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A b s t r ac t  In this paper a new scheme for mixed mode scan-based BIST is presented with 
complete fault coverage, and some new concepts of folding set and computing are introduced. 
This scheme applies single feedback polynomial of LFSR for generating pseudo-random pat- 
terns, as well as for compressing and extending seeds of folding sets and an LFSR, where we 
encode seed of folding set as an initial seed of LFSR. Moreover these new techniques are 100% 
compatible with scan design. Experimental results show that the proposed scheme outperforms 
previously published approaches based on the reseeding of LFSRs. 

Keywords  BIST, random pattern testing, LFSR, folding set, encoding seed 

1 I n t r o d u c t i o n  

With the development of IC technology at a high speed and embedding different types of cores into 
single devices (system-on-a-chip), integrated circuit testing is facing many  challenges, in which these 
highly-integrated circuits decrease controllability and observability of components.  The scan-based 
built-in self-test method offers a comprehensive test solution. Therefore BIST (Built-In-Self-Test) 
technology has become a hot topic in recent years. 

For conventional IC testing, a number of powerful BIST techniques have been developed in the 
past. For example, pseudo-random testing [tl can efficiently generate pseudo-random patterns on 
chip using linear feedback shift registers (LFSRs). Its s tructure of pa t tern  generator is simple and 
hardware overhead is low. But it is difficult to achieve guaranteed levels of fault coverage, especially 
for circuits containing random-pat tern  resistant faults. Test point insertion[ 2-41 and weighted random 
testing techniques [5-s] have been proposed to address this problem. Test points may be inserted to 
parti t ion the circuit to introduce extra control or observation points, such tha t  the modified circuit 
becomes easily testable. Very high fault coverage is the main advantage of this technique. However, 
this introduces a significant area overhead, and may deteriorate circuit performance during normal 
operation. In weighted random testing, weight circuits are used to bias a pseudo-random sequence 
using precomputed weight sets to reduce test length. The combinational logic overhead of weighted 
random generators may be high and also adversely degrade normal circuit performance. 

A multiple seed LFSR scheme [91 uniformly draws pat terns  from the entire space producible by the 
LFSR via automatical ly changing seed circuit and suitably decreases testing time. But the random 
pat tern  generator requires four latches and an Exclusive-OR gate for each LFSR stage, and its shift 
register must be the same length as the scan chain under test circuits, so that  the hardware overhead 
of the generator is ra ther  large for including long scan chain. Moreover, the random change of seed is 
used to a certain degree, and thus the complete fault coverage cannot be obtained within reasonable 
testing time for some circuits. To address the issue of achieving high fault coverage with reasonable test 
application time, common approaches are the mixed-mode BIST, which focus on characterization of 
complete test sets. LFSRs with multiple seeds or reconfigurable feedback polynomials [1~ can reduce 
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the area needed for storing a compact test set and the test length. However, with the increasement of 
the number of polynomials, the structure of pa t tern  generator becomes complicated, thereby overhead 
is increased. The deterministic patterns are either stored on chip in a compressed format  and expanded 
during BIST ("store and generate") or directly embedded into an LFSR sequence by "bit-fixing" or 
"bit-flipping" techniques [la-151. It has been demonstra ted that  bit-fixing and bit-flipping can provide 
high-quality test pat terns  at low hardware overhead. However, the BIST architecture is extremely 
tailored to the specific circuit, and a change in the test set requires a resynthesis of the complete BIST 
hardware. 

In this paper, we present a novel test pat tern  generator using biseed compression. A unique small 
LFSR is used to generate pseu(to-random patterns.  Moreover the same LFSR is loaded with seeds 
that  are of both LFSR and folding sets to generate test pat terns for diffficult-to-test faults, where 
the output  of LFSR which feeds a scan path  is modified by a folding controller. We can compact a 
deterministic .test set widely via encoding seeds of folding sets, and apply folding techniques further 
to reduce the stored number of the test pat terns and get a small seed set. The encoding seeds of 
folding sets are similar to the width compression of test cubes[ 16] but it is mainly different from the 
width compression that  can be compatible with scan design. For the seeds of folding sets including 
don' t -care bits we can select the degree of feedback polynomial less than Sm~• maximal  number of 
specified bits in the seed sets [t~ Experimental  results show that  the proposed scheme outperforms 
previously published approaches based on the reseeding of LFSRs[ tll. 

2 F o l d i n g  S e t  a n d  D e t e r m i n i s t i c  B I S T  

As mentioned in Section 1, most of the known approaches for deterministic or mixed mode BIST 
are buitt around basic pa t te rn  generators like LFSRs[ l~  15.2~I. In this section, a new type of generator, 
called folding set generator, is introduced. The generator is similar to pseudo-pat tern generator with 
an LFSR, and a folding controller is added to the output  of the generator to modify bit flow and 
generate folding sets. All deterministic test pat terns can be embedded into processes of the folding 
set generation. 

Folding order: 0 1 2 3 4 

l:0001 1110 1001 ~ 1010 1011 \ 
2:0010 
3:0011 
4:0100 
5:0101 
6:0110 

Initial seeds ---~i 7 :0 l l l  i ~  
i 8:1000: 
i 9:1001 
ii0:1010 
ii1:1011 
i12:1100 
i13:1101 
!14:1110 
115:1111 

1101 10[0 A folding set 
ll0___Q ~ 1011 
1011 
1010 
1001 
1000 
0 i l l  
0110 
0101 
0100 
0011 ~ 0100 
0010 0101 
0001 0110 ~ t  / 0101 0100 
0000 0111 0100 ~ /  0101 

Fig.1. Folding set forming, 

Folding set is a new set, which can be formed by half-and-half folding an ordered set T = {0, 1}% 
A simple example is shown in Fig.1. We can use an initial vector s ~ {0, 1}" to compute a sequence 
of n + 1 vectors F(0 ,  s), F(1,  s), . . .  F(i, s) , . . . ,  F(n, s), where for tile F(i, s) the initial vector s can 
be folded i times tha t  the folding compute inverts the odd bits and retains the even bits from the first 
bit to the i-th bit in s, in which the remaining bits from the i-th bit to the last bit are regarded as a 
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complete bit. A folding set of Fig.1 is shown in Table 1. 
Compared to .classical generators the folding set sequence produced from a single initial vector 

(seed) is rather short, and it is very unlikely that  a complete set of deterministic vectors can be 
embedded into a single folding set sequence. However, as it will be shown later, it is generally possible 
to find a reasonably small number of seeds, such that  the union of all the resulting sequences covers 
a given deterministic test set. This supports an efficient implementat ion of deterministic BIST, and 
in particular for scan-based BIST the basic architecture is very simple. As illustrated in Fig.2, the 
pat tern  generator consists:of a ROM (stored seeds), a shift register and a folding controller. 

Table 1. Folding Set Computing s = 0000 
Folding compute Folding vectors Folding times 

F(0, s) 0000 0 
Y(t , s )  l n l  1 
F(2, ~) tooo 2 
F(a,s) t0It  3 
F(4, s) tOlO 4 

To generate a folding set to the CUT during BIST a seed is loaded into the shift register and 
the T- type flip-flop is reset. The bit and folding counters are initialized as "1" and "0" respectively. 
If the bit counter value is smaller than the folding counter value, then output  of the comparator  is 
"1", so that  the state of T flip-flop is changed once after each clock plus, and the seed expanded by 
LFSR is alternately inverted and shifted into scan path,  else the s tate  is remains. As soon as a folding 
pat tern is completely shifted into scan path, the counter and T flip-flop ale reset as "1", and the 
folding counter is activated. This procedure is repeated until the folding counter has cycled through 
all states and the next seed can be processed. 

CUT 

Xn~---Ihift*regi;'t)le;l 0 1 ~ scan path ~ 

: Ic~176 counter~ folding I bit counter~[bit counter<folding counter 

Folding controller 

Fig.2. Basic deterministic BIST scheme for reseeding of folding sets. 

However, despite its simple and regular structure, the basic architecture of Fig.2 has one serious 
drawback: the shift register must have the same length as the scan chain, which may be unac- 
ceptable for larger circuits. To solve this problem the technique of encoding by seeds provides a good 
means [1~ As proposed in [11,12] the test sets are compressed by systematically exploiting the large 
number of unspecified bits in deterministic test sets. It  is proved that  a test pa t tern  t E {0, 1, - } ~  
with specified bits can be encoded as an initial seed of an LFSR with a very high probability, which 
is nearly independent of the pat tern  length n. For decoding such a pat tern,  the LFSR, which must be 
implemented anyway for pseudo-random pat tern  generation, is sufficient. Combining this technique 
with the architecture of Fig.2, we can encode seeds of folding sets and replace the shift register with 
a short LFSR, accordingly, the length of the folding seeds to be stored can be shortened consider- 
ably. A further reduction of the storage amount for folding seeds is obtained by extending the purely 
deterministic scheme to a mixed mode scheme which uses pseudo-random pat terns  to cover the easy- 
to-detect faults. To simplify the structure of the pat tern  generator in this scheme, we apply a unique 
polynomial of LFSR to generate pseudo-patterns and encode the seeds. Moreover, the degree of the 
LFSR may be smaller than the maximal specified bit Sma• = max{s(t)]tT}, where T is the deter- 
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CUT 

scan path ~ 
LFSR 

~ _ ~  Folding 
[ bit counter controller: 

Fig.3. Architecture for mixed mode BIST 
based on reseeding of folding sets. 

ministic test set for the hard-to-detect  faults. The result- 
ing architecture, which is the target  architecture for the 
remainder of this paper, is shown in Fig.3. 

The generator with an LFSR is merely different from 
Fig.2. During generating a complete folding set the seed 
of the LFSR stored in the ROM must be repeatedly 
loaded after shifting a pat tern  into the scan path so that 
for the folding compute of the folding set, the same seed 
of the folding set can be provided. While the next folding 
set is computed, a new seed must be loaded. To synthe- 
size and optimize the architecture of Fig.3 for a particular 
circuit, the following problems have to be solved. 

1) A suitable feedback polynomial for a pseudo-random test has to be identified and an efficient 
encoding scheme for folding'set seeds using the same polynomial LFSR has to be determined [lz]. 

2) A minimal number of seeds for the folding sets has to be generated, such that  the produced 
folding set sequences contain the seed-encoded deterministic test set for the hard faults. 

For the second problem a more thorough understanding of the nature of folding set sequences is 
required. Therefore the next section first provides the necessary theoretical background before the 
complete synthesis procedure and experimental results are presented in the subsequent sections. 

3 Folding Sets Theoretical Background 

In order to completely comprehend the folding set, in this section, we introduce formal definitions 
and some properties of the folding set, and present some new concepts about folding relation, distance 
and seed. These can help efficiently compact deterministic test patterns. 

D e f i n i t i o n  1 (Fo ld ing  C o m p u t e ) .  x E {0,1} n is a vector x = x t x 2 . . . x i . . . x ~ .  Let  -~Jxi 
denote logic N O T  j o f  variable xi  that  the logic N O T  t ime is j f o r  the x i .  [ f  j is an even number, 
we have - ,Jxi  = x i ,  otherwise - ,Jxi  = - ,xi .  Let  F ( k , x )  be a folding compute  on k t imes  o f  the x .  Its 
f o r m a t  is 

F ( k , x )  12[-~i"~(i'k)x, ( inv(j ,k) ~ i, if i < k =  9 = ) ( 1 )  
i=i ( k, else 

Example  1. x = 1001, k = 3, F(3, x) = --i1-,~0~30~31 = 0010 
D e f i n i t i o n  2 (Fo ld ing  Se t ) .  I f  a vector w E {0, 1} ~ is computed by (1) n + 1 t imes  to generate 

n +. 1 vectors, the n + 1 vectors make  up a set. The set is called the folding set. I ts  f o r m a t  is 

F~ = { x k [ r ( k , x ) , k  = 0 . . . n }  (2) 
Example  2. 

x = 0110 = > F  m= {0110, i001,1110,1101,1100} 

D e f i n i t i o n  3. (Fo ld ing  Set  Seed) .  I f  x E {0, 1} n is folded to compute n + 1 t imes  by (1) to 
generate  a folding set  F~, then the x is called a seed o f  the folding set  Fx.  

D e f i n i t i o n  4 (Fo ld ing  R e l a t i o n ) .  A s s u m e  x = X l X 2 . . .  xn and y = y I Y 2 . . ,  y n ( x  ~ y) are two 
e lements  o f  a set T E {0, 1} n. Let  x • y  = z o f  the f o r m  Zl Z2 . . .  zp -  t zp . . . z i -  t zi  9  9 zn where 1 < i < n, 
1 <_ p < i. I f  in the z the zi . . .  z,~ bits are the same digital bits (all "0" or "1"), ZlZ2 . . .  zp-1 = 0 0 . . .  O, 
and the z p . . .  z i -1  bits are not  the same digital adjacent bits (or odd bit is "I"  and even bit is "0"), 
x and y are a pair  o f  folding relation and the relation is denoted as xFy.  The bit posi t ion i exactly 
corresponds to the folding computing t ime in (1). 

D e f i n i t i o n  5 ( F o l d i n g  D i s t a n c e ) .  I f  x,  y E {0, 1} ~ are xFy, the bit i in the defini t ion of  folding 
relation is defined as folding distance o f  the xFy.  D denotes the distance. 

Example  3. 
Assume x = 0011, y = 1000 and xFy .  If z = x ~ y = 1011, the bit i is 3 and folding distance D of 



No.2 A Mixed-Mode BIST Scheme Based on Folding Compression 207 

the x F y  is 3. 
T h e o r e m  1. I f V x ,  y E {0, 1} ~ are a pair of  folding relation xF y, then there exists a seed s E {0, 1} ~ 

and x,  y belong to the folding set E s. 
Proof. Let x = x lx2 . . . x . ,~  a n d y =  YlY2 . . .Y ,~ (x  ~ y) be x F y ,  z = x G y i s  of the  form ( z~ , . . . ,  

zp-1,  z p , . . . ,  z~- l ,  z~ , . . . , z~ )=as  defined above,  then  the re  are z lz2  . . . z p - 1  = 0 0 . . . 0  and  zk --  zk+l = 
. . . .  z~. The  folding d i s tance  of the x F y  is D = k (k = 1 , . . . ,  n).  

We can select a seed 

s = r i  ~inv(i,k)z~ (a) 
i=1  

By (1) we get: 

n n /i F ( / % s )  = -nlnv(i'k)s i = ~inv(i 'k)~inv(i 'k)x i = ~2*ilv(i'k)Xi = x by(3)  
i=1  i=1 i = i  

If zp is the  first non-zero bi t  in zlz2 . . .  Zp-lZp  9 . . Z k - l _ Z k   9  9  9 Zn, where  1 < k < n, 1 _< p < k, we can 
get  z tz2   9 . .  Zp-1 = 0 0 . . .  0 and in ZpZp+ 1  9 . .  Zk_ 1 odd  bi ts  are  1 , even bi ts  are  "0" by the def ini t ion 
of folding re la t ion .  

A n o t h e r  s i tua t ion  we can compute  
n r~ 

F ( p - -  1 , ~ ) =  H ~  i n v ( i ' P - I )  s i = H~inv(i'P--1)-ninv(i'k)Xi 
i = l  i = I  

2-1 2*2 2*(p-- 1)~ ~p--14-p~ ~p--l+pq.-1 ~p--l-l-k--1 ~p--l+k 
~ XI~ X2 . . . ~ -Lp--I .Cp agp+ I . . . dik_ I 2g k . . . -nP--l+kx n 

2*p--i 2*p 2*p+k--p--2 2*p-bk~p-- 1 2*pq-k--p--i 
XlX 2 , , , a71)--i~ Xl)~ XpnUl , , . X~c--I~ Xk . , . ~ X n 

=y 

If the  difference k - p  is even by the above formula,  then  zk-1 = 0 and  zk . . . . .  ,~ - 1 . . .  1, else zk-1 = 1 
and zk .   9 z~, = 0 . . .  0 by the  definit ion of folding re la t ion.  

As a resul t  of F ( k ,  s) = x and F ( p  - 1, s) = y, x and  y be long to the  folding set of F~. 
F rom the  p roo f  process of the Theorem 1 proof  vec tor  x or y can be  a lways  go t t en  via  the  folding 

compu te  of seed s. The  seed s of (3) is se lected only according  to the  folding d i s tance  of x F y  and  
vector  x or y. 

T h e o r e m  2. / f X  = {x i lx i  C {0 ,1}n , i  = 1 , . . . , r n }  is a set and in the set X there exists an 
e lement  e with which there are folding relations f o r  all other  e lements  and its folding distances with all 
other e lements  are the same, then there surely exists a seed s E {0, 1} n and the set X is included in 
the folding set F~. We call the e lement  e max imal  distance e lement  and the set X the folding subset 
o f  the F , .  

Proof. Vx  E X E {0, 1}~(x r e) there  is a pa i r  of folding re la t ion  eFx ,  In t e rms  of Theorem 1 we 
can o b t a i n  a seed s E {0, 1} '~ and e, x belongs to the  folding set F , .  In  the  p roo f  process  of Theorem 
1 the seed s can be selected only according to the  folding d i s tance  of the  e lement  e. In the  set X all 
o ther  e lement  folding dis tances  wi th  the  e lement  e are  the  same, then  the  seeds wi th  all o ther  e lements  
are the  same seed s. So the set X is inc luded in the  folding set F , .  

Example  4. Set  X is {xl  = 0011, x2 = 1000, x3 = 1001}. In the  set X ,  xa is the  ma x ima l  d i s tance  
e lement ,  as d i s tances  of xaFx 1 and xaFx2 are 4, respect ively.  Seed s gene ra t ed  by element  x3 is 
"0011". F ,  is {0011, 1100, 1011, 1000, 1001} and the  set X C_ F , .  
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4 The  Complete  Synthesis  Procedure  

4.1 Generation of Test Folding Set 

4.1.1 IVIethod of Searching Folding Subset 

For test set T ~ {0, 1} ~ and T = {to, t l , . . . ,  tin}, according to the judgment condition of folding 
relation we can search out all folding relations between test vectors in the set T and construct a graph 
G(V, E). The vertex set V denotes all test v~ectors of the set T. The edge set E expresses the folding 
relation between test vectors. The digit on the edge is the folding distance. From G we can get all 
complete subgraphs. If in the subgraph there exists a maximal distance element, then the subgraph 
is a folding subset on the basis of Theorem 2. The seed of the folding subset can be generated by the 
maximal distance element in terms of the proof of Theorem 1. 

4.1.2 Cover of Test Set T 

Above we can obtain all folding subsets in the set T. From these folding subsets a minimal cover of 
the set T can be found. The searching minimal cover of the set T can be mapped to solve the problem 
of set cover. Usually, there are some project methods. Examples are the extraction algorithm [ls], the 
greedy algorithm [19,2~ and so on. 

Example 5. Test set T is 
~1 X2 X3 X4 

tl 0 0 1 1 
t2 0 1 1 0 
t 3 1 0 0 0 
t4 1 0 0 1 
t5 i I I 0 

In Fig.3 the folding relation graph of the set T is shown. 
tl 4 A minimal cover found in 

t s ~  t2 

t3 
Fig.4. Folding relation graph of set T. 

Fig.4 is {cl, c2}. The ct = {tl,t3,t4} 
and c2 = {t2,t4,t5} are two folding subsets. Their maximal dis- 
tance elements are t4 ----= 1001 and t5 = 1110 respectively. Seed sl 
of c1 is "0011". Seed s2 of c2 is "0110". The maximal distance of 
{q,  c2} is 4 of cl. 

All test vectors generated are: 

Fsz =~ {0011, 1100, 1011, 1000, 1001} 
Fs2 ~ {0110, 1001, 1110, 1101, 1100} 

4.2 Encoding Strategy of  Folding Seeds 

For a deterministic test set T C {0, 1 , - }n ,  in which not all bits of test patterns are specified, 
merging the test patterns in the set T into larger folding subsets is with a very high probability. 
Usually, they contain a very large number of don't-care bits that can be utilized for optimizations 
and it is easy to extend the folding method for the incompletely specified patterns, moreover the 
seeds gotten by the folding method can yet include many don't-care bits, with which we can further 
compress the seed sets to use encoding technique [n'12'17]. Here we have two encoding schemes: 

i. At first we find out all folding subsets and select a minimal cover from the deterministic test set 
T, and then encode the seeds of the folding sets in the minimal cover. 

ii. We encode all possible seeds for each pattern of the set T, and then based on the encoded seeds 
we generate all folding subsets and obtain a minimal cover. 

In the first scheme we can obtain a smaller number of folding set seeds than the second one, but 
the number of don't-care bits in the seed vectors is reduced, as the folding relations among the test 
patterns in the folding subset restrain some don't-care bits that X are fixed appropriately. Along with 
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the growth of specified bits in the seed vector we must increase the degree of encoding polynomial to 
satisfy the high probability of encoding, such that  the efficiency of compressing seeds is decreased. 

@ 
"T 

]Select LFSR, N I 
§ 

] Fault simulation of N random patterns, ATPG for Fhard t 
+ 

I Encoding all seeds for each Fhard pattern ] 

Yes 

I Minimize number of fold~in~seeds to cover Fhard I 

NO ~ --------:~., .._~,____~ ST a c e e p t a b l ~  

Fig.5. Complete synthesis algorithm. 

For encoding seeds of each test pat tern  of the set T in the second scheme we can decrease signifi- 
cantly the degree of the feedback polynomial (length of LFSR). We use the encoded seeds that  all bits 
are fixed in a seed vector to find all folding subsets. In terms of the folding seed generation method 
(3) in the proof process of Theorem 1 for an n-bit  test vector that  is completely specified we may get 
n + 1 seeds. Therefore a test vector may be included in n + 1 folding sets. Moreover if we apply a 
test vector with s specified bits to generate seeds, we may get s + 1 seed vectors with s specified bits. 
The test vector can be generated by the generator in Fig.3 if only we encode a seed vector successfully 
in the s + 1 seed vectors. This encoding scheme permits  the degree of encoding polynomial to be 
less than the maximal  specified bit Sm~• with the high probabili ty of encoding. Although in the first 
scheme there is a smaller number of seeds, the second scheme gains advantage over the first scheme 
on totally compressing a deterministic test set T. Therefore we select the second scheme as the final 
encoding scheme. 

4.3 S y n t h e s i s  P r o c e d u r e  R e a l i z a t i o n  

In Fig.5 the complete synthesis procedure for the proposed BIST architecture can be summarized 
by the flow chart. It  basically consists of the following main steps: 

1. The feedback polynomial for the LFSR and the desired number N of random patterns are 
selected. The first N patterns of the LFSR sequence are fault simulated to determine the set Fhard of 
random pattern resistant faults. 

2. A set of deterministic test cubes T C {0, I, -}~ for 2~hard iS generated by ATPG tool, and all 
possible seed encoding of folding sets are performed applying the algorithms proposed in [17], where 
the seed width is compressed. 

3. The algorithm described above is applied to solving the folding cover problem. 
Since the seed storage amount for the proposed BIST scheme may depend on both the choice of the 

LFSR and the number of random patterns, the complete procedure may be iterated with a different 
choice of these parameters. 
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5 Experimental Resu l t s  

A series of experiments have been performed with the ISCAS-85 and the combinational parts of the 
ISCAS-89 circuits [22'23]. Only circuits which still have undetected faults after 10000 random patterns 
are analyzed in further detail. To generate the deterministic test cubes for hard faults a proprietary 
ATPG tool is used with the option to minimize the number of specified bits. 

The first experiment focuses on the basic scheme of Fig.2 without seed encoding. In this case the 
pattern generator requires a shift register of the same length as ~the scan path. The LFSR for random 
pattern generation is chosen of the same de~ee. Table 2 shows the results. 

The names of the circuits and the number of pseudo-primary inputs (lengths of the scan chains) 
are given in columns one and two. The third column shows the number of folding seeds necessary to 
guarantee complete fault coverage after 10000 random patterns. The overall number of bits to store 
the folding seeds is given in the last column labeled with ROM. 

Table 2. Results for the Basic Scheme of Fig.2 
Circuit #PP[s LFSR Seeds ROM 
s420 34 34 6 204 
s641 54 54 2 108 
s713 54 54 2 108 
s838 66 66 25 1650 
s953 45 45 2 90 
s1196 32 32 23 736 
s1238 32 32 28 896 
s5378 214 214 11 2354 
s9234 247 247 47 11609 
si3207 700 700 27 18900 
s15850 611 611 30 18330 
s38417 1664 1664 90 149760 
s38584 1464 1464 22 32208 
c2670 233 233 22 5126 
c7552 207 207 43 8901 

It can be observed that for all cases a reasonably small number of seeds are sufficient to guarantee 
complete fault coverage. However, the long scan chains and the long shift registers producing the 
folding sets lead to a considerable amount of overall storage for larger circuits. To efficiently reduce 
the storage of seeds relying on seed encoding for folding set seeds with respect to this problem, the 
experiments are repeated for the scheme of Fig.3. Table 3 shows the results and compares them to 
the results achieved by competitive approaches published in [11] (HELL95). 

Again columns one and two show the names of the circuits and the number of pseudo-primary 
inputs. The next three columns list the length of LFSRs, the number of encoding polynomials 
that includes a polynomial of pseudo-pattern generation and the total number of bits to be stored 
("ROM(R)") for a mixed-mode BIST scheme based on reseeding of multiple polynomial LFSRs. 
Columns six, seven, eight and nine are dedicated to the proposed scheme using encoding and folding 
compression, they contain the length of LFSRs, the number of polynomial, the number of folding 
seeds and the total number of bits to be stored ("ROM(F)").  The last column presents the reduction 
as the ration of the storage requirements for the proposed biseed scheme and for the reseeding scheme. 

For our comparison we refer to published results for a mixed-mode BIST using 10000 pseudo- 
random patterns to eliminate the easy-to-detect faults. It can be observed that in almost all circuits 
the proposed scheme has smaller number of bits to store. Only for the two circuits, s38584 and c7552, 
the results based on the reseeding of multiple-polynomial LFSRs are superior, but for circuit c7552 
the reseeding scheme applies 11 polynomials to encode seeds of LFSRs, therefore these polynomials 
increase the complexity of encoding and the generator structure. In the proposed scheme for seed 
encoding and pseudo-pattern generation we only use a feedback polynomial of LFSRs and simplify 
generator structure. Furthermore, the most of lengths of LFSRs in this scheme are shorter than the 
reseeding approach, so that the overall hardware cost also contrasts favorably. 
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Table  3. Comparison of the Proposed Technique to the Reseeding of Multiple-Polynomial LFSRs 
Reseeding HELL95 Biseed FOLDING 

ROM(F) ROM(F)/ROM(R) Circuit ~ P P I s  LFSR Poly.s ROM(R) LFSR Poly.s Seeds 
s420 34 20 3 250 18 I i i  
s641 54 22 2 183 18 1 4 
s713 54 22 2 183 16 1 5 
s838 66 36 6 1623 33 1 44 
s953 45 15 4 141 15 1 2 
s1196 32 17 4 267 17 1 3 
s1238 32 17 4 249 17 1 4 
s5378 214 27 3 726 16 1 16 
s9234 247 61 8 6923 41 1 124 
s13207 700 24 6 3570 20 1 69 
s15850 611 46 6 6528 30 1 130 
s38417 1664 91 6 24283 42 1 505 
s38584 1464 70 3 3406 49 1 75 
c2670 233 60 5 3412 40 I 37 
c7552 207 i00 12 5241 131 i 79 

198 0.79 
72 0.39 
80 0.43 

1452 0.89 
30 0.21 
51 0.19 
68 0.27 

256 0.35 
5084 0.73 
1380 0.39 
3900 0.6 

21210 0.87 
3675 1.08 
1480 0.43 

10349 2 

6 C o n c l u s i o n s  

A new and efficient scheme for the scan-based BIST has been presented. This scheme applies 
the biseed compression technique, which encodes the folding seeds as the seed of LFSR, considerably 
reducing the storage amount for the folding seeds. Moreover the simple and regular structure of the 
pat tern  generator allows an efficient hardware implementation, such that  the overall scheme provides 
a flexible low cost solution for high-quality BIST. 

In this scheme we use a unique polynomial to encode seeds and generate pseudo-patterns,  but 
the polynomial is not the best feedback polynomial for a maximally effective pseudo-pattern test 
and encoding seed. If we combine an opt imum feedback polynomial for pseudo-pat tern test with a 
maximally effective encoding polynomial, we shall obtain bet ter  results. 
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