
Bit-Flipping BIST

Hans-Joachim Wunderlich Gundolf Kiefer

Computer Architecture Lab
University of Stuttgart, Breitwiesenstr. 20-22

D-70565 Stuttgart, Germany

Abstract

A scan-based BIST scheme is presented which
guarantees complete fault coverage with very low
hardware overhead. A probabilistic analysis shows that
the output of an LFSR which feeds a scan path has to be
modified only at a few bits in order to transform the
random patterns into a complete test set. These
modifications may be implemented by a bit-flipping
function which has the LFSR-state as an input, and flips
the value shifted into the scan path at certain times. A
procedure is described for synthesizing the additional
bit-flipping circuitry, and the experimental results
indicate that this mixed-mode BIST scheme requires less
hardware for complete fault coverage than all the other
scan-based BIST approaches published so far.

Keywords: Mixed-Mode BIST

1. Introduction

Built-in self-test (BIST) is one of the most
important techniques for testing large and complex
systems. The efficiency of a BIST implementation is
characterized by the test length and the hardware
overhead required to achieve complete or sufficiently
high fault coverage.

In a "test per scan" scheme, test registers feed and
evaluate a (partial) scan path (see figure 1). In a "test
per clock" scheme, some system registers are
enhanced such that they generate patterns or compact
test responses in a special test mode.

BIST schemes may be classified with respect to
the kind of patterns they generate. Random patterns are
most easily generated using linear feedback shift
registers (LFSR) for scan-based BIST [EiLi83,

 This work has been supported by the DFG under grant Wu 245/1-1,
 and was performed mainly at the University of Siegen, Germany.

BMS87], the multi-functional test registers for a "test
per clock" scheme are somewhat more sophisticated
[KMZ79, OWM87]. If the fault coverage of random
patterns is not sufficient, weighted random patterns
may be applied by a "test per scan" scheme [WLEF89,
StWu91] or by a "test per clock" scheme [Wu87,
Brgl89]. Even pseudo-exhaustive test sets can be
generated by both methods [HWH90, BCR83].

scan path

CUT

signature registerpattern generator

Figure 1: "Test per scan" scheme

In general, combinational circuits are not pseudo-
exhaustively testable, and deterministic test sets have
to be applied if the circuit is not allowed to be
segmented by test points for timing or area reasons. A
deterministic "test per clock" scheme may be
implemented by designing an appropriate feedback
function of a non-linear feedback shift register
[DaMu81], or by including additional circuitry between
an LFSR and the CUT which maps random patterns to
deterministic test patterns [AkJa89, DUFA95,
ToMc95b, ChPr95]. The first solution is only feasible
for small circuits and test sets, and the second one
slows down performance, as the additional test
circuitry is part of the data path. Moreover, some effort
is required to show that the test circuitry is fault free,
too.

"Test per scan" schemes do not affect the system
behavior so much, as only a scan path is included in
the mission logic [KOEN91, HELL92, HELL95].
Usually, the deterministic patterns are applied after a
random test to reduce the number of patterns and the
hardware overhead. The most efficient way for

implementing a scan-based mixed-mode test known so
far is the approach based on special test sets and
reseeding of multi-polynomial LFSRs as presented in
[HELL95].

In this paper, we present a mixed-mode "test per
scan" scheme which is based on the fact that a random
test set contains mostly useless patterns [ToMc95a]
which can be transformed to a useful pattern by
flipping just a few bits. This results in a structure as
shown in figure 2.

signature
analysisLFSR

bit-flipping
function

...

BFF

scan path

CUT

+

Figure 2: Bit-flipping BIST

The bit-flipping function BFF has a very small
off-set which corresponds to the useful random patterns,
a very small on-set corresponding to bits to be flipped,
and a very large don't-care-set. This results in a large
potential for optimization which will be exploited
systematically in the rest of the paper.

In the next section we compute expectation values
of the number of bits to be flipped. In section 3, an
efficient way for determining the bit-flipping function
BFF is presented, and a synthesis procedure is
proposed. The experimental results of section 4 show
that the presented approach leads to solutions which
are more efficient than the schemes previously
proposed.

2. Number of bits to be flipped

The efficiency of the basic structure of figure 2 is
due to the fact that not all bits of deterministic test
patterns are specified. Usually they contain a very
large number of don't-care bits to be used for
optimizations [HELL95]. In the sequel, we estimate the
number of bits of a random pattern which must be
flipped in order to be compatible with an incompletely
specified deterministic pattern.

Assume a scan path with n flip-flops, and an
LFSR generating the pseudo-random test set M of
cardinality m:= M . Let T be a deterministic pattern
with s specified bits and n − s unspecified bits. The

probability that there is a pattern T Md ∈ which has a
conflict with T in at most d bit positions, d ≤ s , is
estimated by

Pd ≈
m
2n

td , where td = 2n−s
s
i







i=0

d

∑ , (1)

while m ⋅ td < 2n . For m ⋅ td ≥ 2n the probability is
nearly 1. The term td denotes the absolut number of
patterns which have a conflict with T in at most d bit
positions. Formula (1) can be transformed into

Pd ≈
m
2s

s
i







i=0

d

∑ ,

and the expectation value of the number d of bits to
be flipped depends on m and s :

E(m, s) = d ⋅ (Pd − Pd−1)
d=1

s

∑ . (2)

Table 1 shows the expectation values for different
random test sizes m and numbers of specified bits s .

m s =10 s =20 s =30 s =40 s =50 s =60 s =70
1,000 0.02 2.78 6.09 9.54 13.32 17.17 21.11

10,000 0.00 1.79 4.66 7.83 11.39 15.03 18.74
100,000 0.00 0.90 3.53 6.50 9.65 13.19 16.64

1,000,000 0.00 0.05 2.54 5.21 8.29 11.52 14.89

Table 1: Expected number E(m,s) of bits to be flipped

As an example, for a pattern with s = 20 specified
bits we can expect to find one out of 10,000 random
patterns which has to be flipped at only two (≈1.79)
positions. In general, the expected number of bits to be
flipped in order to generate a precomputed test pattern
is significantly less than the number of bits specified in
that pattern.

3. Determining the bit-flipping function BFF

The bit-flipping function is constructed iteratively.
In each step, it is enhanced, such that new
deterministic patterns are contained in the output of the
resulting pattern generator while certain old patterns
remain unchanged.

For generating a test pattern, the bit-flipping
function has a large don't-care set which can be used
for minimizing the logic of the function. This way
many of the useless patterns are modified, too,
increasing the chance of detecting some additional
faults. Sometimes these modifications have to be
reverted. The best way to do so is another XOR gate,
and the general form of a bit-flipping BIST structure is
shown in figure 3.

+
...

... +

...

scan pathLFSR

bit-flipping
function

BFF

Figure 3: General form of bit-flipping BIST

In order to describe the synthesis procedure in a
formal way we use the following variables (some of
them have already been defined):

n length of the scan path
m number of patterns, test length
l length of the LFSR
S ⊂ {0,1}l set of states of the LFSR during

testing
Sp
i ∈S state of the LFSR while bit p[i] of

pattern p ∈{0,1}n is generated
Sp = Sp

i 1 ≤ i ≤ n{ }
set of states of the LFSR during
generating the pattern p ∈{0,1}n

XOR set of XOR-gates inserted between
the LFSR and the scan path

F set of all non-redundant faults

BFF BFF BFFx x XOR
= ()

1
, ..., , x x XORXOR1, ..., ∈ ,

is being constructed incrementally, beginning with
BFF0 0≡ and ending with BFFR which provides
complete fault coverage. For each iteration
r r R, 0 ≤ < , there is a set Fhard

r of faults which are not
detected by BFFr .

A boolean function can be uniquely defined by a
set of product terms or its on-set (implying that the off-
set is the complement of the on-set). In the following,
we will use the symbol BFFx

r for any of those
representations, depending on the context.

3.1. The fix-set of BFFr

In order to improve BFFr , it is necessary to
protect some patterns required for detecting a set of
"critical" faults Fcrit

r . Given Fcrit
r , all patterns generated

by the LFSR and BFFr are simulated in several
permutated orders, until a small subset P p pk= { ,..., }1
of patterns is found which still detects all faults in Fcrit

r .
In order to guarantee complete fault detection not all
the bits of pi , 1 ≤ ≤i k , need to be specified. Based on
pessimistic 3-valued fault simulation, P is transformed
into a set of patterns P p p k' { ' , ..., ' }= 1 that contain as
many don't-cares as possible and still detect all faults

in Fcrit
r . Let p i' be one of these patterns and Spi be the

corresponding set of states of the LFSR. The set of
"fixed" states corresponding to p i' is

FIX p S j pi p
j

ii
(') : '= { } the - th bit of is specified

and the entire fix-set is defined by

FIX FIX pr

i
i

k
: (')=

=1
U .

Example. Assume we have a scan path of length
n = 5 which is fed by the LFSR sketched in figure 4.
The test length is l = 5 and BFF0 0≡ . Table 2 shows
the state sequence of the LFSR. The resulting pseudo-
random patterns and the corresponding states are listed
in table 3.

+

0 1 0 p[5] p[1]p[2]p[3]p[4]

Figure 4: LFSR used in the example

s0 010
s1 001
s2 100
s3 110
s4 111
s5 011
s6 101

s s7 0= 010
... ...

Table 2: States of the LFSR

pattern
p[1]...p[5]

states

1 01001 s0 , s1, s2 , s3 , s4
2 11010 s5 , s6 , s0 , s1, s2
3 01110 s3 , s4 , s5 , s6 , s0
4 10011 s1, s2 , s3 , s4 , s5
5 10100 s6 , s0 , s1, s2 , s3

Table 3: Pseudo-random patterns and corresponding
LFSR states

Let Fcrit
0 be such that all faults in Fcrit

0 can be
detected by the patterns "11---" and "0--1-". The
procedure for extracting essential patterns returns
patterns 2 and 3, P p p= ={ , } { , }1 2 11010 01110 , the
analysis of essential bits transforms P to P p p' { ' , ' }= 1 2
= { 11---, 0--1- }. Remembering that p' 1 corresponds to
the 2nd and p' 2 to the 3rd pattern, we can use table 3
to look up the fix-sets:

FIX p s s(') { , }1 5 6=
FIX p s s(') { , }2 3 6=

FIX FIX p FIX p s s s0
1 2 3 5 6 110 011 101= ∪ = =(') (') { , , } { , , }

3.2. Mapping test patterns to random patterns

Assume we have already defined the function
BFFr , and P is the set of patterns generated by the
LFSR and BFFr . Let T be the set of partially
specified deterministic patterns which cover all faults
in Fhard

r .
Now we have to select a test pattern t T0 ∈ and a

random pattern p P0 ∈ such that t0 can be mapped to
p0 efficiently.

Test patterns with only a few specified bits
correspond to faults that are comparably "easy to
detect" and might be detected by random patterns in
some later iteration of the algorithm. So, t T0 ∈ is
selected such that the number or specified bits is
maximum.

Now a random pattern that can be modified has to
be found. For any pseudo-random pattern p , let
off t p(,)0 ⊂ Sp be the set of LFSR states which
correspond to bits equal to the bits specified in t0 , and
let on t p(,)0 ⊂ Sp be the set of states generating bits
which are incompatible to the corresponding bits of t0 .
The pattern t0 can only be mapped to p if
on t p FIXr(,)0 ∩ = ∅ holds.

The cost for assigning t0 to p is estimated by the
increase of the number of terms required for a 2-level
implementation of BFFr . We say, a minterm
c on t p∈ (,)0 can be "efficiently expanded" and
therefore does not cause any new product term if there
is a

c BFFx

r
x XOR0 ∈ ∈U such that

FIX off t p Expand c c c cr ∪()∩ () = ∅(,) (,) \ { , }0 0 0 ,

where the term Expand c c(,)0 denotes the smallest
boolean subspace covering both c and c0 as used in
ESPRESSO [BRAY84].

The cost of an assignment is estimated by

cost t p c on t p c(,) (,)0 0= ∈{ } cannot be eff. expanded ,

and a p P0 ∈ is selected for mapping such that
cost t p(,)0 0 is minimal.

Finally, the terms in on t p(,)0 0 are assigned to
XORs in a way that as many terms as possible can be
efficiently expanded. During the XOR-assignment, no
c on t p∈ (,)0 0 can be assigned to x XOR∈ if BFF cx

r ()
is already 1.

3.3. The algorithm

After initializing BFF0 0≡ and determining the
set F of all non-redundant faults, the following steps
are repeated until complete fault coverage is achieved,
r being the number of the current iteration:

1) Compute Fhard
r by fault simulation.

2) Compute FIXr based on faults that have occured
as hard faults in previous i terations,

F Fcrit
r

hard
i

i
r:=
=

−

0
1

U .

3) BFF Reduce BFFred
FIX

r
r: ()= .

For each x XOR∈ , an ESPRESSO-like REDUCE
operation respecting the on-set on FIX BFFr

x
r:= ∩

is performed on BFFx
r . Every term in BFFx

r is
reduced such that it contains as many specified bits
as possible while the resulting function BFFx

red still
covers on .

4) Find a test pattern mapping consisting of a
deterministic test pattern t0 , a pseudo-random
pat tern p0 , and an XOR-ass ignment
xor on t p XOR: (,)0 0 → .

5) For each x XOR∈ :
BFF BFF c on t p xor c xx

asgn
x
red : (,) ()= ∪ ∈ ={ }0 0 ,

FIX FIX on t p off t pasgn r: (,) (,)= ∪ ∪0 0 0 0 .

6) BFF Expand BFFr
FIX

asgn
asgn

+ =1 : () .

For each x XOR∈ , an ESPRESSO-like EXPAND
o p e r a t i o n r e s p e c t i n g t h e o f f - s e t
off FIX BFFasgn

x
asgn: \= is performed on BFFx

asgn .
Every term is expanded such that it contains as
many don't cares as possible without producing a
non-empty intersection with off .

Steps 4 and 5 can be repeated several times
("small loop"), thus avoiding expensive simulations
and logic minimization procedures after every
mapping. There is a trade-off between computation
time (small for many small loop iterations) and the
quality of the result (in general better if there are only
a few assignments per simulation). In our experiments
we increased the number of assignments with the
number of iterations done so far.

Example. In order to continue the example of
section 3.1 we assume a test pattern t0 = 11-01 has
been selected for mapping to any of the five pseudo-
random patterns. Using the information of table 3, the
sets on t p(,)0 and off t p(,)0 of states in which the bit-
flipping function must be active or must not be active
can be derived. For every pattern the condition

+

0 1 0 +

&

Figure 5: New pattern generator including bit-flipping
logic

old new
1 01001 11001
2 11010 11110
3 01110 01111
4 10011 10011
5 10100 11100

Table 5: Old and new set of patterns

on t p FIX(,)0 ∩ = ∅ is checked and cost t p(,)0 is
computed. Table 4 shows the results.

p on t p(,)0 off t p(,)0 cost t p(,)0
1 01001 s0 s1, s3 , s4 1
2 11010 s1, s2 s5 , s6 2
3 01110 s0 , s3 , s6 s4 ∞
4 10011 s2 , s4 s1, s5 2
5 10100 s0 , s3 s3 , s6 ∞

Table 4: Finding a pattern for mapping t0 = 11-01

Patterns 3 and 5 cannot be selected for mapping
without violating the condition on t p FIX(,)0 ∩ = ∅.
The "cheapest" way of mapping t0 is to modify pattern
1, so the on-set of this pattern p0 is added to the bit-
flipping function and the fix-set is updated:

BFF BFF on t p sa sgn : (,) { } { }= ∪ = =0
0 0 0 010

FIXasgn : (,) (,)= ∪ ∪FIX on t p off t pr
0 0 0 0

= { , , , , , }s s s s s s0 1 3 4 5 6
= { , , , , , } 010 001 110 111 011 101

Finally, the bit-flipping function is expanded in a
way that none of the terms in

FIX BFFasgn\ { , , , , }= 001 110 111 011 101

is covered:

BFF Expand BFFFIX
asgn

asgn
1 : () { }= = − 0 0

Figure 5 shows the corresponding pattern generator
including an implementation for the bit-flipping

function BFF1. The set of patterns produced by the
new generator differs considerably from the original
one (table 5). Nevertheless, patterns 2 and 3 are still
compatible with the fixed patterns 11--- and 0--1-, and
pattern 1 is now compatible with the deterministic test
pattern t0 =11-01.

4. Experimental results

A series of experiments has been performed to
determine the trade-offs between the length of the
LFSR, the number of random patterns, and the area
required for the mapping logic. The results are
compared with the method of [HELL95] which provides
the most area-efficient solution up to now.

Example circuits are those of the ISCAS-85 and
combinational ISCAS-89 benchmarks [Brgl85, Brgl89]
which still have undetected non-redundant faults after
applying 10,000 random patterns.

The first two columns of table 6 show the circuit
names and the number n of primary inputs. The next
three columns are the reseeding results of [HELL95]
where "LFSR" denotes the number of flipflops of the
LFSR, "ROM" denotes the number of bits to be stored
in a ROM and "Area" is the area required to implement
this ROM and the flipflops of the LFSR using 1µm
technology. The results of the presented bit-flipping
approach are shown in the last four columns. Again,
first the length of the LFSR is shown, the number of
XOR-gates inserted between the LFSR and the scan
path follows. Then the number of product terms required
for a 2-level implementation is listed. The last column
shows the area required for a PLA implementation
including LFSR flipflops.

The results are based on 10,000 random patterns,
and for both methods a complete coverage of all non-
redundant faults is obtained. The length of the LFSR
required for bit-flipping is much less than the length of
the LFSR for reseeding. Moreover, the reseeding
approach needs a multi-polynomial feedback function
not counted in the table.

We compared the area of a ROM for reseeding
with the area of PLA implementation for the bit-
flipping approach. In many cases, the area for the bit-
flipping approach is just 20% of the reseeding area, in
one case it is 91%, but in all the cases there are
distinct savings.

The bit-flipping approach has a considerable trade-
off between hardware overhead and test length which
seems to be in contradiction to the observation that
random pattern testing leads to a saturation of fault
coverage after a certain point [Wu85]. For selected
examples, table 7 shows the number of undetected
faults after a pseudo-random test and the number of

Reseeding [HELL95] Bit-flipping

Circuit n LFSR ROM
Area
[µm2] LFSR XORs Terms

Area
[µm2]

s420 34 20 250 343,640 14 1 4 63,394
s641 54 22 183 344,013 14 1 3 62,544
s713 54 22 183 344,013 14 1 3 62,544
s838 66 36 1,623 533,077 14 2 37 99,566
s953 45 15 141 307,833 14 1 3 62,544
s1196 32 17 267 334,501 14 2 6 66,733
s1238 32 17 249 331,909 14 1 4 63,394
s5378 214 27 726 423,145 14 2 19 80,581
s9234 247 61 6,923 944,284 22 3 298 544,153
s13207 700 24 3,570 730,298 14 2 123 192,930
s15850 611 46 6,528 918,034 14 3 241 331,046
s38417 1,664 91 24,283 1,896,450 24 3 985 1,732,798
s38584 1,464 70 3,406 769,958 26 3 266 576,738
c2670 157 60 3,412 733,882 14 3 194 278,850
c7552 206 100 5,241 987,284 14 3 406 517,020

Table 6: Results of the bit-flipping method and reseeding after 10,000 random patterns

product terms required to achieve complete fault
coverage for 1,000, 10,000 and 100,000 random
patterns. In order to rule out the impact of the feedback
polynomial, in all cases the same LFSR of length 32
was used, which leads to numbers different from those
of table 6.

m = 1 000, m = 10 000, m = 100 000,
Circuit Fhard

0 Terms Fhard
0 Terms Fhard

0 Terms

s420 92 23 58 5 9 3
s641 18 12 8 6 5 4
s713 18 12 8 6 5 4
s838 425 171 340 109 259 90
s953 129 11 8 3 - -
s1196 127 27 18 7 - -
s1238 143 34 17 8 - -
s5378 193 76 46 16 40 2
c2670 220 222 209 163 183 112
c7552 489 387 309 264 158 140

Table 7: Literals required for bit-flipping with different
test lengths

There is still a decrease of the number of literals
for the bit-flipping logic even for large test sets. This is
due to the fact that not only the set of hard faults left
for deterministic testing is reduced but also the
expected number of bits to be flipped, and the conflicts
during logic synthesis decrease.

The maximum CPU time required to obtain the
results stated in table 7 using a Sparc10 workstation is
in the order of some hours. The complexity of the most
time consuming procedures (computation of the fix-set
and pattern assignmnent) is linearly dependent on the
test length m . Nevertheless, increasing m by a factor

of 10 does not result in an increase of CPU time by the
same factor. This is mainly due to the fact that for a
larger test length fewer assignments and fewer
iterations are necessary.

5. Conclusions

A new method for implementing a mixed-mode
built-in self-test (BIST) has been presented. The new
scheme requires less hardware overhead for detecting
all non-redundant faults in benchmark circuits than the
structures previously proposed.

A synthesis procedure has been described for
synthesizing the BIST structures from incompletely
specified deterministic test sets. Further research will
concentrate on extending this scheme to partial and
multiple scan chains.

References

[AgCe81] V. K. Agarwal, E. Cerny: "Store and Generate
Built-In Testing Approach", Proc. 11th Int. Symp. Fault -
Tolerant Computing, 1981, pp. 35-40

[AkJa89] S. B. Akers, W. Jansz: "Test Set Embedding in
Built-In Self-Test Environment", Proc. IEEE Int. Test
Conf., 1989, pp. 257-263

[BCR83] Z. Barzilai, D. Coppersmith, A. L. Rosenberg:
"Exhaustive Generation of Bit Patterns with Applications
to VLSI Self-Testing", IEEE Trans. on Comp., Vol. C-32,
No. 2, Feb. 1983, pp. 190-194

[BMS87] P. Bardell, W. H. McAnney, J. Savir: "Built-In Test
for VLSI", New York: Wiley-Interscience, 1987

[BRAY84] R. K. Brayton, G. D. Hachtel, C. McMullen, A.
Sangiovanni-Vincentelli: "Logic Minimizat ion
Algorithms for VLSI Synthesis", Boston: Kluwer
Academic Publishers, 1984

[Brgl85] F. Brglez, H. Fujiwara: "A Neutral Netlist of 10
Combinational Benchmark Circuits and a Target
Translator in Fortran", Proc. of Int. Symp. on Circuits and
Systems, 1985, pp. 663-698

[Brgl89] F. Brglez, D. Bryan, K. Kozminski: "Combinational
Profiles of Sequential Benchmark Circuits", Proc. of Int.
Symp. on Circuits and Systems, 1989, pp. 1929-1934

[ChPr95] M. Chatterjee, D. K. Pradhan: "A Novel Pattern
Generator for Near-Perfect Fault Coverage", 13th IEEE
VLSI Test Symposium, 1995, pp. 417-425

[DaMu81] W. Daehn, J. Mucha: "Hardware Test Pattern
Generators for Built-In Test", Proc. IEEE Int. Test Conf.,
1981, pp. 110-113

DUFA95] C. Dufaza, H. Viallon, C. Chevalier: "BIST
Hardware Generator for Mixed Test Scheme", Proc. IEEE
European Design and Test Conf., 1995, pp. 424-430

[EiLi83] E. B. Eichelberger, E. Lindbloom: "Random Pattern
Coverage Enhancement and Diagnosis for LSSD Logic
Self-Test", IBM Journal of Research and Development,
Vol. 27, No. 3, May 1983, pp. 265-272

[HELL92] S. Hellebrand, S. Tarnick, J. Rajski, B. Courtois:
"Generation of Vector Patterns Through Reseeding of
Multiple-Polynomial Linear Feedback Shift Registers",
Proc. IEEE Int. Test Conf., 1992, pp. 120-129

[HELL95] S. Hellebrand, B. Reeb, S. Tarnick, H.-J.
Wunderlich: "Pattern Generation for a Deterministic
BIST Scheme", Proc. Int. Conf. on Computer-Aided
Design, 1995, pp. 88-94

[HWH90] S. Hellebrand, H.-J. Wunderlich, O. F. Haberl:
"Generating Pseudo-Exhaustive Vectors for External
Testing", Proc. IEEE Int. Test Conf., 1990, pp. 670-679

[KMZ79] B. Koenemann, J. Mucha, G. Zwiehoff: "Built-In
Logic Block Observation Techniques", Proc. IEEE Int.
Test Conf., 1979

[KOEN91] B. Koenemann: "LFSR-Coded Test Patterns for
Scan Design", Proc. Europ. Test Conf., Munich 1991, pp.
237-242

[OWM87] M. J. Ohletz, T. W. Williams, J. P. Mucha:
"Overhead in Scan and Self-Test Designs", International
Test Conference, 1987, pp. 460-470

[SIS92] E. M. Sentovich et al.: "SIS: A System for Sequential
Circuit Synthesis", UCB Electronics Research
Laboratory, Memorandum No. UCB/ERL M92/41, 1992

[StWu91] A. Ströle, H.-J. Wunderlich: "TESTCHIP: A chip for
weighted random pattern generation, evaluation, and test
control", IEEE Journal of Solid State Circuits, July 1991,
Vol. 26, Number 7, pp. 1056-1063

[ToMc95a] N. A. Touba, E. J. McCluskey: "Transformed
Pseudo-Random Patterns for BIST", 13th IEEE VLSI Test
Symposium, 1995, pp. 410-416

[ToMc95b] N. A. Touba, E. J. McCluskey: "Synthesis of
Mapping Logic for Generating Transformed Pseudo-
Random Patterns for BIST", Proc. IEEE Int. Test Conf.,
1995, pp. 674-682

[WaMc86] L.-T. Wang, E. J. McCluskey: "Circuits for
Pseudo-Exhaustive Test Pattern Generation", Proc. IEEE
Int. Test Conf., 1986, pp. 25-37

[WLEF89] J.A. Waicukauski, E. Lindbloom, E.B.
Eichelberger, O.P. Forlenza: "A Method for Generating
Weighted Random Test Patterns", IBM J. Res. Develop.,
Vol. 33, No. 2, March 1989, pp. 149-161

[Wu85] H.-J. Wunderlich: "PROTEST: A Tool for
Probabilistic Testability Analysis", Proc. IEEE and ACM
22nd Design Automation Conference, 1985, Las Vegas,
pp. 204-211

[Wu87] H.-J. Wunderlich: "Self Test Using Unequiprobable
Random Patterns", Proc. 17th Int. Symp. Fault-Tolerant
Computing, Pittsburgh 1987, pp. 258-263

