% 5.98E08 183%
c499 41 110% 9.94E12 1236% 1.05E13 114%
c880 60 135% 5.25E18 1283% 2.16E10 154%
c1355 41 104% 1.11E13 947% 1.20E13 127%
c1908 33 116% 4.58E10 838% 1.15E10 94%
c2670 233 134% > 1.38E70 N/A 2.00E17 108%
c3540 50 117% 6.26E15 695% 1.18E10 45%
c5315 178 105% > 3.83E53 N/A 3.10E10 104%
c6288 32 110% 1.69E10 79% 1.66E10 16%
c7552 207 122% > 2.06E62 N/A 2.89E28 86%

Average 118% 912% 103%

TABLE II
COMPARISON WITH DUPLICATION AND MICSET [24] WITHOUT

COMPROMISING FAULT EFFICIENCY

In contrast to MICSET, the method presented here shows far
better results with respect to hardware overhead and especially the
concurrent test latency (CTL). The authors of [24] found that from
the ISCAS-85 suite only a single circuit (c6288) was suitable for the
MICSET approach in terms of hardware overhead and CTL. With
the approach presented here, more than half of the circuits show
acceptable CTL and require an overhead lower than duplication.

The area overhead for a duplex system is about 120%, since a
comparator has to be added for each (pseudo)-primary output of the
circuit. Here, the duplication is done using a simple copy of the
original circuit. But to avoid common mode failures, the copy of the
circuit should be implemented with diversity in mind, thus further
increasing overhead [38]. For comparison, self-checking for random
logic macros is far more costly and complex. In [38] it was shown,
that for larger macros both parity prediction and state encoding have
overhead often exceeding simple duplication.

The presented method features diversity by design. If 100% fault
efficiency is targeted, the average hardware overhead is 103% for the
ISCAS85 circuits. If all the circuits in table I are taken into account,
it is 83.7% on average for this case. However, often reliability of the
system can already be significantly improved by just accounting for a
subset of faults (as low as 70% in [39]). For 90% fault efficiency, the
hardware overhead is reduced to just 61.3% on the average. Ten out
of the 39 circuits can even be tested for 90% of the faults with less
than 50% overhead. And if the application allows to deal with even
lower fault coverage, the hardware overhead can be further reduced.

VI. CONCLUSIONS

The presented method for concurrent BIST provides a test latency
which is several orders of magnitude lower than existing methods.



This significantly reduces fault latency and subsequent fault accumu-
lation. The large number of unspecified bits results in low hardware
overhead. The evaluation has shown that the overhead is just 83.7%
on average if complete fault coverage is required. An even lower
overhead may be achieved by trading off fault coverage, for example
to obtain 90% coverage just 61.3% overhead is required on average.
The method is completely automated and generates concurrently self-
testable circuits for a wide variety of random logic macros.
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