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Abstract∗∗∗∗
Functional BIST is a promising solution for self-testing

complex digital systems at reduced costs in terms of area
and performance degradation. The present paper
addresses the computation of optimal seeds for an
arbitrary sequential  module to be used as hardware test
pattern generator. Up to now, only linear feedback shift
registers and accumulator based structures have been used
for deterministic test pattern generation by reseeding.

In this paper, a method is proposed which can be
applied to general finite state machines. Nevertheless the
method is absolutely general, for sake of comparison with
previous approaches, in this paper an accumulator based
unit is assumed as pattern generator module. Experiments
prove the effectiveness of the approach which outperforms
previous results for accumulators, in terms of test size and
test time, without sacrifying the fault detection capability.

1. Introduction
To increase functionality, achieve higher performance,

and decrease cost, IC manufacters are actually moving
quickly towards very deep sub-micron technologies. From
one hand, the vast availability of gates permits the
integration of a variety of IPs, memories, processors, and
analog units on a single chip (System-on-Chip). On the
other hand, traditional testing approaches based on an
external ATE become more and more unfeasible. In fact,
the bandwidth gap between the I/O frequency and the very
high internal clock rate often prevents ATEs from testing
SoCs at speed. Moreover, the number of externally
accessible I/O pins, although counting up to several
hundreds, strongly limits the controllability and
observability of embedded cores.
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At the same time, the highly large scaled technology
make systems more susceptible to transient and
intermittent faults. Often, the target reliability levels
require a continuous on-the-fly monitoring, in-field, of the
system behavior.

In this scenario, Built-In Self Test (BIST) and, more in
general, Embedded Test, have been widely recognized as
effective approaches to SoC testing, moving on board the
main functionalities previously carried out by ATEs. In
traditional BIST architectures, test pattern generation is
mostly performed by ad-hoc circuitry, typically Linear
Feedback Shift Registers (LFSRs) [1] [2], cellular
automata [3], multifunctional registers, like BILBO [4].

The functional BIST test strategy, instead, exploits
functionalities and modules embedded into the system
itself for test pattern generation. In Figure 1, both module
Mi and module Mj are part of the system logic, and during
testing Mi is controlled in such a way that its outputs serve
as test patterns for module Mj. Typically, Mi is a
Sequential circuit used as Test Pattern Generator (STPG)
for a given Unit Under Test (UUT), in our case Mj.
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Figure 1: Functional BIST

In previous works, mainly pseudo-random and pseudo-
exhaustive test pattern generation has been investigated,
since accumulator based circuits for addition, subtraction,
multiplication and even more complex modules are able to
produce patterns with rather good random properties [5]



[6] [7] [8]. This technique was named as Arithmetic BIST
(ABIST) and is comprehensively described in [9].

 Most of the approaches presented so far use an
accumulator based structure as STPG and assume the UUT
being a combinational or full-scan network. [7] presents
two computation methods for the initial values (a
simulation-based and an analytic one) using a simple adder
as arithmetic unit. [10] and [8] include a theoretical
analysis of the use of various functional units mentioned
above as STPG. Very often, the UUT has random pattern
resistant faults, and applying random patterns does not
provide sufficient fault coverage. In these cases, a different
type of patterns should be applied, and in [5] an
accumulator-based method for generating pseudo-
exhaustive patterns has been proposed. As only a few
circuits are testable by pseudo-exhaustive patterns, a
method has been developed to control adder-based
structures so that they generate pre-computed deterministic
test patterns in an autonomous mode [11].

The present paper proposes a universal method to
control and initialize sequential structures so that they
work as an STPG for a given unit under test. Suitable test
sets are obtained by properly driving the STPG evolution,
thus minimizing hardware overhead.

The sequence of values appearing on the STPG outputs
is a function of the triplet (σ, δ, τ), as well as of the
arithmetic (or logic) function embedded into the block
(Figure 2). First the state register of the STPG is
initialized with an Initial state value (δ) and its Primary
Inputs (PIs) are fixed at an Input value (σ); then the STPG
is let evolve for a certain number of clock cycles (τ). The
Initial state and the Input value are often collectively
referred to as Seed of the STPG.

For sake of efficiency and flexibility, the STPG can be
periodically reseeded, stopping its evolution and restarting
it with a new triplet (σ, δ, τ)i until the target fault coverage
is reached. In such a case, the global test length is a
function of the number of reseedings:

Σ 0 ≤ i ≤ n τi .
When adopting a functional BIST approach, the

designer can trade-off between:
• Maximizing the fault coverage;
• Minimizing the overall number of reseedings, in order to

reduce the extra area needed to store the triplets (e.g., in
a ROM);

• Minimizing the test time, i.e., the global test length;
• Minimizing the complexity of the BIST controller, e.g.,

by selecting a proper common τ.
In the present paper, we propose a test synthesis

algorithm capable of achieving maximal fault coverage
with a minimal number of reseeding steps. A prototype
tool called GATSBY (Genetic Algorithm based Test
Synthesis tool for BIST applications) has been
implemented to experimentally validate the effectiveness

of the approach.  The work has been developed under the
following assumptions:
• The function performed by the STPG is known and both

its primary inputs and its state register are fully
accessible, e.g., via full scan;

• The netlist of the UUT is available;
• Single stuck-at faults are the target fault population;

Although the proposed method is absolutely general,
for sake of comparison with previous approaches,
experimental results have been carried out under the
conditions that:
• The UUT is either combinational of full-scan;
• The STPG is an accumulator based unit, including a

simple adder as arithmetic logic function.
Experimental results proved that GATBSY either

significantly reduces the global test length or minimizes
the number of reseedings. The overall structure of
GATBSY is presented in Section 2, while Section 3 better
details the Genetic Algorithms for computing the
reseeding set. Experimental results are discussed in
Section 4, and Section 5 eventually draws some
conclusions.
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Figure 2: The STPG

2. The Test-Synthesis Tool
Figure 3 sketches the overall architecture of the

implemented test synthesis tool, GATSBY; the
computation process runs through three different phases:
• We assume to run a gate-level ATPG in a preliminary

phase, in order to generate a target fault list (single
stuck-at fault model) and the relative deterministic test
set. In Phase 1 an ATPG Post Processor elaborates the
outputs of the ATPG, generating an instrumented test set
and a sorted fault list. By fault simulation, we compute
the detection capability of each pattern with respect to
the whole target fault list. The faults are sorted according
to their hardness to be tested, i.e., according to the
number of patterns each one is covered by. Both the
instrumented test set and notion about faults complexity
support the Phase 2 of the computation process.



• Phase 2 is the kernel of the test-synthesis tool. The
Triplets generator aims at computing a minimum set of
triplets (σ, δ, τ)i needed to cover the whole sorted fault
list. The computation is performed resorting to a
procedure based on Genetic Algorithms, where the
goodness of each triplet is evaluated by fault simulating
on the UUT the outputs produced by the STPG, when it
is initialized by (σ, δ)i and let run for τi clock cycles. The
instrumented test set computed in the previous phase,
instead, supports the computation opportunely driving
the GA evolution. The STPG evolves adding, at each
clock cycle, the value σ to the content of its state
register. The state register value is a test pattern for the
UUT. For a complete analysis about properties of
patterns generated by simple adder refer to [8]. The
implemented Genetic Algorithm will be detailed in
Section 3.

• In Phase 3 a triplet optimizer eventually post-processes
the set of triplets generated in the previous phase, aiming
at improving it according to a set of predefine
optimization parameters (e.g., fault coverage, global test
length, number of triplets). During the optimization
process, first the triplets are fault-simulated for a large
number of clock cycles, trying to minimize the size of
the set. Then, the triplets are fault-simulated in reverse
order, having as a goal the reduction of the global test
length.
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Figure 3: The test-synthesis tool architecture

3. The Genetic Algorithm
Genetic Algorithms (GAs) [12] aim at evolving a

population of individuals in order to increase their
goodness (fitness). The population evolves through
generations, based on a mechanism that mimics Nature. In
each generation, the reproduction is performed by the
exchange of genetic material (crossover, mutation), and
the new individuals must compete with their parents for
survival: only individuals having higher fitness values will
appear in the next generation. The population

improvement is based on the capability of generating
individuals able of inheriting and merging the best
characteristics of their parents.

To exploit the GAs in our specific application, we
encode an individual as a single triplet; the population is
thus a set of candidate triplets, and the evolution process
aims at improving the goodness of all of them with respect
to the evaluation parameters. At the end of the
computation process, the optimal solution is extracted
from the last population as a minimal subset of triplets
guaranteeing the coverage of all the target faults.

The developed GA is structured in two nested main
loops (Figure 4). The inner one traces a typical GA
structure: at each generation a set of new individuals
(triplets) is created, starting from existing ones, through
the evolution rules (line 3). Then the quality of the
individuals is assessed (line 4) and the fitness functions
values are used to rank the population (line 5).

As pointed out before, the GA-based tool works toward
reaching the 100% target fault list coverage. To further
guide the GA evolution, we embed the quite standard inner
loop into an ad-hoc defined outside loop. Based on our
approach, the GA focuses first on a small subset of very
complex faults. Then, whenever one execution of the inner
loop ends, an incremental percentage of easier faults is
targeted by the GA (line 2), and eventually the whole
target fault list is take into account. The “incremental”
fault list strategy allows a sort of tuning process, in which
the population is first customized on hard faults, and it is
progressively slightly modified to detect easier ones, as
well.

The GA evolution takes advantages from the pre-
processing elaboration of Phase 1. To set up an individual,
a pattern is extracted from the instrumented test set and it
is used as Initial state value (δ) of the triplet, where the
Input value (σ) is chosen randomly. This technique is used
to initialize the first population (line 1), and later to
generate, during the reproduction process, a subset of new
individuals (line 3). Rather than starting from a random
population, the GA can therefore immediately starts
dealing with a set of already good individuals, and work to
improve them.

1:Population initialization
  do{/*outside loop*/
2: Update the set of addressed faults
   {/* inner loop*/
3:  Compute new Individuals (σ, δ, τ)i
4:  Compute Fitness
5:  Select the next Population
6:  generation ++;

 }until generation < MAX
7:}until not addressed all the faults

Figure 4: Genetic Algorithm skeleton



3.1. Evaluation Parameters and Fitness Function
The fitness function is expressed as goodness of the test

set obtained processing the triplet by means of the STPG.
When computed, the test set is fault simulated according to
a target fault list, and using a standard gate-level event-
driven fault simulator. During the fault simulation process
three different evaluation parameters are measured:
• The fault coverage value, expressed as percentage of

covered faults on the target fault list.
• The circuit sensitization parameter, to estimate how near

the test set is in increment its actual fault coverage. The
circuit sensitization is the number of logic differences
between the good and faulty machine injected by a
pattern, in the presence of a target fault. The test set
circuit sensitization is obtained summing up the
maximum circuit sensitization values of its test patterns.

• The number of patterns not allowing the detection of any
new fault (dummy patterns). Large numbers of dummy
patterns decrease the test set efficiency in terms of test
time, since only few applied patterns contribute in testing
the UUT. Our intent is thus to reward individuals with
fewest dummy patterns.

Our fitness function consists in a multiple reordering
procedure. Individuals are sorted mainly based on how
they contribute to the fault coverage of the whole
population. The triplet ti with highest fault coverage is
stored into the next population. Among the remaining
individuals, a second triplet tj, covering the largest subset
of faults not detected by ti, is selected. Then, a third triplet
tk is chosen, guaranteeing maximum fault coverage on the
faults undetected by ti and tj. The circuit sensitization and
the dummy patterns number, instead, are used to
distinguish among individuals with same fault coverage.
The test length τ is not directly taken into account since it
is kept constant for all the triplets of the population.

3.2. Evolution Rules
The generation of new individuals is based on the

following genetic operators:
• The horizontal, two-cut crossover operator: the seed of

the new individual is obtained by combining portion of
the seeds of either parents, according to the position of
two randomly generated cut-points x1 and x2.

• Mutation operators: to further introduce variability in the
evolution process, according to a mutation probability,
the bits in the seed of a given triplet are flipped. The
operator is applied on the outputs of the crossover
operation, and on few individuals of the actual
population.

Finally, based on the same strategy exploited to set up
the first population, new individuals are obtained setting
the seeds with a test pattern extracted from the
instrumented test set: the pattern is used as Initial state
value (δ) of the triplet, where the Input value (σ) is

randomly chosen. The selected pattern must allow the
detection of faults currently addressed by the GA, but not
covered by the best individual of the population.

4. Experimental Results
The proposed algorithm has been implemented in ANSI

C as a prototype tool named GATBSY. To assess the
efficiency of the tool, experiments were performed on the
ISCAS’85 [13] and the ISCAS’89 [14] (full scan version)
benchmarks, which are circuits not randomly testable by
10K patterns. The STPG is assumed having a state register
size customized on the UUT input-bits parallelism. In the
present paper, the gate-level ATPG Sunrise [15] is used to
compute the fault list and the deterministic test exploited
in the GATSBY computation process. Moreover, the
Sunrise fault coverage represents a reference value to
assess the quality of the GATSBY solutions.

Table 1 reports the genetic parameters used to set up the
experiments with GATSBY. The Table shows the number
of generations, and the number of new individuals created
by crossover, mutation and using the instrumented test set.

Table 2 presents the results obtained running GATSBY
on a SparcStation 5/110 with 64Megabytes of RAM, and
limiting  the computation time up to 30 hours. For each
benchmark, we report both the reseeding solution
expressed as the cardinality of the triplets set (triplets), and
the number clock cycles (τ) for which each triplet must be
let evolve. Regardless the low number of triplets, we
experimentally verified that our solution guarantees, on all
the circuits (except on the s9234), the same detection
capability of the Sunrise test set. In particular, for the
c7552 and the s1494 circuits, our tool outperforms the
Sunrise test set fault coverage. Table 1 also reports the test
length reduction obtained simulating the triplets in reverse
order: the improvements are significant and range from
2% to 54%.

Two additional figures allows to deeply analyze the
results of Table 2. Taking as an example the s838 circuit,
Figure 5 shows how the triplets contribute to the final fault
coverage. Few triplets are needed to approximate the
maximum fault coverage value, detecting a large number
of easy faults. Most of the triplets, instead, are included
into the set to cover the remaining hard faults; such triplets
contribute in a limited, but crucial, percentage to the final
fault coverage.

Figure 6 focuses on the trade-off between number of
triplets and global test length. On the s5378 circuit, the
maximum fault coverage can be guaranteed by a small set
of triplets, where each triplet is let evolve for a large
number of cycles τ, as well as a larger set of triplets with
lower τ.

Experiments therefore show that the number of
reseedings, required to guarantee the maximum fault
coverage, can be reduced incrementing the value of τ,



while decrementing τ the same fault coverage is obtained
using a larger set of triplets.

GATSBY allows the designer to exploit such a trade-
to, identifying a suitable solution according to the given
constraints. Opportunely setting the optimization
parameters, in fact, GATSBY can be driven to generate a
solution characterized by either a larger test time or more
reseedings steps.

Eventually, a comparison between GATSBY and some
previously published results is presented.

Table 3 compares the amount of test data storage
required by GATSBY and [11]. [11] assumes the  UUT be
a hard core and, resorting to symbolic techniques,
computes the minimum triplets to reproduce a
deterministic test set. Experiments show that in 11 cases
out of 14 GATSBY is able to either outperform or provide
the same results of [11].

Table 4 compares GATSBY and [7] in terms of test
length, when just a single triplet is considered. GATSBY
always outperforms [7], nevertheless GATSBY mainly
addresses the minimization of the triplets set, and [7]
presented a method ad-hoc developed for test length
minimization. Although using a single triplet the
maximum fault coverage is guaranteed, where on the
circuits not dealt by [7] GATSBY approciates, quite
closely, the target Fault Coverage.

5. Conclusions
This paper presented an approach to compute an

optimal reseeding for a sequential test pattern generator.
A prototypical tool, named GATSBY, has been

implemented to sperimentally validate the goodness of the
methodology.

Experiments proved that GATSBY allows to
outperforms results presented so far in literature, reducing
the number of reseedings or the global test length,
guaranteeing at the same time the whole detection of non
random testable circuits. The proposed methodology has
been applied to the case of an accumulator based STPG,
but can be extended to deal with a more general functional
unit.
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 Parameter Value
Generations 100

Population size 16
New individuals at each generation  20

New individuals by crossover 10
New individuals by mutation 4

New individuals by instrumented test set 6

Table 1: Genetic parameters



GA based tool and Post Processing
Simulation

Rev.
Order
Sim.

Circuit #
Triplets

ττττ FCGATSBY% FCSunrise% -
FCGATSBY%

Test
length
reduc-

tion
c432 1 243 99.12 0 0%
c499 1 398 98.84 0 -7.54%
c880 1 2,175 100 0 -3.26%
c1355 1 1,354 99.47 0 -14.99%
c1908 1 4,500 99.61 0 -15.98%
c2670 33 2,000 95.64 0 -35.95%
c3540 1 3,548 96.03 0 -2.28%
c5315 1 1,324 98.84 0 -2.49%
c6288 1 58 99.56 0 -3.45%
c7552 64 4,000 98.19 -0.11 -12.41%
s420 6 3,000 100 0 -31.55%
s641 5 3,000 100 0 -54.61%
s713 5 5,000 93.46 0 -34.55%
s820 3 2,000 100 0 -11.48%
s832 2 4,000 98.31 0 -15.95%
s838 11 2,000 100 0 -38.92%
s953 3 4,000 100 0 -15.39%
s1196 4 4,000 100 0 -37.50%
s1238 4 2,000 94.74 0 -8.05%
s1423 3 5,000 98.99 0 -34.38%
s1494 1 2,000 99.19 -0.07 -6.60%
s1512 24 2,000 100 0 -11.07%
s5378 7 5,000 99.05 0 -25.17%
s9234 50 2,000 89.41 3.75 -13.73%

Table 2: GATSBY results
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Figure 6: Number of Triplets vs. Test Length

Circuit GATSBY [11]
c2670  33 18
c7552 64 23
s641 5 6
s713 5 5
s420 6 7
s820 3 8
s832 2 8
s838 11 26
s953 3 3

s1196 4 5
s1238 4 5
s1423 3 3
s5378 7 8
s9234 50 15

Table 3: Number of triplets w.r.t. [11]

GATSBY [7]
Circuit FCSunrise%-

FCGATSBY%
ττττ FCSunrise%-

FC[8]%
ττττ ττττ

reduc-
tion

C432 0 243 0 256 -5.07%
C499 0 368 0 544 -32.35%
C880 0 2,104 0 2,272 -7.4%

C1355 0 1,237 0 1,280 -3.4%
C1908 0 3,781 0 3,872 -2.35%
C2670 7.63 2,000 not dealt in [7] -
C3540 0 3,467 0 7,872 -56%
C5315 0 1,291 not dealt in [7] -
C6288 0 56 0 96 -41.66%
C7552 4.24 2,000 not dealt in [7] -

Table 4: Test length reduction by using a single triplet
w.r.t. [7]


