
Adaptive Debug and Diagnosis Without Fault
Dictionaries

Stefan Holst, Hans-Joachim Wunderlich
Institut für Technische Informatik

Universität Stuttgart
Pfaffenwaldring 47; D-70569 Stuttgart, Germany
email: {holst, wu}@informatik.uni-stuttgart.de

Abstract— Diagnosis is essential in modern chip production to
increase yield, and debug constitutes a major part in the pre-
silicon development process. For recent process technologies,
defect mechanisms are increasingly complex, and continuous
efforts are made to model these defects by using sophisticated
fault models. Traditional static approaches for debug and
diagnosis with a simplified fault model are more and more
limited.
In this paper, a method is presented, which identifies pos-
sible faulty regions in a combinational circuit, based on its
input/output behavior and independent of a fault model. The
new adaptive, statistical approach combines a flexible and
powerful effect-cause pattern analysis algorithm with high-
resolution ATPG. We show the effectiveness of the approach
through experiments with benchmark and industrial circuits.

Keywords— Diagnosis, Debug, Test, VLSI

I. INTRODUCTION

A. Debug and diagnosis

Traditionally, design, verification and diagnosis of micro-
electronic circuits have been viewed as separate tasks with
individual challenges and techniques. However, in recent
years more and more attention has been paid to the inter-
action of individual design steps in verification, diagnosis
of prototypes, and field return analysis. These are tasks
for quality control and improvement during the complete
lifecycle of the system by tackling faults occurring during
design, manufacturing and operation.

Debug is the time-consuming task of identifying faulty
modules and structures within the design. While some
methods of formal verification are constructive and able to
find the cause of malfunctions, simulation and emulation
usually require additional efforts for fault location.

As Systems on Chip (SoC) design complexity increases,
verification is turning into a critical bottleneck in the design
process. Estimates today are that more than 70% of the to-
tal design time is on verification [1], [2]. Despite the efforts
spent from the academia and the industry on developing
functional verification tools, logical and functional flaws
remain the main cause of today’s design respins. Between
the years 2002 and 2004, the percentage of designs with
functional errors has actually increased [3].

Diagnosis is the process of locating faults in a physical
chip at the various levels down to real defects. Numerous
parasitic and timing effects may show up in the first silicon
[4], identifying them is part of silicon debug. With growing
circuit complexity and shrinking geometries, the actual
behavior of the silicon is hard to model [5], [6], [7] and
cannot always be predicted and simulated [8].

In volume diagnosis, test data of a large number of failing
chips are recorded and analyzed to find yield-limiting
systematic defects and design issues. Diagnostic data from
a single chip is not sufficient since systematic problems
need to be differentiated from sporadic random defects.
The extracted knowledge is used to support yield ramping
and yield learning in advanced process technologies by
improving design for manufacturability [9].

Precision diagnosis is performed on a small selected set
of chips like first silicon or representants for systematic
defects determined by volume diagnosis to find the exact
defect mechanisms in the individual chips. The constraints
on computing time are reduced but high diagnostic reso-
lution has to be provided to guide the physical inspection
accurately.

Diagnosis is more related to defects and debug is closer to
design errors, i. e. errors of the designer. However, there is
a large overlap in between dealing with yield ramping and
design for manufacturability [10], [11], [12]. Diagnosis and
debug have the common objective of achieving high diag-
nostic resolution and especially fault model independent
approaches are suitable for both of these tasks.

B. Effect-cause vs. cause-effect analysis

The classic diagnosis algorithms follow two different
paradigms: Effect-cause analysis looks at the failing out-
puts and starts reasoning using the logic structure of the
circuits [13], [14]. Cause-effect analysis is based on a fault
model. For each fault of the model, fault simulation is
performed, and the behavior is matched with the outcome
of the device under diagnosis (DUD).

Standard debug and diagnosis algorithms usually work in
two passes: First, a fast effect-cause analysis is performed
to constrain the circuits region where possible culprits may

12th IEEE European Test Symposium (ETS'07)
0-7695-2827-9/07 $20.00 © 2007

be located. Second, for each of the possible fault sites, a
cause-effect simulation is performed for identifying those
faults, which match the real observed behavior [15], [16].
The resolution of a test set corresponds to the number of
faults which cannot be distinguished any further [17], [18],
[19].

The main drawback of the cause-effect paradigms is the
dependency on a fault model. A general model of design
errors is not available, the proposed models so far reflect
only a small subset of possible design faults to be found
during debug. During diagnosis, we are faced with a
plethora of defect mechanisms in nanoscaled CMOS, and a
main goal of fault diagnosis is rather finding an appropriate
fault model than taking a given fault model as an initial
assumption [15], [20].

C. Fault dictionaries vs. adaptive diagnosis

Cause-effect diagnosis can be speeded up, if for each fault
and each failing simulated pattern the erroneous output is
stored in a dictionary [21]. Even after an effect-cause pass,
the size of such a dictionary may explode, and significant
research effort has been spent for reducing the size of fault
dictionaries [22], [23].

During debug and during diagnosis of first silicon, there
exists an efficient alternative to precomputed fault dictio-
naries in so-called adaptive diagnosis [24]. Here, we use
faulty and faultfree responses of the device under diagnosis
(DUD) in order to guide the automatic generation of new
patterns for increasing the resolution. A pattern analysis
step extracts information from responses of the DUD and
accumulates them in a knowledge base. This knowledge
in turn guides an automatic test pattern generator (ATPG)
to generate relevant patterns for achieving high diagnostic
resolution. The loop ends, when an acceptable diagnostic
resolution is reached (Fig. 1). The definition of the exact
abort criterion depends on the number and confidence
levels of fault candidates.

Fig. 1. Adaptive diagnosis flow

Such a diagnostic ATPG does not rely on a precomputed
fault dictionary, and significant memory savings are ob-
tained. The goal of this paper is to present a new approach
for diagnostic test pattern generation and analysis, which
is adaptive and fault model independent. Based on the
input/output behavior of the DUD, a small region of the
design is identified which behaves in a faulty way. Only
very few approaches are known with the same goals, e.g.
[19], [20], [25], [26], [27].

The next section of this paper introduces an analysis
algorithm which identifies possible faulty or defect regions
based on a given test set. Section 3 adds a pattern gener-
ation algorithm for increasing the resolution, and section
4 validates the approach experimentally by locating faults
of different surrogate models.

II. PATTERN ANALYSIS

The approach presented below is an extension of the
’Single Location At a Time’ (SLAT) technique introduced
by [25], [26]. A diagnostic test pattern has the SLAT
property, if there is a single observable stuck-at fault which
produces a response on that pattern which is identical with
the response of the DUD. In general, not all patterns will
have the SLAT property, and not all the SLAT patterns
will point to the same stuck-at faults. Hence, this approach
is not based on the stuck-at fault model, but uses a set
of identified stuck-at faults for describing the suspicious
region of the DUD.

Since the stuck-at faults are active only for a subset of the
test patterns, we can extract conditions where they occur
leading to so-called conditional stuck-at faults. Figure 2
models a design error, where an AND gate is exchanged
by an OR gate.

Fig. 2. Example of a conditional stuck-at fault

The main drawback of the SLAT paradigm with conditional
stuck-at faults is the fact that information for fault location
is only extracted from patterns with the SLAT property. All
the other patterns are not taken into account, neither failing
nor passing ones.

For the rest of this section, we define a measure to quantify
how well a stuck-at fault reflects the behavior of the DUD
for a given test set. The SLAT paradigm will be just the

12th IEEE European Test Symposium (ETS'07)
0-7695-2827-9/07 $20.00 © 2007

special case of a perfect match for one pattern. Let FM(f)
be a fault machine, i.e. the circuit with stuck-at fault f
injected. For each test pattern t ∈ T , we define the evidence

e(f, t) = (∆σt,∆ιt,∆τt,∆γt)

as tuple of natural numbers ∆σt,∆ιt,∆τt,∆γt ∈ N (see
fig. 3) where:

• ∆σt is the number of failing outputs where both the
DUD and the fault machine FM match.

• ∆ιt is the number of outputs which fail in FM but
are correct in DUD.

• ∆τt is the number of outputs which fail in DUD but
are correct in FM.

• ∆γt is the minimum of ∆σt and ∆ιt: ∆γt =
min{∆σt,∆ιt}.

For a SLAT test pattern t, the evidence will provide
maximum ∆σt and ∆ιt = ∆τt = ∆γt = 0.

Fig. 3. Definition of evidence e(f, t) = (∆σt, ∆ιt, ∆τt, ∆γt)

The evidence of a fault f and a test set T is

e(f, T) = (σT , ιT , τT , γT), with

σT =
∑
t∈T

∆σt, ιT =
∑
t∈T

∆ιt,

τT =
∑
t∈T

∆τt and γT =
∑
t∈T

∆γt.

Again, if the real culprit is the stuck-at fault f indeed, we
get ιT = τT = γT = 0 and σT will be maximum.

While processing pattern after pattern t1, ..., ti, the knowl-
edge base is constructed by the evidences e(f, Ti), Ti =
{t1, ..., ti} of all the stuck-at faults f . If a fault is not
observable under a certain pattern, no value change takes
place and this fault is handled neutrally within this itera-
tion. If the DUD gives the correct output under a pattern t,
only ιt is increased for faults which are observable under
this pattern. In this way, candidates can be excluded using
passing patterns, too. The maximum achievable diagnostic
resolution is bound by the size of the equivalence classes
of the faults in the knowledge base.

If the fault in the DUD is not always active due to inde-
terministic behavior or some unknown activation mecha-
nism, the measure still provides consistent evidences. For
instance, let f ′ be a slow to rise transition fault. For some

patterns t, f ′ will appear as a stuck-at 0 fault f , for others
it is not observable. Then

e(f, t) = (∆σt,∆ιt,∆τt,∆γt)

provides ∆σt ≥ ∆σ̃t for all other evidences

e(f̃ , t) = (∆σ̃t,∆ι̃t,∆τ̃t,∆γ̃t).

As a consequence, we have σT ≥ σ̃T for all evidences
e(f̃ , T) and the evidence e(f, T) is still useful for locating
the fault. However, the value ιT will not be zero any
more and can be used for ranking fault candidates. This
assumption is confirmed in the experimental results.

Let f be a conditional stuck-at fault which models at least
a part of the DUD behavior for some patterns. Under each
test pattern t ∈ T , the failing outputs of FM(f) and DUD
are either disjoint (∆σt = 0) because the condition of f
is not satisfied in the DUD or the set of failing outputs of
FM(f) is a subset of the fails of DUD (∆ιt = 0). Hence,
all ∆γt and also γT are zero for fault f . If there is a
pattern t with ∆γt > 0 like in figure 3, the corresponding
conditional stuck-at is not a candidate.

Our fault model independent pattern analysis approach is
able to identify circuit parts containing arbitrary faulty
behavior. However, if the behavior of the DUD can be
explained using some classic fault models, certain evidence
forms are observed. Such observations are very useful
to classify the DUD behavior to decide for instance, if
physical failure analysis is feasible. Table I shows suspect
evidences for some classic models.

classic model ιT τT γT

single stuck-at 0 0 0
stuck-at, multiple fault sites 0 > 0 0
single conditional stuck-at > 0 0 0

cond. stuck-at, multiple fault sites > 0 > 0 0
delay fault, i.e. long paths fail > 0 0 > 0

TABLE I
FAULT MODELS AND EVIDENCE FORMS FOR e(f, T) WITH σT > 0

If ιT , τT and γT are all zero, a single stuck-at fault explains
the DUD behavior completely. With ιT = γT = 0, such a
stuck-at fault explains a subset of all fails, but some other
faulty behavior is present in the DUD. If τT and γT are
zero, a faulty value on a single signal line under some
patterns T ′ ⊂ T provides complete explanation. With only
γT = 0, a faulty value on the corresponding single signal
line explains only a part of DUD behavior. If only τT is
zero, the suspect fails are a superset of DUD fails.

If all suspects show positive values in all components
ιT , τT , γT , all simplistic fault models would fail to explain
the DUD behavior.

III. PATTERN GENERATION

If the resolution provided by the evidences of a test pattern
set T is not sufficient, the evidences are used to guide
diagnostic ATPG.

12th IEEE European Test Symposium (ETS'07)
0-7695-2827-9/07 $20.00 © 2007

For each fault f with e(f, T) = (σT , ιT , τT , γT) we have
σT + ιT > 0, if T detects f . Otherwise, f may be
undetected due to redundancy, or T must be improved to
detect f .

For further analysis, the evidences in the knowledge base
are ordered as follows to create a ranking with the most
suspicious fault sites at the beginning (lowest rank). Firstly,
evidences are sorted by increasing γT , i.e.

γa
T > γb

T ⇒ rank(e(fa, T)) > rank(e(f b, T))

moving single conditional stuck-at faults in front. Evi-
dences with equal γT are then sorted by decreasing σT

moving candidates in front, which explain most failures:

σa
T > σb

T ⇒ rank(e(fa, T)) < rank(e(f b, T)).

Finally evidences with equal γT and σT are ordered by
increasing ιT :

ιaT > ιbT ⇒ rank(e(fa, T)) > rank(e(f b, T)).

Even if there are no suspects with σT > 0, the possible
fault sites are ranked by ιT . This way, multiple faults on
redundant lines can be pointed out. For the special case of
ιT = 0, at least a subset of DUD failures can be explained
with an unconditional stuck-at fault.

Faults with e(f, T) = (σT , ιT , τT , γT) and σT > 0 are
called suspect. By simple iteration over the ranking, pairs
of suspects fa, f b are identified with equal evidences
e(fa, T) = e(f b, T). To improve the ranking, fault dis-
tinguishing patterns are generated [17], [18] and applied
to the DUD.

To reduce the number of suspects and the region under con-
sideration further, diagnostic pattern generation algorithms
have to be employed which exploit layout data [15].

IV. EXPERIMENTAL RESULTS

In this section, we discuss the diagnostic resolution of the
approach for known benchmark circuits and large industrial
designs and apply the algorithm to surrogate fault models.
The circuits used are the combinational parts of the largest
ISCAS89 and ITC99 benchmarks and the largest industrial
circuits we had available. The characterictics of the circuits
are given in table II. Column 2 denotes the number of two-
input gates in the circuit. The number of evidences in the
knowledge base equals the number of stucturally collapsed
stuck-at faults shown in column 3.

For comparison reasons, we present results for stuck-
at faults, and as a representative for general defects we
analyze stuck-open faults. Design errors are represented
by exchanging gate functions. At the end of this section,
performance data is given.

A. Single Stuck-at Fault Diagnosis

In this experiment, 100 test cases with randomly injected
detectable single stuck-at faults are diagnosed in each

circuit gates faults
s38417.FS 24079 32527
s38584.FS 22092 38945
b20.FS 22557 47964
b21.FS 23100 48812
b22 1.FS 24385 52931
b22.FS 33569 71365
b17.FS 37446 84737
b17 1.FS 44544 96092
b18.FS 130949 285210
p330k.FS 312666 558163
b19.FS 263547 575193
p286k.FS 332726 672496
p418k.FS 382633 715945
p388k.FS 433331 865000
p951k.FS 816072 1618672

TABLE II
CIRCUIT CHARACTERISTICS

circuit. A diagnosis run starts by applying first random
and then deterministic test patterns to the DUD until a
faulty behavior is encountered. If the algorithm finds fault
candidates f with e(f, T) = (σT , 0, 0, 0) and σT maxi-
mum, distinguishing patterns are generated until no further
distinguishing is possible. Table III shows the results.
Columns 1 and 2 denote the circuit and its number of
evidences, column 3 shows the average number of patterns
used for diagnosis. The achieved diagnostic resolution,
which is the average number of candidate fault classes, is
shown in column 4. For completeness, column 5 shows the
average rank of the fault in the DUD which is in this case
rank(s) = (s + 1)/2 with s being the number of suspects.

circuit evidences patterns suspects rank
s38417.FS 32527 1207.6 1.4 1.2
s38584.FS 38945 1153.6 1.1 1.1
b20.FS 47964 2234.0 1.1 1.1
b21.FS 48812 2385.9 1.2 1.1
b22 1.FS 52931 2164.7 1.2 1.1
b22.FS 71365 2678.2 1.1 1.1
b17.FS 84737 2696.5 1.4 1.2
b17 1.FS 96092 3989.3 1.2 1.1
b18.FS 285210 11037.8 1.4 1.2
p330k.FS 558163 11526.9 1.2 1.1
b19.FS 575193 12967.1 1.8 1.3
p286k.FS 672496 9673.3 1.2 1.1
p418k.FS 715945 7936.5 1.3 1.1
p388k.FS 865000 8976.8 1.5 1.3
p951k.FS 1618672 9825.6 1.1 1.1

TABLE III
PATTERN COUNT AND RESOLUTION OF SSA-FAULT DIAGNOSIS

The diagnosis for single stuck-at faults is complete, i.e.
the proposed approach provides an optimal resolution.
Here, the average number of fault candidate classes is
larger than one, because these classes were determined by
simple structural fault collapsing and ATPG has proven
the functional equivalence for more fault pairs during
diagnosis.

12th IEEE European Test Symposium (ETS'07)
0-7695-2827-9/07 $20.00 © 2007

B. Diagnosis of Stuck-Open Faults

Intra-gate stuck-open faults result in a transition fault at the
output signal of the faulty gate [28]. In this case, pattern
analysis leads to evidences e(f, T) = (σT , ιT , 0, 0) with
σT maximum and ι > 0 and ATPG is switched to generate
pattern pairs to provoke possible transition faults. Addi-
tionally, during fault distinguishing, neighboring signals
can be driven to different values to improve resolution for
possible bridging faults.

Table IV shows the average number of suspect fault classes
in column 4. The rank, which is shown in column 5, is
considerably lower than average because of the sorting by
ιT .

circuit evidences patterns suspects rank
s38417.FS 32527 1092.0 2.3 1.3
s38584.FS 38945 1118.8 2.4 1.1
b20.FS 47964 2172.9 4.7 1.1
b21.FS 48812 2349.4 3.9 1.1
b22 1.FS 52931 2142.2 4.2 1.1
b22.FS 71365 2837.2 3.5 1.1
b17.FS 84737 2766.7 3.1 1.0
b17 1.FS 96092 3977.5 3.3 1.1
b18.FS 285210 10871.2 4.2 1.2
p330k.FS 558163 11617.3 2.6 1.2
b19.FS 575193 13252.0 4.2 1.3
p286k.FS 672496 7249.9 4.0 1.1
p418k.FS 715945 8136.7 2.0 1.0
p388k.FS 865000 7235.5 3.2 1.1
p951k.FS 1618672 9643.0 3.8 1.1

TABLE IV
PATTERN COUNT AND RESOLUTION FOR STUCK-OPEN FAULTS

C. Debug of Design Faults

We now consider faulty designs in which one gate is of a
wrong type. Such faults behave like either one (figure 2)
or two conditional stuck-at faults. In the former case, the
algorithm encounters only evidences of the form e(f, T) =
(σT , ιT , 0, 0) and the strategy of the last section is used.
Two conditional stuck-at faults (AND replaced by XOR
for instance) result in an evidence of the form e(f, T) =
(σT , ιT , τT , 0) with σT maximum, ιT > 0, τT > 0. In this
case, all other evidences with σT > 0, ιT > 0 and τT > 0
are included in the suspect list, which is then sorted first
by decreasing σT then by increasing ιT .

Table V shows the resulting average number of suspect
conditional faults in column 4. This number is much higher
in this case, because every evidence with σT > 0 is
included as soon as the algorithm detects a multi-site fault
by observing positive τT among the top-ranked suspects.
The average rank of the evidences leading to the faulty
gates (column 5) is only marginally affected by this high
suspect count.

D. Pattern Analysis Performance

Table VI shows the performance characteristics of the pat-
tern analysis implementation. Well known fault simulation

circuit evidences patterns suspects rank
s38417.FS 32527 1874.3 47.3 1.6
s38584.FS 38945 1503.5 67.6 1.1
b20.FS 47964 2963.7 417.6 1.4
b21.FS 48812 3191.2 619.8 1.3
b22 1.FS 52931 2482.3 211.7 1.2
b22.FS 71365 3523.7 555.2 1.8
b17.FS 84737 3123.8 342.8 1.1
b17 1.FS 96092 4292.2 326.2 1.3
b18.FS 285210 11531.0 301.1 1.7
p330k.FS 558163 16614.1 195.3 1.3
b19.FS 575193 18165.1 345.2 1.6
p286k.FS 672496 10740.0 167.6 1.2
p418k.FS 715945 11682.0 128.4 1.3
p388k.FS 865000 9264.6 265.9 1.5
p951k.FS 1618672 10347.7 256.6 1.8

TABLE V
PATTERN COUNT AND RESOLUTION OF GATE DEBUG

techniques [29], [30] have been adapted to backtrace value
changes of evidences through fanout-free regions and over
independent fanouts. Therefore, only about 10% of the
evidences need actually be simulated explicitly (column
3) to analyze a pattern. The values for all the remaining
evidences are derived from values of simulated evidences
in combination with observability considerations.

circuit evidences expl. sim. patterns/s
s38417.FS 32527 4909 388
s38584.FS 38945 4471 496
b20.FS 47964 3847 85
b21.FS 48812 3877 82
b22 1.FS 52931 4695 82
b22.FS 71365 5704 53
b17.FS 84737 6981 80
b17 1.FS 96092 7255 117
b18.FS 285210 25324 15
p330k.FS 558163 58258 15
b19.FS 575193 51560 8
p286k.FS 672496 70418 12
p418k.FS 715945 71610 13
p388k.FS 865000 102805 9
p951k.FS 1618672 206766 6

TABLE VI
PATTERN ANALYSIS PERFORMANCE

Column 4 shows the achieved pattern analysis rate for all
evidences using a single-threaded implementation which
runs on an AMD Opteron(tm) 850 2.4 GHz. We observe
a much better performance for the industrial circuits com-
pared to ITC99 benchmarks due to their shorter average
path lengths. Figure 4 underlines this observation and
furthermore shows a linear complexity of the proposed
algorithm.

V. CONCLUSION

A novel approach to adaptive diagnosis has been presented
which combines a new effect-cause pattern analysis al-
gorithm with high-resolution ATPG. The pattern analy-
sis does not rely on SLAT-patterns, tolerates unmodeled

12th IEEE European Test Symposium (ETS'07)
0-7695-2827-9/07 $20.00 © 2007

 0

 2

 4

 6

 8

 10

 0 100 200 300 400 500 600 700 800 900

an
al

ys
is

tim
e

(s
/b

lo
ck

)

gates (*1000)

ISCAS89
ITC99

industrial designs

Fig. 4. Analysis times for blocks of 64 patterns

behavior and therefore enables fault model independent
diagnosis. By applying this approach to some diagnosis
and debug problems, it has been shown, that the resolution
is excellent for the used surrogate faults and an effective
ranking is provided for unmodeled behavior.

VI. ACKNOWLEDGEMENT

This work has been funded by the DFG under contract WU
245/4-1.

We would like to thank Guenter Bartsch for his support
during development of the first ideas for this approach
and Christian Zoellin for many enlightening and clarifying
discussions in later stages.

REFERENCES

[1] K. C. Chen, “Assertion-based verification for SoC designs,” in
Proceedings 5th International Conference on ASIC, Vol. 1, 2003,
pp. 12–15.

[2] R. Klein and T. Piekarz, “Accelerating functional simulation for
processor based designs,” Mentor Graphics Corporation, white
paper, 2005.

[3] T. Fitzpatrick, “Realizing advanced functional verification with
questa,” Mentor Graphics Corporation, white paper, 2005.

[4] K. Roy, T. M. Mak, and K.-T. T. Cheng, “Test consideration for
nanometer-scale CMOS circuits.” IEEE Design & Test of Comput-
ers, vol. 23, no. 2, pp. 128–136, 2006.

[5] A. Krstic, L.-C. Wang, K.-T. Cheng, J.-J. Liou, and M. S. Abadir,
“Delay defect diagnosis based upon statistical timing models -
the first step.” in 2003 Design, Automation and Test in Europe
Conference and Exposition (DATE 2003), 3-7 March 2003, Munich,
Germany, 2003, pp. 10 328–10 335.

[6] C. L. Henderson and J. M. Soden, “Signature analysis for IC
diagnosis and failure analysis.” in Proceedings IEEE International
Test Conference 1997, Washington, DC, USA, November 3-5, 1997,
1997, pp. 310–318.

[7] D. B. Lavo, B. Chess, T. Larrabee, and I. Hartanto, “Probabilistic
mixed-model fault diagnosis.” in Proceedings IEEE International
Test Conference 1998, Washington, DC, USA, October 18-22, 1998,
1998, pp. 1084–1093.

[8] J. W. McPherson, “Reliability challenges for 45nm and beyond.” in
Proceedings of the 43rd Design Automation Conference, DAC 2006,
San Francisco, CA, USA, July 24-28, 2006, 2006, pp. 176–181.

[9] C. Hora, R. Segers, S. Eichenberger, and M. Lousberg, “An effective
diagnosis method to support yield improvement.” in Proceedings
IEEE International Test Conference 2002, Baltimore, MD, USA,
October 7-10, 2002, 2002, pp. 260–269.

[10] M. Riley, N. Chelstrom, M. Genden, and S. Sawamura, “Debug of
the CELL processor: Moving the lab into silicon,” in Proceedings
IEEE International Test Conference 2006, Santa Clara, CA, USA,
October 24-26, 2006, 2006, p. 26.1.

[11] T. Arnaout, G. Bartsch, and H.-J. Wunderlich, “Some common
aspects of design validation, debug and diagnosis,” in Third IEEE
International Workshop on Electronic Design, Test and Applications
(DELTA 2006), 17-19 January 2006, Kuala Lumpur, Malaysia,
2006, pp. 3–10.

[12] H.-J. Wunderlich, “From embedded test to embedded diagnosis,” in
Proceedings European Test Symposium, Tallin, Estonia, 2005, pp.
216–221.

[13] M. Abramovici and M. A. Breuer, “Fault diagnosis based on effect-
cause analysis: An introduction,” in 17th Conference on Design
Automation, June 1980, 1980, pp. 69–76.

[14] J. A. Waicukauski and E. Lindbloom, “Failure diagnosis of struc-
tured VLSI,” IEEE Design & Test of Computers, vol. 6, no. 4, pp.
49–60, Aug 1989.

[15] R. Desineni, O. Poku, and R. D. S. Blanton, “A logic diagnosis
methodology for improved localization and extraction of accurate
defect behavior,” in Proceedings IEEE International Test Confer-
ence 2006, Santa Clara, CA, USA, October 24-26, 2006, 2006, p.
12.3.

[16] M. E. Amyeen, D. Nayak, and S. Venkataraman, “Improving
precision using mixed-level fault diagnosis,” in Proceedings IEEE
International Test Conference 2006, Santa Clara, CA, USA, October
24-26, 2006, 2006, p. 22.3.

[17] A. G. Veneris, R. Chang, M. S. Abadir, and M. Amiri, “Fault
equivalence and diagnostic test generation using ATPG.” in Pro-
ceedings IEEE International Symposium on Circuits and Systems,
2004, 2004, pp. 221–224.

[18] T. Bartenstein, “Fault distinguishing pattern generation.” in Pro-
ceedings IEEE International Test Conference 2000, Atlantic City,
NJ, USA, October 2000, 2000, pp. 820–828.

[19] N. K. Bhatti and R. S. Blanton, “Diagnostic test generation for
arbitrary faults,” in Proceedings IEEE International Test Conference
2006, Santa Clara, CA, USA, October 24-26, 2006, 2006, p. 19.2.

[20] V. Boppana and M. Fujita, “Modeling the unknown! Towards
model-independent fault and error diagnosis.” in Proceedings IEEE
International Test Conference 1998, Washington, DC, USA, October
18-22, 1998, 1998, pp. 1094–1100.

[21] I. Pomeranz and S. M. Reddy, “On the generation of small dictionar-
ies for fault location,” in IEEE/ACM International Conference on
Computer-Aided Design, ICCAD92, November 8-12, 1992, Santa
Clara, CA, USA, 1992, pp. 272–279.

[22] V. Boppana, I. Hartanto, and W. K. Fuchs, “Full fault dictionary
storage based on labeled tree encoding,” in 14th IEEE VLSI Test
Symposium (VTS’96), April 28 - May 1, 1996, Princeton, NJ, USA,
1996, pp. 174–179.

[23] B. Chess and T. Larrabee, “Creating small fault dictionaries,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 18, no. 3, pp. 346–356, Mar 1999.

[24] Y. Gong and S. Chakravarty, “On adaptive diagnostic test genera-
tion,” in Proceedings IEEE International Conference on Computer-
Aided Design, November 1995, 1995, p. 181.

[25] T. Bartenstein, D. Heaberlin, L. M. Huisman, and D. Sliwinski,
“Diagnosing combinational logic designs using the single location
at-a-time (SLAT) paradigm.” in Proceedings IEEE International Test
Conference 2001, Baltimore, MD, USA, 30 October - 1 November
2001, 2001, pp. 287–296.

[26] L. M. Huisman, “Diagnosing arbitrary defects in logic designs using
single location at a time (SLAT),” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 23, no. 1, pp.
91–101, January 2004.

[27] R. Ubar, “Design error diagnosis with resynthesis in combinational
circuits,” Journal of Electronic Testing: Theory and Applications,
vol. 19, pp. 73–82, 2003.

[28] X. Fan, W. Moore, C. Hora, and G. Gronthoud, “Stuck-open
fault diagnosis with stuck-at model,” in Proceedings European Test
Symposium, Tallin, Estonia, 2005, pp. 182–187.

[29] J. A. Waicukauski, E. B. Eichelberger, D. O. Forlenza, E. Lind-
bloom, and T. Mc-Carthy, “Fault simulation for structured VLSI,”
VLSI Systems Design, vol. 6, no. 12, pp. 20–32, Dec 1985.

[30] M. H. Schulz, Testmustergenerierung und Fehlersimulation in
digitalen Schaltungen mit hoher Komplexität, ser. Informatik-
Fachberichte. Springer, 1988, vol. 173.

12th IEEE European Test Symposium (ETS'07)
0-7695-2827-9/07 $20.00 © 2007

