
Test Register Insertion with Minimum Hardware Cost

Albrecht P. Stroele Hans-Joachim Wunderlich

Institute of Computer Design and Fault Tolerance Institute of Computer Structures
University of Karlsruhe University of Siegen, Hölderlinstr. 3

D-76128 Karlsruhe, Germany D-57068 Siegen, Germany

Abstract
Implementing a built-in self-test by a "test per clock"

scheme offers advantages concerning fault coverage,
detection of delay faults, and test application time. Such
a scheme is implemented by test registers, for instance
BILBOs and CBILBOs, which are inserted into the circuit
structure at appropriate places. An algorithm is
presented which is able to find the cost optimal
placement of test registers for nearly all the ISCAS'89
sequential benchmark circuits, and a suboptimal solution
with slightly higher costs is obtained for all the circuits
within a few minutes of computing time. The algorithm
can also be applied to the Minimum Feedback Vertex Set
problem in partial scan design, and an optimal solution is
found for all the benchmark circuits.

The resulting self-testable circuits are analyzed. It is
found that often CBILBOs lead to a minimum hardware
overhead and also simplify test scheduling and test
control.

1. Introduction
Built-in self-test (BIST) is one of the most important

techniques for testing large and complex systems. Test
registers are added at the primary inputs and outputs of
a circuit, and some additional test hardware is inserted
into the circuit. In a "test per scan" scheme, test
registers feed and evaluate a (partial) scan path (see
figure 1).

LFSR scan pa th

CUT

signa ture register

Figure 1: "Test per scan" scheme

Part of this work was supported by the European Commision under BRA 7107
ARCHIMEDES and by the DFG under grants Schm 623/5-1 and Wu 245/1-1.

It has been shown independently by several authors
that breaking all cycles in the circuit structure bounds
the length of the required test sequences to the
sequential depth of the circuit [3, 7, 12, 14]. To keep
the hardware overhead low the number of flip-flops that
are integrated into the partial scan path in order to
break all cycles should be as small as possible. If the
topology of the storage elements is represented by a so-
called S-graph whose vertices correspond to flip-flops
and whose edges indicate combinational paths between
flip-flops, then this problem is equivalent to finding a
"Minimum Feedback Vertex Set" [6]. [4] presents an
algorithm to compute the MFVS exactly using a branch
and bound technique.

In a "test per clock" scheme, some system registers
are enhanced such that they generate patterns or
compact test responses in a special test mode.
Examples of these multi-mode test registers are
BILBO, GURT, and CBILBO [10, 17, 18]. A "test per
clock" scheme has advantages with respect to test
application time, delay testing and defect coverage,
but it often requires a higher hardware overhead than
the "test per scan" scheme.

In order to obtain testable subcircuits, the test
registers must be placed at appropriate positions (e.g.
[5]). However, the circuit structure obtained from
breaking all cycles is not a priori suited to a "test per
clock" scheme since during self-testing some test
registers may have to generate patterns and compact
test responses concurrently (e.g. test register T2 in
figure 2).

T2

R1

CLB

CLB

Figure 2: Part of a data path with register R1, test
register T2, and combinational logic blocks
(CLB)

This technique is called circular self-test path and
leads to a sufficiently high fault coverage if the circuit
is not random pattern resistant and all the states
required for testing are reachable [11]. But in general,
the patterns are not exhaustive, (weighted) random, or
deterministic. In this case BILBOs have to be
employed, and at least two of them are required in
each cycle. In figure 2, register R1 must also be
enhanced to a BILBO register.

In particular, problems arise when a register feeds
itself through combinational logic (self-adjacent
register [9]), e.g. register R3 in figure 3. Here register
R3 must be enhanced to a BILBO register T3, and an
additional test register T4 of the BILBO type that is
transparent in normal mode (see figure 4) must be
inserted into the feedback path.

R3

CLB

T3

CLB T4

Figure 3: Part of a data path with self-adjacent
register R3 (left), self-testable structure with
BILBO register T3 and transparent BILBO
register T4 (right)

MUX

0
1

control

sel

BILBO

Figure 4: Structure of a transparent test register
Synthesis for testability approaches can reduce the

number of cycles in a circuit [13, 15] and the number of
self-adjacent registers [1]. But in general, cycles cannot
be avoided completely.

To reduce the additional overhead of transparent test
registers, some authors propose using three latches for
each bit of the test register such that it can generate
patterns and compact test responses independently.
These test registers are called L3-BILBOs [8, 16] or
CBILBOs [17]. In figure 3, it is sufficient to enhance
R3 to a CBILBO, and an additional test register in the
feedback path is not required.

At gate level, flip-flops can be enhanced to BILBO
cells or CBILBO cells (1-bit elements of test registers),
and additional BILBO cells and CBILBO cells that are
transparent in normal mode can be inserted into
arbitrary lines. After test cells have been inserted, each
cycle of the circuit structure must contain at least one
CBILBO cell or two BILBO cells. Regarding hardware
costs, CBILBO cells are more expensive than BILBO
cells, and inserting a whole transparent test cell into a
line is more expensive than enhancing an existing flip-
flop. Nevertheless, in some situations transparent test
cells are useful. In order to make the circuit of figure 5
self-testable, both flip-flops FF1 and FF2 can be
enhanced to CBILBO cells. But the same goal can also
be achieved by inserting just one transparent CBILBO
cell.

FF1 FF2

G3

G4 G5

transparent
test cel l

Figure 5: Circuit with two connected self-loops
In this paper, we present an exact algorithm that

determines an appropriate placement of test cells and
selects their types such that the total hardware cost of
all the built-in test cells is minimum. As a special
case, it also solves the MFVS problem for partial scan
and the "test per scan" scheme.

In the next section the problem is described in a
formal way, and graph transformations are introduced
which are applied in a pre-processing step. Section 3
shows how the problem can be partitioned into
subproblems that can be solved independently. In
section 4 the branch and bound search is described.
Experimental results follow in section 5. Section 6
gives some conclusions.

2. Problem statement and simplification
At gate level, a circuit is usually modeled by a

directed graph G = (V, E) with nodes V and edges E ⊂
V×V. The nodes V = I ∪ O ∪ VC ∪ VS represent primary
inputs (I), primary outputs (O), gates (VC), and flip-

flops (VS). The edges describe the lines that connect
these elements. The placement of test cells is
described by labels l that have the following meaning:
for v∈VS:
l(v) := \B\LC\{(\A\AL\CO2\VS0\HS10(0;if flip-
flop v is not modified; 1;if v is enhanced to a
BILBO cell; 2;if v is enhanced to a CBILBO
cell))
for v∈VC:
l(v) := \B\LC\{(\A\AL\CO2\VS0\HS10(0;if gate
v is not modified; 1;if a transparent BILBO cell is;

;inserted at the output of gate v; 2 ; i f a
transparent CBILBO cell is; ;inserted at the output
of gate v))

In order to find an optimal placement, the following
problem has to be solved:

"Minimum cost placement (MCP)"
Given: Circuit graph G = (V, E), costs of enhancing a

flip-flop to a BILBO cell or a CBILBO cell,
and costs of inserting a transparent BILBO cell
or a transparent CBILBO cell at the output of a
gate.

Find: Labeling l such that
v∈ Z

;Σl(v) ≥ 2 is true for
each cycle Z of G, and the total cost
associated with the labeling l is minimum.

Problem MCP includes selecting flip-flops for partial
scan as a special case (cost of CBILBO cells smaller
than cost of BILBO cells), and it is NP-complete. The
authors of [4] developed an exact algorithm for
selecting partial scan flip-flops. But their graph
partitioning using strongly connected components
cannot be applied here.

The presented algorithm uses a pre-processing step
similar to [14] where iteratively all the nodes without
predecessors or without successors are removed since
they cannot be part of any cycle. Moreover, as the
transistor cost of a transparent test cell is the same for
all the gate inputs and outputs, it is sufficient to
consider the outputs of combinational fanout-free
regions for possible insertion of transparent test cells.

Every cycle of a directed graph G is completely
included in a strongly connected component (SCC) of
G [14]. Hence, all SCCs of G can be considered
separately. A minimum cost placement for G consists
of minimum cost placements for all the SCCs of G. The
SCCs of G are extracted by deleting edges (vi ,vj)
where vi and vj belong to different SCCs.

3. Divide and conquer
At the beginning, the labels of all the nodes of G are

reset, l(v) = 0 for all v∈V, corresponding to the circuit
without any test cells. Then in each step a node vi with
l(vi) = 0 is selected, and its label is set to 1 or 2. If the
assigned label makes

v∈Z
;Σl(v) ≥ 2 true for a cycle Z

of G, this cycle does not have to be considered any
more. If there are still cycles and two of them share a
n o d e v i w i t h
l(vi) = 0, then both cycles have to be considered
together since a test cell placed at vi would have an
impact on both cycles. On the other hand, if it is
possible to partition the cycles into subsets such that
cycles from different subsets do not share any nodes
with label 0, then these subsets can be considered
separately. In this way we get subproblems that can be
solved independently, and the optimal solution can be
found much more efficiently. These subsets of cycles
are called T-connected components (TCCs, connected
during test application).

Definition: A T-connected component of a graph G
is a minimal subgraph of G with the following
characteristics:
• A TCC includes at least one cycle Z of G with

v∈Z
;Σl(v) < 2 (i.e. a cycle that contains no CBILBO

cells and at most one BILBO cell).
• If G includes two cycles Z and Z' with

v∈Z
;Σl(v) < 2

and
v'∈Z'

;Σl(v') < 2, and if these cycles share at least
one node with label 0, then all the nodes and edges
of both cycles belong to the same TCC.
The labeled graph of figure 6 has two TCCs. The

graph of figure 7, however, cannot be divided since it is
composed of a single TCC. Figure 8 shows a graph that
does not contain any TCCs.

v0

v1 v2

v3 v4

v5 v6

0

0

0

0

1

0

0

v0

v1

v3

v5

0

1

0

0 v0

v2

v4

v6

0

0

0

1

Figure 6: Labeled graph (top) and its TCCs (bottom)

v0

v1 v2

v3 v4

v5 v6

1

0

1

0

0

0

0

Figure 7: Labeled graph composed of a single TCC

v0

v1 v2

v3 v4

v5 v6

0

0

0

0

2

0

0

Figure 8: Labeled graph with an empty set of TCCs
The TCCs of a graph are unique. They describe a

partition of the set of nodes with label 0 that are
included in at least one cycle Z with

v∈ Z
;Σl(v) < 2.

Exactly these nodes are the candidates for the insertion
of further test cells. The TCCs do not contain any node
with label 2. Nodes with label 1 may be included in
more than one TCC. If a graph does not contain any
nonzero labels, its TCCs and its SCCs agree.

4. Branch and bound search
The problem MCP is solved by a depth first search

algorithm that is applied to each SCC of G separately.
During the search, a tree is built whose nodes represent
TCCs. The root node contains an SCC where all the
nodes are labeled with 0 and for each node v the set of
admissible labels, L(v), contains all the possible labels
0, 1, and 2. In the first level of the search tree, a node
va is labeled using all the admissible labels from L(va).
The assignment of a label can divide the SCC into
smaller TCCs (second level). Next a second node vb is
labeled (third level) and so on. Figure 9 shows an
example.

l(v a) = 2 1 0

SCC

l(v b) = 2 1 0

...

...

assi gn

divi de

assi gn

sim plif y

sim plif y

A

B

A

B

...

div id e

......

TC C

TC C

TCC

TC CTC C

TC C

TC CTC C

TC C TC C TCC

Figure 9: Search tree for a single SCC
The search is implemented by two alternating

procedures. Procedure A restricts the admissible labels
for the nodes and tries to simplify the graph by local
transformations. Procedure B selects a node v that has
not yet been considered and tries all the admissible
values l(v)∈L(v). When a specific label is assigned to
node v, the set of admissible labels, L(v), is restricted
to this single label. After the assignment, procedure B
tries to divide the TCC into smaller ones. Then
procedure A is called for each of the resulting (smaller)
TCCs.

4.1 Procedure A
In procedure A, the following rules are applied until

no more changes are feasible. An optimal solution for
the modified graph is still an optimal one for the
original graph.
Rule (i):
If v is a combinational node with l(v) = 0,

indegree(v) = 1 or outdegree(v) = 1,
and v is not part of a cycle with only one or two
nodes,

then ignore node v, i.e. remove v and replace every
pair of edges (w', v), (v, w") by an edge (w', w").

Rule (ii):
If v is a sequential node with l(v) = 0,

indegree(v) = outdegree(v) = 1,
and its direct predecessor and successor are two
sequential nodes,
and v is not part of a cycle with only one or two
nodes,

then ignore node v.
By local inspection some labels of nodes can be

excluded as they cannot lead to an optimal solution:
Rule (iii):
If there is a self-loop (v, v),
then the only admissible label for node v is 2, L(v) :=

L(v) \ {0, 1}.
Rule (iv):
If there is a cycle with two nodes, (v, v', v),

and l(v') = 1,
then label 0 is not admissible for v, L(v) := L(v) \

{0}.
As far as cycle breaking is concerned, increasing the

label of a node v from 0 to 1 is equivalent to adding 1
to all the direct predeccessors of v that are labeled with
0 or 1. It is also equivalent to adding 1 to all the direct
successors of v that are labeled with 0 or 1.
Consequently, for a minimum cost labeling the node v
must not get the label 1 if one of the equivalent options
is less expensive.

We define cost1(v) and cost2(v) as the costs for
labels l(v) = 1 and l(v) = 2, respectively, and in1(v) as
the cost for adding 1 to all the direct predecessors of v
that are labeled with 0 or 1. out1(v) is the cost for
adding 1 to all the direct successors of v that are
labeled with 0 or 1.
An admissible labeling is restricted by the following
rule:
Rule (v):
If l(v) = 0 and cost1(v) ≥ min {in1(v), out1(v)},
then label 1 is not admissible for v, L(v) := L(v) \

{1}.
If later the labels of some predecessors or successors

of v are increased from 0 to 1, this restriction will still
hold.

Similarly, increasing the label of a node v from 0 to
2 can be considered. Let in2(v) be the total cost for in-
creasing the labels of all the direct predecessors of v to
2, and let out2(v) be the total cost for increasing the
labels of all the direct successors of v to 2. Then
analogously to rule (v) the following rule is
established:
Rule (vi):
If l(v) = 0 and there is not a self-loop (v, v),

and cost2(v) ≥ min {in2(v), out2(v)},
then label 2 is not admissible for v, L(v) := L(v) \

{2}.
After rules (v) and (vi) have been applied, it is

possible that for some nodes the only admissible label
is 0. If these nodes are involved in self-loops or have a
label different from 0, a solution with this (partial)
labeling does not exist, and the search tree can be
pruned (see subsection 4.3). Otherwise these nodes can
be eliminated from further consideration by the
following rule.
Rule (vii):
If L(v) = {0} and there is not a self-loop (v, v),
then ignore node v.

After all possible restrictions and simplifications
have been made, procedure B follows.

4.2 Procedure B
Procedure B selects a node v that has not yet been

considered for labeling (hence with label 0) and tries
all the admissible assignments l(v)∈L(v). The node v
is selected by the following criteria:
• The number of admissible labels for v, |L(v)|, should

be minimum.
• Setting l(v) = 2 should make it possible to divide the

TCC into smaller TCCs, and the largest of these
smaller TCCs should contain a minimal number of
nodes.
The first of these two points is most important. Of

course, selecting a node v with |L(v)| = 1 is best since
no decisions are required that may have to be reversed
later.

If the newly assigned label is 1 or 2, it is tried to
divide the TCC into smaller TCCs, and procedure A is
called for each of these. If the new label is l(v) = 0, the
TCC cannot be divided. In this case we set L(v) := {0},
and when procedure A is called, the application of rule
(vii) reduces the graph by ignoring node v.

4.3 Pruning the search tree
At each node of the search tree the cost of the

current labeling is computed. If this sum (current_cost)
equals or exceeds the value obtained by the best
solution found so far (best_cost), sons of this node in
the search tree need not be investigated and the search
tree can be pruned. Also if there is a node v with l(v) ≠
0 and l(v) ∉ L(v) or a node v with no admissible label,
L (v) = Ø, the current (partial) labeling cannot be
extended to a minimum cost labeling, and the search
tree can be pruned at this point. Using these criteria for
pruning, most of the search space may be skipped
while it is still guaranteed that an optimal solution will
be found.

After pruning, backtracking may be necessary.
Starting from the current node, the search tree is
traversed backward until a node is encountered where
procedure B made a choice among several possible
assignments of labels. A different assignment is made,
and the search algorithm continues by again calling
procedure A and procedure B alternatingly.

As the underlying problem is NP-hard, some circuits
might be intractable by the exact algorithm. In this
case, good suboptimal solutions are obtained by a
heuristic approach. A parameter quality ≤ 1 is
introduced. This factor is used during two steps of the
algorithm. In procedure A, the rules (v) and (vi), which
restrict the admissible labels, are modified to
Rule (v'):

If l(v) = 0
and cost1(v) ≥ min {in1(v), out1(v)} * quality,

then label 1 is not admissible for v, L(v) := L(v) \
{1}.

Rule (vi'):
If l(v) = 0 and there is not a self-loop (v, v),

and cost2(v) ≥ min {in2(v), out2(v)} * quality,
then label 2 is not admissible for v, L(v) := L(v) \

{2}.
The second step where this parameter is applied

occurs during pruning the search tree. Here the tree is
pruned if current_cost > best_cost * quality. quality
= 1 yields an optimal placement. Usually the costs of
the suboptimal solutions are distinctly below the limit
\F(optimal_cost;quality2) as shown in the next section.

5. Experimental results
The presented algorithm has been applied to the

ISCAS'89 benchmark circuits [2]. The minimum cost
placement strongly depends on the hardware overheads
associated with the built-in test cells:
cB: cost of replacing a D-flip-flop by a BILBO cell
cBt : cost of inserting a transparent BILBO cell
cC: cost of replacing a D-flip-flop by a CBILBO cell
cCt : cost of inserting a transparent CBILBO cell

For simplicity, it is assumed that the costs cB, cC,
cBt , and cC t do not depend on the locations in the
netlist. Technology, design style, and the cell library
have an impact on the cost distribution.

For cB+cBt < cC, 2cB t < cCt , a minimum cost
solution does not have any CBILBO cells since a pair
of BILBO cells is always more favorable than a single
CBILBO cell. For cC < cB, cCt < cBt , an optimal
solution does not have any BILBO cells. In this case
the problem reduces to determining a minimum
feedback vertex set.

The most interesting situations occur when cB < cC <
cB+cBt and cBt < cCt < 2cBt hold. In order to get
realistic values, the hardware overheads were
estimated for two different design styles. The resulting
cost distributions are
parameter set I: cB = 10, cC = 25, cBt = 30, cC t =
40
parameter set II: cB = 10, cC = 35, cBt = 30, cC t =
55

The experiments have been performed in order to
validate the presented algorithm, and also in order to
investigate optimal self-testable structures.

5.1 Validation
For the validation of the algorithm, we are interested

in provably optimal solutions, computing times, and the

impact of the factor quality on the costs of the found
solutions. The solutions and computing times on a SUN
Sparc 10 workstation are listed in table 1 for parameter
set I, and in table 2 for parameter set II. The first
column denotes the circuit, and #B, #Bt, #C, and #Ct
are the number of BILBO cells, transparent BILBO
cells, CBILBO cells, and transparent CBILBO cells,
r e s p e c t i v e l y . " C o s t "

circuit #B #Bt #C #Ct cost q CPU
sec

s27 - - 1 1 65 1 <1
s208 - - 8 - 200 1 <1
s298 - - 14 - 350 1 <1
s344 - - 15 - 375 1 <1
s349 - - 15 - 375 1 <1
s382 - - 15 - 375 1 <1
s386 - - 6 - 150 1 <1
s400 - - 15 - 375 1 <1
s420 - - 16 - 400 1 <1
s444 - - 15 - 375 1 <1
s510 - - 6 - 150 1 <1
s526 - - 21 - 525 1 <1

s526n - - 21 - 525 1 <1
s641 - - 7 4 335 1 <1
s713 - - 7 4 335 1 <1
s820 - - 5 - 125 1 <1
s832 - - 5 - 125 1 <1
s838 - - 32 - 800 1 <1
s953 - - 6 - 150 1 <1

s1196 - - - - 0 1 <1
s1238 - - - - 0 1 <1
s1423 - - 71 - 1775 1 <1
s1488 - - 6 - 150 1 <1
s1494 - - 6 - 150 1 <1
s5378 2 - 29 - 745 2/3 1
s9234 - - 152 - 3800 2/3 14

s13207 - - 308 1 7740 1 17
s15850 6 - 438 - 11010 1 4
s35932 36 - 288 - 7560 1 31
s38417 4 - 1048 8 26560 1 28
s38584 3 - 1094 9 27740 2/3 500

Table 1: Test cell placement for parameter set I

is the sum of the overheads for these cells, and q is the
value of the parameter quality where this solution is
found. The last column gives the computing time.

With the cost distribution of parameter set I, only a
small number of BILBO cells is used, and mainly
CBILBO cells are placed. Parameter set II increases
the costs for CBILBOs, results are shown in table 2.

It is seen that the efficiency of the algorithm
depends on the cost distribution. For parameter set I, an
optimal solution is found for nearly all circuits with the
exception of three whereas with parameter set II five
circuits are hard to handle. Moreover, in all these hard
cases the value of the quality factor, q, is lower than in
table 1.

The impact of q on the costs is investigated in table
3 where the costs are compared for different values of
q . F o r

circuit #B #Bt #C #Ct cost q CPU
sec

s27 2 1 1 - 85 1 <1
s208 - - 8 - 280 1 <1
s298 - - 14 - 490 1 <1
s344 - - 15 - 525 1 <1
s349 - - 15 - 525 1 <1
s382 - - 15 - 525 1 <1
s386 - - 6 - 210 1 <1
s400 - - 15 - 525 1 <1
s420 - - 16 - 560 1 <1
s444 - - 15 - 525 1 <1
s510 - - 6 - 210 1 <1
s526 - - 21 - 735 1 <1

s526n - - 21 - 735 1 <1
s641 8 4 7 - 445 1 <1
s713 8 4 7 - 445 1 <1
s820 - - 5 - 175 1 <1
s832 - - 5 - 175 1 <1
s838 - - 32 - 1120 1 <1
s953 - - 6 - 210 1 <1

s1196 - - - - 0 1 <1
s1238 - - - - 0 1 <1
s1423 - - 71 - 2485 1 1
s1488 - - 6 - 210 1 <1
s1494 - - 6 - 210 1 <1
s5378 - - 30 - 1050 1/3 <1
s9234 - - 46 106 7440 1/3 4

s13207 - - 310 - 10850 1/2 22
s15850 6 - 438 - 15390 1 4
s35932 36 - 288 - 10440 1 29
s38417 11 4 1049 4 37165 1/2 211
s38584 52 9 1079 - 38555 1/2 549

Table 2: Test cell placement for parameter set II

values q ≥ 0.5 the heuristic solutions are very close to
the minimum cost solution found by q = 1, but for q <
0,5 there is a distinct loss in quality for some circuits.

In another experiment the algorithm has been
applied to the S-graphs of the circuits. If the costs for

CBILBO cells are set less than the costs for BILBO
cells, cC < c B , then the MFVS-problem for
implementing a partial scan path is solved. The
algorithm is not tuned to handle S-graphs and the
MFVS-problem, as it is designed for a much more
general problem. But for all the benchmark circuits it
found the provably optimal solution of the MFVS-
problem within a few minutes of computing time.

Some authors propose not to break self-loops for a
partial scan design [3]. This problem can be solved by
removing the self-loop edges from the S-graph. Also for

circuit q = 1 q = 5/6 q = 4/6 q = 3/6 q = 2/6

s1423 2485 2485 2485 2485 2645
s1488 210 210 210 210 210
s1494 210 210 210 210 210
s5378 - - - - 1050
s9234 - - - - 7440

s13207 - - - 10850 12755
s15850 15390 15390 15390 15390 19335
s35932 10440 10440 10440 10440 10710
s38417 - - - 37165 46090
s38584 - - - 38555 39410

Table 3: Costs for solutions found with parameter set
II and different values of the quality factor

these modified graphs the algorithm provides an
optimal solution for nearly all the benchmark circuits
with the exception of s15850 and s38584 where the
factor quality must be reduced. The optimal solutions
found agree with the numbers reported in [4].

5.2 BIST configurations
The solutions for the ISCAS'89 circuits give new

insight in the structure of self-testable circuits with a
"test per clock" technique and minimal hardware
overhead. In most of the circuits only CBILBO cells
have to be placed, and in the remaining circuits only
very few BILBO cells are required. We assumed a
CBILBO cell up to 3.5 times more expensive than a
BILBO cell, but the overall hardware overhead of a
CBILBO based approach is still smaller than a BILBO
solution.

CBILBOs have even more advantages. As they
generate patterns and compact responses concurrently,
a single test session is sufficient and the test
application time is shortened. This makes self-test
control very simple, and hardware is saved for both the
self-testable data path and the test control logic.

6. Conclusion
An exact algorithm has been presented that selects

flip-flops to be incorporated into a multi-mode test
register or into a partial scan path in order to
implement a "test per clock" or a "test per scan"
scheme with minimum hardware overhead. The
algorithm finds provably optimal solutions for nearly all
the ISCAS'89 benchmark circuits, and the remaining
circuits can be handled by a heuristic version very
efficiently. It also considers test cells within the
combinational logic, and takes into account that the
hardware costs of test cells depend on their type. The
MFVS problem of partial scan design is solved as a
special case.

In a "test per clock" scheme the hardware minimal
solution consists mainly of CBILBO type test cells
such that also test scheduling and test control are
simplified.

7. References
[1] L. Avra: "Allocation and Assignment in High-Level

Synthesis for Self-Testable Data Paths", International
Test Conference, 1991, pp. 463-472, 1991

[2] F. Brglez, D. Bryan, K. Kozminski: "Combinational
Profiles of Sequential Benchmark Circuits", Int. Symp.
on Circuits and Systems, 1989, pp. 1929-1934

[3] K.-T. Cheng, V. D. Agrawal: "A Partial Scan Method for
Sequential Circuits with Feedback", IEEE Trans. on
Computers, Vol. 39, No. 4, April 1990, pp. 544- 547

[4] S. T. Chakradhar, A. Balakrishnan, V. D. Agrawal: "An
Exact Algorithm for Determining Partial Scan Flip-
Flops", Design Automation Conf., San Diego, 1994

[5] S. Chiou, C. Papachristou, H. Harmani: "A data path
synthesis method for self-testable designs", Design
Automation Conference, 1991, pp. 378-384

[6] M. R. Garey, D. S. Johnson: "Computers and
Intractability", Freeman, New York, 1979

[7] R. Gupta, R. Gupta, M. A. Breuer: "The BALLAST
Methodology for Structured Partial Scan Design", IEEE
Transactions on Computers, April 1990, pp. 538-544

[8] S. Das Gupta, R. G. Walther, E. B. Eichelberger, T. W.
Williams: "An Enhancement to LSSD and Some
Applications of LSSD in Reliability, Availability and
Serviceability", FTCS, 1981, pp. 32-34

[9] C. L. Hudson, G. D. Peterson: "Parallel Self-Test with
Pseudo-Random Test Patterns", International Test
Conference, Washington DC, 1987, pp. 954-963

[10] B. Koenemann, J. Mucha, G. Zwiehoff: "Built-In Logic
Block Observation Techniques", Test Conference,
Cherry Hill NJ, 1979, pp. 37-41

[11] A. Krasniewski, S. Pilarski: "Circular Self-Test Path: A
Low Cost BIST Technique for VLSI Circuits",
Transactions on CAD, Jan. 1989, pp. 46-55

[12] A. Kunzmann, H.-J. Wunderlich: "An analytical
approach to the partial scan problem", J. of Electronic
Testing: Theory and Applications, 1990, pp. 163-174

[13] T.-C.Lee, N. K. Jha, W. H. Wolf: "Behavioral synthesis
for easy testability in data path scheduling", Design
Automation Conference, 1993, pp. 292-297

[14] D. H. Lee, S. M. Reddy: "On Determining Scan Flip-
Flops in Partial-Scan Designs", International
Conference on CAD, 1990, pp. 322-325

[15] A. Mujumdar, R. Jain, K. Saluja: "Behavioral Synthesis
of Testable Designs", International Symposium on
Fault-Tolerant Computing, 1994, pp. 436-445

[16] M. J. Ohletz, T. W. Williams, J. P. Mucha: "Overhead in
Scan and Self-Test Designs", International Test
Conference, 1987, pp. 460-470

[17] L.-T. Wang, E. J. McCluskey: "Concurrent Built-in
Logic Block Observer (CBILBO)", Int. Symposium on
Circuits and Systems, 1986, pp. 1054-1057

[18] H.-J. Wunderlich: "Self Test Using Unequiprobable
Random Patterns", FTCS, 1987, pp. 258-263

	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index

